\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 55, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/55\hfil Local smoothing effects] {A note on local smoothing effects for the unitary group associated with the KdV equation} \author[X. Carvajal\hfil EJDE-2008/55\hfilneg] {Xavier Carvajal} \address{Xavier Carvajal \newline Instituto de Matem\'atica - UFRJ Av. Hor\'acio Macedo, Centro de Tecnologia Cidade Universit\'aria, Ilha do Fund\~ao, Caixa Postal 68530 21941-972 Rio de Janeiro, RJ, Brasil} \email{carvajal@im.ufrj.br} \thanks{Submitted March 13, 2008. Published April 17, 2008.} \subjclass[2000]{35A07, 35Q53} \keywords{Modified KdV equation; KdV equation; local smoothing effect} \begin{abstract} In this note we show interesting local smoothing effects for the unitary group associated to Korteweg-de Vries type equation. Our main tools are the Hardy-Littlewood-Sobolev and Hausdorff-Young inequalities. Using our local smoothing effect and a dual version, we estimate the growth of the norm of solutions of the complex modified KdV equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} In this note we describe some results on local smoothing effects for solutions of the initial value problem (IVP) \begin{equation}\label{1grupoU} \begin{gathered} \partial_t u+b \partial_x^3 u=0,\\ u(x,0) = u_0(x). \end{gathered} \end{equation} We define the unitary group $U(t)u_0$ as the solution of the linear initial-value problem \eqref{1grupoU}, in this way \begin{align}\label{grupoU} \widehat{U(t)u_0}(\xi)=e^{it(b\xi^3)}\widehat{u_0}(\xi). \end{align} Kenig et al. \cite{KPV1} (see also \cite{CL} and \cite{G}) proved the following local smoothing effect \begin{align}\label{x3} \|\partial_x U(t')u_0\|_{L_x^\infty \mathcal{L}_t^2} \leq\|\partial_x U(t')u_0\|_{L_x^\infty L_t^2} \le c \|u_0\|_{L^2}. \end{align} They also proved that \begin{equation}\label{1x41} \big\|\partial_x^2 \int_0^t U(t-t')f(t',x)dt'\big\|_{L_x^\infty L_{t}^2} \leq c \|f\|_{L_x^1 L_{t}^2.} \end{equation} In this work we obtain a local smoothing effect (Theorem \ref{1t}), more general than local smoothing effect \eqref{x3}. We also consider the IVP for the complex modified Korteweg-de Vries type equation: \begin{equation}\label{1.211} \begin{gathered} \partial_t u+b \partial_x^3 u+\gamma \partial_x(|u|^2 u)=0,\\ u(x,0) = u_0(x), \end{gathered} \end{equation} where $u$ is a complex valued function and $b, \gamma $ are real parameters with $b \gamma \neq 0$. Using our local smoothing effect we also proved an interesting result on growth norms (Theorem \ref{Tprinc}). The flow associated with (\ref{1.211}) leads to the quantity \begin{equation} I_1(u) = \int_{\mathbb{R}}|u(x,t)|^2 dx, \label{1.2} \end{equation} which is conserved in time. Also, when $b\cdot \gamma \neq 0$ we have the time invariant quantity \begin{equation} I_2(u) = k_1\int_{\mathbb{R}}|\partial_x u(x,t)|^{2} dx +k_2\int_{\mathbb{R}}|u(x,t)|^4dx, \label{1.3} \end{equation} where $k_1=3b \gamma$ and $k_2=-3\gamma^2/2$. The main results in this work are stated as follows. \begin{theorem}\label{1t} Let $U(t)u_0$ be the solution of the linear problem associated to \eqref{1grupoU} and let $p \ge 2$ and $1/p+1/q=1$. \\ If $20$. Then for all $t \in (0,T)$ there exist a function $\delta=\delta(\|u\|_{L_x^2\mathcal{L}_T^{\infty}}, \|u\|_{\mathcal{L}_T^\infty\dot{H}^{1/4}})$ such that \begin{equation} \label{3eq:1t1} \|u(t)\|_{\dot{H}^\theta} \le \|u_0\|_{\dot{H}^\theta} +\delta t\|u_0\|_{L^2}^3, \end{equation} where $0\le \theta \le 1$. \end{theorem} The notation used here is standard in partial differential equations. We will use the Lebesgue space-time $L_{x}^{p}\mathcal{L}_{\tau}^{q}$ endowed with the norm $$ \|f\|_{L_{x}^{p}\mathcal{L}_{\tau}^{q}} = \big\| \|f\|_{\mathcal{L}_{\tau}^{q}} \big\|_{L_{x}^{p}} = \Big( \int_{\mathbb{R}} \Big( \int _{0}^{\tau} |f(x,t)|^{q} dt \Big)^{p/q} dx \Big)^{1/p}. $$ We will use the notation $\|f\|_{L_{x}^{p}L_{t}^{q}}$ when the integration in the time variable is on the whole real line. The notation $\|u\|_{L^p}$ is used when there is no doubt about the variable of integration. \section{Smoothing Local Effects} In this section we prove new smoothing local effects for the unitary group associated with the Korteweg-de Vries equation (Theorem \ref{1t}), which will be fundamental in the proof of Theorem \ref{Tprinc}. \subsection*{Linear Estimates} The next lemma is a preliminary result to be used in the proof of Theorem \ref{Tprinc}. \begin{lemma}\label{teox3} Let $u(x,t')=U(t')u_0(x)$ be the solution of \eqref{1grupoU}. We have the maximal function estimates \begin{equation}\label{efm} \| U(t')u_0\|_{L_x^4 L_t^\infty} \leq c \|D^{1/4}u_0\|_{L^{2}}, \end{equation} and for $s>3/4$ and $\rho>3/4$ \begin{equation}\label{efm1} \| U(t')u_0\|_{L_x^2 \mathcal{L}_t^\infty} \leq c (1+t)^{\rho}\|u_0\|_{H^{s}}. \end{equation} and \begin{equation}\label{x41} \big\|\partial_x^2 \int_0^t U(t-t')f(t',x)dt'\big\|_{L_x^\infty \mathcal{L}_{\tau}^2} \leq c \|f\|_{L_x^1 \mathcal{L}_{\tau}^2}. \end{equation} \end{lemma} \begin{proof} The proof of \eqref{efm} and \eqref{efm1} can be found in \cite{KPV1}. To prove (\ref{x41}), let $\tau >0$ and $g(t',\tau,x)=f(t',x)\chi_{[0, \tau]}(t')$. Then \begin{align*} \big\|\partial_x^2 \int_0^t U(t-t')f(t',x)dt'\big\|_{L_x^\infty \mathcal{L}_{\tau}^2} &=\big\| \Big(\int_{0}^{\tau}\big|\partial_x^2 \int_0^t U(t-t') g(t',\tau,x)dt'\big|^2 dt\Big)^{1/2}\big\|_{L_x^\infty}\\ &\le \big\| \Big(\int_{\mathbb{R}} \big|\partial_x^2 \int_0^t U(t-t')g(t',\tau,x)dt'\big|^2 dt\Big)^{1/2} \big\|_{L_x^\infty}\\ &= \big\|\partial_x^2 \int_0^t U(t-t')g(t',\tau,x)dt'\big\|_{L_x^\infty L_t^2,} \end{align*} and by inequality \eqref{1x41} we obtain (\ref{x41}). \end{proof} \begin{proof}[Proof of Theorem \ref{1t}] Let $\varphi\in \mathcal{C}_0^{\infty}$ with $\varphi(t')=1$ in $[-t,t]$, $0\le \varphi(t') \le 1$ and $\mathop{\rm supp}\varphi \subset [-2t,2t]$, then \[ \|\partial_xU(t')u_0\|_{L_{x}^{\infty}\mathcal{L}_{t}^{p}} \le \|\varphi(t')\partial_xU(t')u_0\|_{L_{x}^{\infty}L_{t}^{p}}. \] Using duality, we consider $g \in L^q$, $\|g\|_{L^q}=1$ and the expression \begin{align*} I(x,t):=\big|\int_{\mathbb{R}}g(t')\varphi(t')\partial_xU(t')u_0 dt' \big|. \end{align*} Now using the change of variable $t'=-t'$ we can assume that \begin{align*} I(x,t):=\big|\int_{\mathbb{R}}g(t')\varphi(t')\partial_xU(-t')u_0 dt' \big|. \end{align*} Fubinni Theorem and the definition of group $U(t)$, shows that \begin{equation} \label{inic} \begin{aligned} I(x,t) &=\big|\int_{\mathbb{R}}g(t')\varphi(t')\int_{\mathbb{R}} e^{i x \xi-i\xi^3 t'}i \xi \widehat{u_0}(\xi) d\xi dt' \big| \\ &= \big|\int_{\mathbb{R}}e^{i x \xi} \xi \widehat{u_0}(\xi) \Big(\int_{\mathbb{R}} g(t')\varphi(t') e^{-i\xi^3 t'}dt'\Big) d\xi \big|\\ &= \big|\int_{\mathbb{R}}\widehat{u_0}(\xi) \xi e^{i x \xi} \widehat{\varphi g}(\xi^3) d\xi\big|, \end{aligned} \end{equation} and by Plancherel's equality, H\"older inequality and Hausdorff-Young inequality we have \begin{equation} \begin{aligned} I(x,t) &= \big|\int_{\mathbb{R}}|\xi|^s\widehat{u_0}(\xi) \frac{\xi e^{i x \xi}}{|\xi|^s}\widehat{\varphi g}(\xi^3) d\xi\big| \\ &=\big|\int_{\mathbb{R}}D^s u_0(y) \mathcal{F} \Big(\frac{ \xi e^{i x \xi}}{|\xi|^s}\widehat{\varphi g} (\xi^3)\Big)(y) dy\big| \\ &\le \|D^s u_0\|_{L^q} \big\|\mathcal{F} \Big(\frac{\xi e^{i x \xi}}{|\xi|^s}\widehat{\varphi g}(\xi^3)\Big)(y) \big\|_{L^p} \\ &\le \|D^s u_0\|_{L^q} \big\|\frac{\xi e^{i x \xi}}{|\xi|^s}\widehat{\varphi g}(\xi^3)\big\|_{L^q}. \end{aligned}\label{xavier21} \end{equation} Now, we make the change of variable $y=\xi^3$ to obtain: \begin{equation} \label{xaveqt} \Big\|\frac{\xi e^{i x \xi}}{|\xi|^s}\widehat{\varphi g}(\xi^3)\Big\|_{L^q}^q = \frac13 \int_{\mathbb{R}}\frac{|\widehat{\varphi g}(y)|^q dy}{|y|^{\alpha}}, \end{equation} where $\alpha=(2-(1-s)q)/3$. Note that if $p=q=2$ and $s=0$, then $\alpha =0$, therefore in this case \[ I(x,t) \le c \|u_0\|_{L^2} \|\varphi g\|_{L^2} \le c \| u_0\|_{L^2} \|g\|_{L^2}=c \|u_0\|_{L^2}, \] and in this case we obtain \eqref{xav}. If $p=q=2$ and $02$ and $4/q-21-2/q$), we can write the integral in \eqref{xaveqt} as follows \[ \int_{\mathbb{R}}\frac{|\widehat{\varphi g}(y)|^q dy}{|y|^{\alpha}} = \int_{|y| \le 1}\frac{|\widehat{\varphi g}(y)|^q dy}{|y|^{\alpha}}+ \int_{|y|> 1}\frac{|\widehat{\varphi g}(y)|^q dy}{|y|^{\alpha}}\\ \\ := I_1^q+ I_2^q, \] hence \[ I_1^q \le c_{s,q}\|\widehat{\varphi g}\|_{L^{\infty}}^q \le c_{s,q}\|\varphi g\|_{L^{1}}^q \le c_{s,q}\|\varphi\|_{L^p}^q\|g\|_{L^q}^q \le c_{s,q}t^{q/p}, \] note that $s>4/q-2$ implies $\alpha p/(p-q)>1$, therefore using H\"older inequality and Hausdorf-Young inequality in $I_2^q$ we obtain \[ I_2^q \le \|\widehat{\varphi g}\|_{L^p}^q \Big(\int_{|y|>1} \frac{dy}{|y|^{\alpha p/(p-q)}} \Big)^{1-q/p} \le c_{s,q}\|\varphi g\|_{L^q}^q \le c_{s,q}\|g\|_{L^q}^q. \] If $p=\infty$ and $s>3/2$, then \eqref{inic} gives $$ I(x,t) \le \|\widehat{\varphi g}\|_{L^\infty} \|\widehat{u_0}(\xi) \xi\|_{L^1} \le c_s \| g\|_{L^1}\|u_0\|_{H^s}. $$ Note that, for $s>1/2$ using immersion we also have \[ \|\partial_xU(t')u_0\|_{L_{t}^{\infty} L_{x}^{\infty}}\le c_s \|\partial_xU(t')u_0\|_{H^s} \le c_s \|u_0\|_{H^{s+1}}. \] Hence we have finished the proof of Theorem \ref{1t}. \end{proof} \begin{corollary}\label{eq:x53k.1} Let $0 \le s \le 1$ and $u_0 \in L^2$. Then \begin{equation}\label{xavtt} \|D_x^s U(t')u_0\|_{L_x^{\infty}\mathcal{L}_t^2} \le c_s t^{(1-s)/3} \|u_0\|_{L^2}. \end{equation} \end{corollary} The proof of the above corollary follows from \eqref{xav}. \begin{corollary}\label{eq:x33k.1} Let $f \in L_x^1 \mathcal{L}_t^2$ and $U(t')$ be as in \eqref{grupoU}. Then for $0\le s \le 1$ we have \begin{equation} \label{4tt} \big\| D_x^s \int_0^t U(t-t')f(x,t')dt'\big\|_{L_x^2} \le c_s t^{(1-s)/3} \|f\|_{L_x^1 \mathcal{L}_t^2}. \end{equation} \end{corollary} \begin{proof} Inequality (\ref{4tt}) follows from (\ref{xavtt}) and a duality argument. In fact, by Plancherel identity, definition of the group $U(t)$ and (\ref{xavtt}), we have for $\|g\|_{L^2}=1$: \begin{align*} \int_{\mathbb{R}} \Big(D_x^s \int_0^t U(-t')f(x,t')dt'\Big) \overline{g(x)}dx &= \int_0^t \int_{\mathbb{R}} f(x,t')\overline{D_x^sU(t')g(x)}dx dt'\\ &\le \|f\|_{L_x^1 \mathcal{L}_t^2} \|D_x^sU(t')g(x)\|_{L_x^{\infty} \mathcal{L}_t^2} \\ &\le c t^{(1-s)/3}\|f\|_{L_x^1 \mathcal{L}_t^2} \|g\|_{L^2}. \end{align*} \end{proof} \subsection*{Proof of Theorem \ref{Tprinc}} The next lemma is used in the proof. \begin{lemma}\label{esmax0} Let $u\in \mathcal{C}(\mathbb{R}, H^2)$ be the solution of \eqref{1.211}. Then \begin{equation} \label{esmax22} \begin{aligned} \|u\|_{L_x^2\mathcal{L}_t^{\infty}} &\le c(1+t)^{3/4+}\|u(0)\|_{H^{3/4+}} +c(1+t)^{3/4+}\int_{0}^{t}(\|u(t') \|_{H^{1/2+}}\|u(t') \|_{H^{2}}^2\\ &\quad +\|u(t') \|_{H^{1/2+}}^2\|u(t') \|_{H^{2}})dt'. \end{aligned} \end{equation} \end{lemma} \begin{proof} To prove the first inequality we rely on the integral equation form \[ u(t)= U(t)u_0- \gamma\int_0^{t}U(t-\tau)\left(\partial_x (|u|^2u)\right)(\tau), \] the linear estimate \eqref{efm1} show that if $u(0) \in H^2$ then for any $t>0$, \begin{equation} \label{esmax2} \begin{aligned} \|u\|_{L_x^2\mathcal{L}_t^{\infty}} &\le c(1+t)^{3/4+}\|u(0)\|_{H^{3/4+}}\\ &\quad +c(1+t)^{3/4+}\int_{0}^{t}(\| |u|^2u(t') \|_{L_x^2} +\| \partial_x^2(|u|^2u)(t')\|_{L_x^2})dt', \end{aligned} \end{equation} using the immersions $\|u(t)\|_{L_x^{\infty}} \le c\| u(t)\|_{H^{1/2+}}$, $\|u(t)\|_{L_x^{4}} \le c\| u(t)\|_{\dot{H}^{1/4}}$ it follows that \begin{align}\label{esmax3} \| |u|^2u(t') \|_{L_x^2}\le \|u(t') \|_{L_x^{\infty}}\|u^2(t') \|_{L_x^2} \le c\|u(t') \|_{H^{1/2+}}\|u(t') \|_{L_x^{4}}^2<\infty, \end{align} and using Leibniz rule, it is easy to see that \begin{align*} %\label{esmax4} \|\partial_x^2(|u|^2u)(t')\|_{L_x^2} &\le c\|u u_x^2(t') \|_{L_x^{2}}+c\|u^2u_{xx}(t') \|_{L_x^2}\\ &\le c\|u(t') \|_{H^{1/2+}}\|u(t') \|_{H^{2}}^2+c\|u(t') \|_{H^{1/2+}}^2\|u(t') \|_{H^{2}}< \infty. \end{align*} Hence combining this inequality and \eqref{esmax2}, we obtain \eqref{esmax22}. \end{proof} \begin{lemma}\label{reivax22} Let $u\in \mathcal{C}(\mathbb{R}, H^2(\mathbb{R}))$ be solution of \eqref{1.211} and $0 \le s \le 1$. Then \begin{equation} \label{3eq:1t11} \begin{aligned} \|D_x^s u(t)\|_{L_x^2} &\le \|D^s u_0\|_{L^2}\\ &\quad + c t^{(1-s)/3} \|u\|_{L_x^2\mathcal{L}_t^{\infty}}^2 \Big(\|u_0 \|_{L^2}+t^{1/2}\|u\|_{\mathcal{L}_t^{\infty}\dot{H}^{1/4}}^2 \|u\|_{L_x^2\mathcal{L}_t^{\infty}}\Big). \end{aligned} \end{equation} \end{lemma} \begin{proof} Without loss of generality we restrict our attention to the real case $u\in \mathbb{R}$. The equivalent integral equation is \begin{equation}\label{33k.1} u(t)= U(t)u_0- \gamma\int_0^{t}U(t-\tau) \left(\partial_x (u^3)\right)(\tau)d\tau \\ =: U(t)u_0+z(t). \end{equation} Let $\Gamma(t)=\|u\|_{L_x^2\mathcal{L}_t^{\infty}}$. From (\ref{33k.1}), Corollary \ref{eq:x33k.1} and H\"older inequality, we have \begin{equation} \begin{aligned} \|D_x^s u(t)\|_{L_x^2} &\le \|D_x^s U(t)u_0\|_{L_x^2}+\|D_x^s z(t)\|_{L_x^2} \\ &\le \|D^s u_0\|_{L^2}+ c t^{(1-s)/3}\|u^2 u_x\|_{L_x^1\mathcal{L}_t^2} \\ &\le \|D^s u_0\|_{L^2}+ c t^{(1-s)/3}\Gamma(t)^2 \|u_x\|_{L_x^{\infty}\mathcal{L}_t^2}. \end{aligned} \label{1eq:t1} \end{equation} Using (\ref{x3}), (\ref{x41}) and H\"older inequality, we obtain \begin{equation} \label{2eq:t1} \begin{aligned} \|\partial_x u\|_{L_x^{\infty}\mathcal{L}_t^2} &\le \|\partial_x U(t')u_0\|_{L_x^{\infty} \mathcal{L}_t^2}+\|\partial_x z\|_{L_x^{\infty}\mathcal{L}_t^2} \\ &\le c\|u_0\|_{L^2}+ c\|u^3\|_{L_x^1 \mathcal{L}_{t}^2} \\ &\le c\|u_0\|_{L^2}+ c \|u\|_{L_x^4\mathcal{L}_t^4}^2\Gamma(t)\\ &\le c\|u_0\|_{L^2}+ c t^{1/2}\|u\|_{\mathcal{L}_t^\infty L_x^4}^2\Gamma(t)\\ &\le c\|u_0\|_{L^2}+ c t^{1/2} \|u\|_{\mathcal{L}_T^\infty\dot{H}^{1/4}}^{2} \Gamma(t), \end{aligned} \end{equation} where in the last inequality we use immersion $\|u\|_{L_x^4} \le \|u\|_{\dot{H}^{1/4}}$. As a consequence of (\ref{1eq:t1}) and (\ref{2eq:t1}) we have \eqref{3eq:1t11}. Thus the proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{Tprinc}] Let $T>0$. Then there is a $\delta_0=\delta_0(T)>0$ such that \begin{equation}\label{reivax11} \|u\|_{L_x^2L^{\infty}([\tau_{1}, \tau_{2}])}<2\|u_0\|_{L^2},\quad \textrm{for all } \tau_1,\tau_2 \in[0,T], \; |\tau_1-\tau_2|\le \delta_0. \end{equation} To verify this we use contradiction, we suppose that for all $n$ there exist $\tau_1^n, \tau_2^n \in [0,T]$, $|\tau_1^n- \tau_2^n|<1/n$ and \begin{equation}\label{reivax10} \|u\|_{L_x^2L^{\infty}([\tau_{1}^n, \tau_{2}^n])}\ge 2\|u_0\|_{L^2}. \end{equation} Since $(\tau_1^n)$ and $(\tau_2^n)$ are bounded sequences, we can suppose that there exist a $\tau\in[0,T]$ such that $\lim_{n\to \infty} \tau_1^n=\lim_{n\to \infty} \tau_2^n=\tau$, using Lemma \ref{esmax0} and Lebesgue's Dominated Convergence Theorem, we have that $$ \|u\|_{L_x^2L^{\infty}([\tau_{1}^n, \tau_{2}^n])} \to \|u(\tau)\|_{L^2}=\|u_0\|_{L^2} \quad \text{as $n\to \infty$}; $$ however, this contradicts the relation \eqref{reivax10}. Let $0 \le t_k \le t$ be a sequence with $t_0=0$, $t_{k+1}-t_{k}=\delta_0$ and let $n \approx t/\delta_0$ such that $t_n \le t