\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 70, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/70\hfil Positive solutions] {Positive solutions for a high-order multi-point boundary-value problem in Banach spaces} \author[W. Jiang \hfil EJDE-2008/70\hfilneg] {Weihua Jiang} \address{Weihua Jiang \newline College of Mathematics and Science of Information, Hebei Normal University \\ Shijiazhuang, 050016, Hebei, China\newline College of Sciences, Hebei University of Science and Technology \\ Shijiazhuang, 050018, Hebei, China} \email{weihuajiang@hebust.edu.cn} \thanks{Submitted March 30, 2008. Published May 13, 2008.} \thanks{Supported by grants 10701032 from the Natural Science Foundation of China, and \hfill\break\indent 07217169 from the Science and Technology Key Project of Hebei province} \subjclass[2000]{34B15} \keywords{Banach space; positive solution; strict set contraction; \hfill\break\indent boundary-value problem} \begin{abstract} Using the fixed point theory of strict set contractions, we study the existence of at least one, two, and multiple positive solutions for higher order multiple point boundary-value problems in Banach spaces. Our result extends some of the existing results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \section{Introduction} In the previous 30 years, the theory of ordinary differential equations in Banach spaces has become a new important branch (see, for example, \cite{d1,g1,g2,l1} and references cited therein). In 1988, Guo and Lakshmikantham \cite{g4} discussed the existence of multiple solutions for two-point boundary-value problem of ordinary differential equations in Banach spaces. Since then, nonlinear second-order multi-point boundary-value problems in Banach spaces have been studied by several authors (see, for example, \cite{f1,l2,l3} and references cited therein). On the other hand, recently, high-order multi-point boundary-value problems for scalar ordinary differential equations have received a great deal of attention in the literature (see, for instance, \cite{e1,g3,j2} and references cited therein). However, to the best of our knowledge, no one has considered the existence of multiple positive solutions (at least three or more) for high-order multi-point boundary-value problems in Banach spaces. We will fill this gap in the literature. In this paper, we shall discuss the existence of at least one, two, and multiple positive solutions for the $n$th-order $m$-point boundary-value problem value problem \begin{gather} y^{(n)}(t)+f(t,y)=\theta,\quad 00$, $i=1,2,\dots,m-2$. In the scalar case, the existence of positive solutions to \eqref{e1.1}-\eqref{e1.2} had been solved in \cite{e1,g3}; So our result extends those results, to some degree. The key tool in our approach is the following fixed point theorem of strict-set-contractions. \begin{theorem}[\cite{c1,p1}] \label{thm1.1} Let $K$ be a cone of the real Banach space $X$ and $K_{r,R}=\{x\in K :r\leq \|x\|\leq R\}$ with $R>r>0$. Suppose that $A:K_{r,R}\to K$ is a strict set contraction such that one of the following two conditions is satisfied \begin{itemize} \item[(i)] $Ax\not\leq x$, for all $x\in K$, $\|x\|=r$ and $Ax\not\geq x$, for all $x\in K$, $\|x\|=R$. \item[(ii)] $Ax\not\geq x$, for all $x\in K$, $\|x\|=r$ and $Ax\not\leq x$, for all $x\in K$, $\|x\|=R$. \end{itemize} Then $A$ has at least one fixed point $x\in K$ satisfying $r<\|x\|0)$ and $B_r=\{y\in C[I,E]:\|y\|_c\leq r\}(r>0)$, respectively. For convenience, we set $$ a_0=\sum_{i=1}^{m-2}k_{i}\xi_i^{n-1}, \quad a_1=\sum_{i=1}^{m-2}k_{i}\xi_i^{n-1}(1-\xi_{m-2})^n. $$ In this paper, we assume the following conditions. \begin{itemize} \item[(H1)] $n\geq 2$, $k_i>0$, $i=1,2,\dots,m-2$, $0<\xi_1<\xi_2<\dots<\xi_{m-2}<1$, $00$, $f(t,x)$ is uniformly continuous and bounded on $I\times (P\cap T_r)$ and there exists a constant $L_r$ with $0\leq L_r<\frac{(n-1)!(1-a_0)}{4}$ such that $$ \alpha(f(I\times D))\leq L_r\alpha(D),\quad \forall D\subset P\cap T_r. $$ \end{itemize} \section{Preliminary lemmas} \begin{lemma} \label{lem2.1} Suppose $a_0\neq 1$, then for $h(t)\in C[I,E]$, the problem \begin{gather} y^{(n)}(t)+h(t)=\theta,\quad 00$, the operator $A$ is a strict set contraction on $Q\cap B_r$. \end{lemma} \begin{proof} Since $f(t,x)$ is uniformly continuous and bounded on $I\times (P\cap T_r)$, we see from \eqref{e2.4} that $A$ is continuous and bounded on $Q\cap B_r$. For any $S\subset Q\cap B_r$, by \eqref{e2.4}, we can easily show that the functions $A(S)=\{Ay|y\in S\}$ are uniformly bounded and equicontinuous. By \cite{l1}, we have \begin{equation} \alpha(A(S))=\sup_{t\in I}\alpha(A(S(t))),\label{e2.5} \end{equation} where $A(S(t))=\{Ay(t):y\in S,\,t\in I~\text{is fixed}\}$. For any $y\in C[I,E],\, g\in C[I,I]$, by $\int_0^tg(s)y(s)ds\in \overline{co}(\{g(t)y(t)|t\in I\}\cup\{\theta\})\subset\overline{co}(\{y(t)|t\in I\}\cup\{\theta\})$, we get \begin{align*} \alpha(A(S(t))) &=\alpha(\{-{\int_0^t\frac{(t-s)^{n-1}}{(n-1)!}f(s,y(s))ds +\frac{t^{n-1}}{1-a_0}\int_0^1\frac{(1-s)^{n-1}}{(n-1)!}f(s,y(s))ds}\\ &\quad -\frac{t^{n-1}}{1-a_0}\sum_{i=1}^{m-2}k_{i} \int_0^{\xi_i}\frac{(\xi_i-s)^{n-1}}{(n-1)!} f(s,y(s))ds|y\in S\})\\ &\leq\frac{1}{(n-1)!}\alpha(\overline{co}(\{f(s,y(s))|s\in I,~y\in S\}\cup\{\theta\}))\\ &\quad +\frac{1}{(1-a_0)(n-1)!}\alpha(\overline{co}(\{f(s,y(s))|s\in I,~y\in S\}\cup\{\theta\}))\\ &\quad +\frac{a_0}{(1-a_0)(n-1)!}\alpha(\overline{co}(\{f(s,y(s))|s\in I,~y\in S\}\cup\{\theta\}))\\ &=\frac{2}{(1-a_0)(n-1)!}\alpha(\{f(s,y(s))|s\in I,~y\in S\})\\ &\leq\frac{2}{(1-a_0)(n-1)!}\alpha(f(I\times B)), \end{align*} where $B=\{y(s):s\in I,~y\in S\}\subset P\cap T_r$. By (H2), we get \begin{equation} \alpha(A(S(t)))\leq\frac{2}{(1-a_0)(n-1)!}L_r\alpha(B).\label{e2.6} \end{equation} For each $\varepsilon>0$, there exists a partition $S=\bigcup_{j=1}^{l}S_j$ such that \begin{equation} \mathop{\rm diam}(S_j)<\alpha(S)+\frac{\varepsilon}{3}, \quad j=1,2,\dots,l.\label{e2.7} \end{equation} Now, choose $y_j\in S_j$, $j=1,2,\dots,l$ and a partition $0=t_00$, for all $x>\theta$ such that $\frac{n!(1-a_0)}{\gamma a_1}0$, for all $x>\theta$ such that $\frac{n!(1-a_0)}{\gamma a_1}0$ such that $\sup_{t\in I,\, x\in P\cap T_{r_0}} \|f(t,x)\|<\frac{n!(1-a_0)}{N}r_0$. \item[(H8)] There exist $R_0>0$ and $\varphi\in P^*$ with $\varphi(x)>0$ for any $x>\theta$ such that $$ \inf_{t\in[\xi_{m-2},1],\, x\in P,\,\gamma R_0/N\leq\|x\|\leq R_0} \frac{\varphi(f(t,x))}{\varphi(x)}> \frac{n!(1-a_0)}{\gamma a_1}. $$ \end{itemize} \begin{theorem} \label{thm3.1} Suppose {\rm (H1)--(H2)} hold. In addition suppose {\rm (H4)} and {\rm (H5)} or {\rm (H3)} and {\rm (H6)} are satisfied. Then \eqref{e1.1}-\eqref{e1.2} has at least one positive solution. \end{theorem} \begin{proof} (i) Suppose (H4) and (H5) hold. By (H4), there exist constants \begin{equation} M>\frac{n!(1-a_0)}{\gamma a_1}\label{e3.1} \end{equation} and $r_1>0$ such that \begin{equation} \varphi(f(t,x))\geq M\varphi(x),\quad \forall t\in I, x\in P,~\|x\|>r_1. \label{e3.2} \end{equation} For $R>\frac{N}{\gamma}r_1$, we will show that \begin{equation} Ay\not\leq y,~\forall y\in K,~\|y\|_c=R.\label{e3.3} \end{equation} In fact, if not, there exists $y_0\in K$, $\|y_0\|_c=R$ such that $Ay_0\leq y_0$. By \begin{equation} y_0(t)\geq \gamma y_0(s)\geq \theta,\quad \forall t\in [\xi_{m-2},1],\; s\in I,\label{e3.4} \end{equation} we have \begin{equation} \|y_0(t)\|\geq \frac{\gamma}{N}\|y_0\|_c>r_1,\quad \forall t\in [\xi_{m-2},1].\label{e3.5} \end{equation} By \eqref{e2.4}, for any $t\in I$, we have \begin{align*} A(y_0(t)) &=-{\int_0^t\frac{(t-s)^{n-1}}{(n-1)!}f(s,y_0(s))ds +\frac{t^{n-1}}{1-a_0}\int_0^1\frac{(1-s)^{n-1}}{(n-1)!}f(s,y_0(s))ds}\\ &\quad -\frac{t^{n-1}}{1-a_0}\sum_{i=1}^{m-2}k_{i} \int_0^{\xi_i}\frac{(\xi_i-s)^{n-1}}{(n-1)!}f(s,y_0(s))ds.\\ &\geq\frac{a_0t^{n-1}}{1-a_0} \int_{\xi_{m-2}}^{1}\frac{(1-s)^{n-1}}{(n-1)!}f(s,y_0(s))ds. \end{align*} This, together with \eqref{e3.2}, \eqref{e3.4} and \eqref{e3.5}, implies \begin{align*} \varphi(Ay_0(1)) &\geq\frac{a_0}{1-a_0} \int_{\xi_{m-2}}^{1}\frac{(1-s)^{n-1}}{(n-1)!}M\gamma \varphi(y_0(1))ds\\ &=\frac{a_1}{n!(1-a_0)}M\gamma \varphi(y_0(1)). \end{align*} Considering $Ay_0\leq y_0$, we get \begin{equation} \varphi(y_0(1))\geq\frac{\gamma a_1}{n!(1-a_0)}M\varphi(y_0(1)).\label{e3.6} \end{equation} It is easy to see that $\varphi(y_0(1))>0$ (In fact, if $\varphi(y_0(1))=0$, by \eqref{e3.4}, we get $\varphi(y_0(1))\geq \gamma\varphi(y_0(s))\geq 0$, for all $s\in I$. So, we have $\varphi(y_0(s))\equiv 0$, for all $s\in I$, that is $y_0(s)\equiv\theta$. This is a contradiction with $\|y_0\|_c=R$). So, \eqref{e3.6} contradicts with \eqref{e3.1}. Therefore, \eqref{e3.3} is true. On the other hand, by (H5) and $f(t,\theta)=\theta$, we get that there exist constants $\varepsilon\in(0,n!(1-a_0)/N)$ and $00$ such that for any $00$ such that $$ \|f(t,x)\|\leq\varepsilon\|x\|,\quad \forall t\in I,\; x\in P,\; \|x\|>r_1. $$ By (H2), we get $$ \sup_{t\in I,\, x\in P\cap T_{r_1}}\|f(t,x)\|:=b<\infty. $$ So, we have \begin{equation} \|f(t,x)\|\leq\varepsilon\|x\|+b,\quad \forall t\in I,\; x\in P.\label{e3.11} \end{equation} Take $R>\max\{r_2,\,\frac{Nb}{n!(1-a_0)-N\varepsilon}\}$. We will prove that \begin{equation} Ay\not\geq y,\quad \forall y\in K,\; \|y\|_c=R.\label{e3.12} \end{equation} In fact, if there exists $y_0\in K$, $\|y_0\|_c=R$ such that $Ay_0\geq y_0$. Then, by \eqref{e3.9} and \eqref{e3.11}, we get $$ \|y_0(t)\|\leq\frac{Nt^{n-1}}{1-a_0} \int_0^1\frac{(1-s)^{n-1}}{(n-1)!}(\varepsilon\|y_0(s)\|+b)ds \leq\frac{N}{n!(1-a_0)}(\varepsilon\|y_0\|_c+b),~~\forall t\in I. $$ So, we have $$ \|y_0\|_c\leq\frac{Nb}{n!(1-a_0)-N\varepsilon}0$, $\varphi_i\in P^*$ with $\varphi_i(x)>0$ for $x>\theta$, $i=1,2$ such that $$ \inf_{t\in[\xi_{m-2},1],\, x\in P,\, \gamma R_i/N\leq\|x\|\leq R_i} \frac{\varphi_i(f(t,x))}{\varphi_i(x)}> \frac{n!(1-a_0)}{\gamma a_1},\quad i=1,2, $$ where $R_10$ such that $$ \sup_{t\in I,\, x\in P\cap T_{r_i}}\|f(t,~x)\|<\frac{n!(1-a_0)}{N}r_i, \quad i=1,2, $$ where $r_10$ and $$ \frac{\varphi(f(t,y))}{\varphi(y)}=\frac{\sum\limits_{i=1}^ly_i^{\frac{2}{3}} +e^{-t}\sum\limits_{i=1}^ly_i^{\frac{3}{2}}}{\sum\limits_{i=1}^ly_i} \geq\frac{\max\limits_{1\leq i\leq l}y_i^{\frac{2}{3}}}{n\max\limits_{1\leq i\leq l}y_i} =\frac{1}{n}\frac{1}{\max\limits_{1\leq i\leq l}y_i^{\frac{1}{3}}}\rightarrow \infty,~~(\|y\|\rightarrow 0). $$ and $$ \frac{\varphi(f(t,y))}{\varphi(y)}=\frac{\sum\limits_{i=1}^ly_i^{\frac{2}{3}} +e^{-t}\sum\limits_{i=1}^ly_i^{\frac{3}{2}}}{\sum\limits_{i=1}^ly_i} \geq\frac{e^{-1}\max\limits_{1\leq i\leq l}y_i^{\frac{3}{2}}}{n\max\limits_{1\leq i\leq l}y_i} =\frac{1}{ne}\max\limits_{1\leq i\leq l}y_i^{\frac{1}{2}}\rightarrow \infty,~~(\|y\|\rightarrow \infty). $$ So, {\rm (H3)} and {\rm (H4)} hold. Finally, we will show {\rm (H7)} is satisfied. Since $\frac{n!(1-a_0)}{N}r_0=4.5r_0$, taking $r_0=1$, we get $$ \sup_{t\in I,\, y\in P\cap T_{r_0}} \|f(t,y)\|\leq \max\limits_{1\leq i\leq l}y_i^{\frac{2}{3}}+\max\limits_{1\leq i\leq l}y_i^{\frac{3}{2}}\leq 2. $$ Therefore, {\rm (H7)} holds. By Theorem 3.2 (i), we get that the problem (4.1)-(4.2) has at least two positive solutions. \end{proof} \begin{example} \label{exam4.2} The boundary value problem \begin{gather} y_i^{'''}(t)+e^{at}\sin^2(\frac{\pi}{2}y_i)=0,\quad 02\ln\frac{576l}{\sin^2\frac{\pi}{8}}$. \end{example} \begin{proof} Let $E,~\|\cdot\|,~P,~\theta,~\varphi$ be the same as in Example 4.1. Take $f=(e^{at}\sin^2(\frac{\pi}{2}y_1),$ $e^{at}\sin^2(\frac{\pi}{2}y_2),\ldots,e^{at}\sin^2(\frac{\pi}{2}y_l)).$ Then $f:I\times P\rightarrow P$ is continuous and $f(t,\theta)=\theta,$ for all $t\in I$. Similar to the proof of Example 4.1, we get that {\rm (H1)} and {\rm (H2)} are satisfied. Now, we prove that {\rm (H5)} and {\rm (H6)} are satisfied. Because $$ \frac{\|f(t,y)\|}{\|y\|}=\frac{\max\limits_{1\leq i\leq l}e^{at}\sin^2(\frac{\pi}{2}y_i)}{\max\limits_{1\leq i\leq l}y_i} \leq e^{a}\frac{\max\limits_{1\leq i\leq l}\sin^2(\frac{\pi}{2}y_i)}{\max\limits_{1\leq i\leq l}y_i}\rightarrow 0,\quad (\|y\|\rightarrow 0), $$ and $$ \frac{\|f(t,y)\|}{\|y\|}=\frac{\max\limits_{1\leq i\leq l}e^{at}\sin^2(\frac{\pi}{2}y_i)}{\max\limits_{1\leq i\leq l}y_i} \leq e^{a}\frac{\max\limits_{1\leq i\leq l}\sin^2(\frac{\pi}{2}y_i)}{\max\limits_{1\leq i\leq l}y_i}\rightarrow 0,\quad (\|y\|\rightarrow \infty), $$ {\rm (H5)} and {\rm (H6)} hold. Now, we prove that {\rm (H8)} is satisfied. Since $\frac{n!(1-a_0)}{\gamma a_1}=576$ (where, $n,~a_0,~a_1$ and $\gamma$ are the same as in Example 4.1), taking $R_0=1$, for $t\in [\frac{1}{2},1],$ $y\in P$, $\frac{1}{4} \leq\|y\|\leq 1$, we have $$ \frac{\varphi(f(t,y))}{\varphi(y)}=\frac{\sum\limits_{i=1}^{l}e^{at}\sin^2(\frac{\pi}{2}y_i)} {\sum\limits_{i=1}^{l}y_i} \geq e^{\frac{a}{2}}\frac{\sin^2(\frac{\pi}{8})}{l}>576. $$ So, {\rm (H8)} holds. By Theorem 3.2 (ii), we get that the problem (4.3)-(4.4) has at least two positive solutions. \end{proof} \begin{thebibliography}{00} \bibitem{c1} N. P. Cac, J. A. Gatica; \emph{Fixed point theorems for mappings in ordered Banach spaces}, J. Math. Anal. Appl., 71 (1979), 545-557. \bibitem{d1} K. Demling; \emph{Ordinary Differential Equations in Banach Spaces}, Springer, Berlin, 1977. \bibitem{e1} P. W. Eloe, B. Ahmad; \emph{Positive solutions of a nonlinear $n$th order boundary-value problem with nonlocal conditions}, Appl. Math. Lett., 18(2005), 521-527. \bibitem{f1} M. Feng, D. Ji, W. Ge; \emph{Positive solutions for a class of boundary-value problem with integral boundary conditions in Banach spaces}. J. Comput. Appl. Math., In press. \bibitem{g1} D. Guo, V. Lakshmikantham, X. Liu; \emph{Nonlinear Integral Equation in Abstract spaces}, Kluwer Academic Publishers, Dordrecht, 1996. \bibitem{g2} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, San Diego, 1988. \bibitem{g3} Y. Guo, Y, Ji, J. Zhang, Three Positive solutions for a nonlinear $n$th-order $m$-point boundary-value problem, Nonlinear Anal., In press. \bibitem{g4} D. Guo, V. Lakshmikantham; \emph{Multiple solutions of two-point boundary-value problem of ordinary differential equations in Banach space}. J. Math. Anal. Appl., 129(1988), 211-222. \bibitem{g5} C. P. Gupta, S. K. Ntouyas, P. Ch. Tsamatos; \emph{On an m-point boundary-value problem for second-order ordinary differential equations}, Nonlinear Anal., 23 (1994), 1427-1436. \bibitem{h1} J. Henderson; \emph{Double solutions of three-point boundary-value problems for second-order differential equations}, Electron. J. Differential Equations, 2004 (2004), No. 115 1-7. \bibitem{j1} W. Jiang, Y. guo; \emph{Multiple positive solutions for second-order m-point boundary-value problems}, J. Math. Anal. Appl., 327 (2007), 415-424. \bibitem{j2} W. Jiang; \emph{Multiple positive solutions for nth-order m-point boundary-value problems with all derivatives}, Nonlinear Anal., 68 (2008), 1064-1072. \bibitem{l1} V. Lakshmikantham, S. Leela; \emph{Nonlinear Differential Equations in Abstract Spaces}, Pergamon Press, Oxford, 1981. \bibitem{l2} B. Liu; \emph{Positive solutions of a nonlinear four-point boundary-value problems in Banach spaces}. J. Math. Anal. Appl., 305(2005), 253-276. \bibitem{l3} Y. Liu; \emph{Multiple positive solutions to fourth-order singular boundary-value problems in Banach spaces}. Electronic J. of Differential Equations, 2004 (2004), no. 120, 1-13. \bibitem{p1} A. J. B. Potter; \emph{A fixed point theorem for positive $k$-set contractions}, Proc. Edinburgh Math. Soc., 19(1974), 93-102. \bibitem{w1} J. R. L. Webb; \emph{Optimal constants in a nonlocal boundary-value problem}, Nonlinear Analysis, 63 (2005), 672-685. \end{thebibliography} \end{document}