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EXISTENCE RESULTS FOR STRONGLY INDEFINITE ELLIPTIC
SYSTEMS

JIANFU YANG, YING YE, XIAOHUI YU

ABSTRACT. In this paper, we show the existence of solutions for the strongly
indefinite elliptic system

—Au = Au+ f(z,v) in Q,
—Av =X+ g(z,u) in Q,
u=v=0, on 09,
where € is a bounded domain in RY (N > 3) with smooth boundary, Ay, <
A < Agg+1, where Ay is the kth eigenvalue of —A in Q with zero Dirichlet

boundary condition. Both cases when f, g being superlinear and asymptoti-
cally linear at infinity are considered.

1. INTRODUCTION

In this paper, we investigate the existence of solutions for the strongly indefinite
elliptic system
—Au= X u+ f(z,v) inQ,
—Av =X v+ g(z,u) in Q, (1.1)
u=v=0, ondN,

where Q is a smooth bounded domain in RN, N > 3, Aky < A < Agy41, Where Ay is
the kth eigenvalue of —A in 2 with zero Dirichlet boundary condition.

Problem with A = 0 was considered in [B [6], where the existence results for
superlinear nonlinearities were established by finding critical points of the functional

T(u,0) = /Q VuVo di — /Q Pla,v)dz — /Q Gz, u) da. (1.2)

A typical feature of the functional J is that the quadratic part

Q(u,v) = | VuVodz
Q
is positive definite in an infinite dimensional subspace ET = {(u,u) : u € H}(Q)}
of H}(Q) x H(2) and negative definite in its infinite dimensional complimentary
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subspace B~ = {(u, —u) : u € H}(Q)}, that is, J is strongly indefinite. A linking
theorem is then used in finding critical points of J.

In the case that A lies in between higher eigenvalues, the parameter X\ affects the
definiteness of the corresponding quadratic part

Qx(u,v) = / (VuVo — duw) dx
Q
of the associated functional
Ix(u,v) = / (VuVo — duw) dx — / F(z,v)dr — / G(z,u)dx, (1.3)
Q Q Q

of defined on H}(Q) x H(2). A key ingredient in use of the linking theorem is
to find a proper decomposition of H{(2) x Hg () into a direct sum of two subspaces
so that @ is definite in each subspace. Obviously, @)y is neither positive definite
in ET nor negative definite in E~. So we need to find out a suitable decomposition
of H}(Q) x HL(D).

We first consider the asymptotically linear case. Such a problem has been exten-
sively studied for one equation, see for instance, [4] [10] [I1] and references therein.
For asymptotically linear elliptic system, we refer readers to [§]. Particularly, in
this case, the Ambrosetti-Rabinowtz condition is not satisfied, whence it is hard
to show a Palais-Smale sequence is bounded. So one turns to using Cerami condi-
tion in critical point theory instead of the Palais-Smale condition, various existence
results for asymptotically linear problems are then obtained. By a functional I
defined on F satisfies Cerami condition we mean that for any sequence {u,} C E
such that [I(u,)| < C and (1+ |lun]|)!’(un) — 0, there is a convergent subsequence
of {uy}. For the asymptotically linear system , it is strongly indefinite and the
nonlinearities do not fulfill the Ambrosetti-Rabinowitz condition. To handle the
problem, we assume:

(A1) f,g€ C(QxR,R), f(z,v) =o(|v]), g(z,u) = o(|u|) uniformly for z € Q as

ul, [o] = 0 and tf(z,t) > 0, tg(z, ) > 0.
(A2) There exist positive constants I,m, such that lim; .o f@t — 1 and

]‘].’]f] g(z,t

(A3) A+ vml # A\ for any k € N.
(A4) There exists ug € span{@r,+1, Pro+2, - -- } with [, [Vuoe|* — A(ug)?* dx =
such that

/(\Vu0|2 —\ud) de — min(l,m)/ ud dr < 0.
Q Q

Theorem 1.1. Suppose (A1)-(A4), problem (L.1)) has at least a nontrivial solution.

Condition (A4) holds, for example, if min(l,m) > Ag,+1 — A, we choose vy =
app4 for some a > 0, then [, [Vug|? — Auf dz —min(l,m) [, ud dz = (Agg41 — A —
min(l,m)) [, ug dz < 0.

Theorem [I.1] is proved by the following linking theorem with Cerami condition
in [3], which is a generalization of usual one in [2], [9].

Lemma 1.2. Let E be a real Hilbert space with E = E{ ®& E5. Suppose I €
CY(E,R), satisfies Cerami condition, and
(I1) I(u) = &(Lu,u) + b(u), where Lu = L1Piu+ LyPou and L; : E; — E; is
bounded and selfadjoint, i=1,2.
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(I12) V' is compact.
(I3) There exists a subspace E C E and sets S C E,Q C E and constants a > w
such that
(i) SC Fy and I|s > «,
(ii) @ is bounded and I|pg < w,
(iii) S and @ link.
Then I possesses a critical value ¢ > a.
Next, we consider superlinear case. We assume that

(Bl) f,g € C(QxR,R), f(x,v) =o0(|v]), g(x,u) = o(Ju|) uniformly for z € Q as
|ul, [v] = 0.
(B2) There exists a constant 7 > 2 such that

0 < ~vF(z,v) <vf(x,v), 0<~yG(z,u) < ug(z,u),
where F(z,v) fo :z:sdsandqu fo (z,u)ds.

(B3) There exist p,q > 1, ? + ﬁ > %, constants aj,as > 0, such that

[f(z,v)| < a1 + az|v]?, |g(z,u)| < a1 + azulP.
Theorem 1.3. Assume (B1)-(B3), then has at least one solution.
We remark that in [6], it also considered the subcritical superlinear problem
—Au= v+ f(v) inQ,
—Av =pu+g(u) in Q, (1.4)
u=v=0, on J.
The functional corresponding to is no longer positive definite in ET, but it is

negative definite in £F~. It is different from our case.
In section 2, we prove Theorem [I.I} While Theorem [I.3]is showed in section 3.
2. ASYMPTOTICALLY LINEAR CASE

Let H := H}(), it can be decomposed as H = H! ® H?, where H' =

span{ ko1, Pro+2 - - - }» H* = span{¢1, 2. ..ok, } and ¢y is the eigenfunction re-
lated to A;. Let P; be the projection of H on the subspace H’,i = 1,2, then we
define for v € H a new norm by

|2 = /\v (Paf® = M(Prufde = [ V(P = AP

it is equivalent to the usual norm of H{(Q2). To find out the subspaces of H x H
such that the quadratic part

A (u,v) = / (VuVo — duw) dx
Q
of the functional

Ix(u,v) = /Q(VUVU — Auw) dx —/

Q

F(z,v) dm—/ G(x,u)dx
Q

is positive or negative definite on it, we denote
By ={(w,u):ue€ HY}, Fip={(u,—u):uec H'Y},
Eo = {(w,u) 1u € H2}» Eoo = {(u,—u):u € H2}.
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Therefore, H x H = E11 © E12 ® Eo1 @ Eas. We may write for any (u,v) € H x H
that

(u,v) = (u11,u11) + (u12, —u12) + (u21, u21) + (U22, —u22), (2.1)
where
’U,llipl(u;_v)GHl, ’ZL21:P2(U;_U)€H27
ulgzpl(u_v)EHl, UQQZPQ(u_U)eHQ.

2 2

It is easy to check that @, is positive definite in E1; @ F22 and negative definite in
F19 @ Es, so we denote £ = Fq1 @ FEoy and E_ = Fy5 @ Eo; for convenience.
Then

Ta(u,0) = s P+ s | = sa = o P~ [ o) do— [ Glau)da, 22)
Q Q

it is C' on H x H.
Lemma 2.1. The functional Jy satisfies the Cerami condition.

Proof. 1t is sufficient to show that any Cerami sequence is bounded, a standard
argument then implies that the sequence has a convergent subsequence. We argue
indirectly. Suppose it were not true, there would exist a Cerami sequence z, =
{(tun,vn)} C H x H of Jy such that ||z,| — co. Let

Zn Un Un

1 2
= = = (w w
Tl ~ ol Tl = (e )

Wn

we may assume that

(wh,w?) = (w',w?) in Hx H, (w}w?)— (w'w?) inL*Q)x L*Q),

w! — whw? —w? ae. in Q.

We write as the decomposition (2.1]) that w, = Zf =1 Ui and correspondingly,
wk = Z?,j:l wjs. We claim that (w', w?) # (0,0). Otherwise, there would hold

n

(I3 (s, vn), (uiy, wf)) ] < T3 (s on) | (s wf) < 1T5 (s o)1 (i, v ) | = 03

that is,
sl = [ fGoconutdo = [ o un)udy dz =0 (2.4)
implying
IIwﬁIIQ*/ f&on) _tn_ iy dw—/ gl ) tn U g (25)
2 e Tl Tzl ™ Jo wn el Tl
Therefore,
bl < € [ [(wh)? + ()2 do + o(0), (2:6)
Q

which yields |Jw?y|| — 0. Similarly, [|[w]y| — 0, [|[wh || — 0 and ||wi| — 0 as
n — oo. Consequently, w, — 0. This contradicts to ||w,| = 1. Hence, there are
three possibilities: (i) w! # 0,w? # 0; (i) w! # 0,w? = 0; (iii) w! = 0,w? # 0. We
show next that all these cases will lead to a contradiction. Hence, ||z, is bounded.
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In case (i), we claim that (w!, w?) satisfies
—Aw! = ! +1w?, in Q,
—Aw? = w? + mw', inQ, (2.7)

wh =w? =0, on .

Indeed, let
f(m,vn(x)) lf U (2 # 0
pu(a) = { ot el (23)
0 if v, (x) =0,
and ( (z))
ABUntL)) if y,, ( £ 0,
wia) = { i el (2.9
0 if u,(x) = 0.

Since 0 < pyn,qn, < M for some M > 0, we may suppose that p, — ¢, ¢, — 9 in
L?(Q) and p, — ¢, g, — ¢ a.e in Q. The fact w!(z) # 0 implies u, (z) — oo and
consequently, ¢, (x) — m. Similarly, w?(z) # 0 yields v, (z) — oo and p,(x) — .
Hence, ¢(z) = [ if w?(z) # 0 and ¢ (z) = m if w'(z) # 0.

Since J4 (un,vn) — 0, for any (n1,m2) € H x H, we have

/QanVm — A dx — /Qg(a:, Up )11 dx — 0, (2.10)

/QVunVng — Aupne dz — /Q f(z,vn)n2dx — 0. (2.11)
It follows from ||z, || — oo that

/QVw,lang — Mwlny dr — /Qpn(x)wfmg dz — 0, (2.12)

/QVwZVm — Mw?n dr — /Qqn(x)w,lml dz — 0. (2.13)

Noting p,w?2, g,w) are bounded in L?(f2), we may assume p,w? — &(z), g wl —
((x) in L%(Q) and p,w? — &(x), gnw)l — ((z) a.e. in Q. We deduce from the fact
w2 — w?, wl — w', p, — ¢ and ¢, — ¥ a.e. in Q that £ = pw? = [w? and
¢ = yYw' = mw'. Let n — oo in (2.12)) and (2.13) we see that (w', w?) solves (2.7)).
Let @? = |/ -Lw?, then (w!,®?) solves
—Aw! = 2wt + Vmiw? inQ,
—Aw? = i? + Vmlw'  in Q, (2.14)
w! =w? =0, on 9N,
which implies
—A(w! +9%) = (A + Vml)(w' + @) in €,

2.15
w' +@? =0 on 0. ( )
If w' + @? # 0, this contradicts to (A3). If w! + @? = 0, then
—Aw' = (A= vVmhw' inQ,
(2.16)

w' =0 on 9N.
This again contradicts to (A3).
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For case (ii), we derive from (2.12)) that [, p,(z)w2n2 dz — 0 and then w' solves

—Aw! = w' in Q,
(2.17)
w!' =0 on 09,

which is a contradiction to the assumption that Ay, < A < Ago41. Similarly, we
may rule out case (iii). The proof is complete. O

Next, we show that Jy has the linking structure. Denote zp = (ug, up), where
ug is given by assumption (Ay4), then ||29]|? = 1. Let [0,5120] = {s20:0 < 5 < 51},
Mr={2=2 +pzo:||z| <R,p>0}, H=span{z}® E_, S=0B,NE,.

Lemma 2.2. There exist constants o > 0 and p > 0, such that Jx(u,v) > « for
(u,v) € S.

Proof. By (Al) and (A2), for any £ > 0 there is C. > 0 such that
|F(z, )] < elt]? + Celt?,  |G(a,t)] < eft]* + Ceftf?

for some 2 < p < % It implies that for (u,v) € S,
1
Ia(u0) 2 (5~ e)llz*|1* — Cell=F P (2.18)
The assertion follows. O

Lemma 2.3. There exists R > p such that Jy(u,v) <0 for (u,v) € OMg.

Proof. For z € OMpg, we write z = 2z~ + rzo with ||z] = R, » > 0 or ||z]| < R and
r=0. If r =0, we have z = 2~ and

In(u,v) = —= 27| - /Q[F(x,v) + G(z,u)]dz <0 (2.19)

since F'(x,t),G(x,t) > 0.

Suppose now that » > 0. We argue by contradiction. Suppose the assertion is
not true, we would have a sequence {z,} € OMg, 2, = ppnz0 + 2z, , pn > 0, |20 =1
such that Jy(z5,) > 0. We write 2, = (un,vn) = (prtio + Gn, Pntio + Py ), then

1 1
Ia(zn) = 5/)% - §||z;||2 - / F(z,v,) + G(z,up)dz > 0, (2.20)
Q
that is
In(zn) 1, p? 27 11? F(z,v,) + G(z,up)
= (P 1En )—/ dz > 0. (2.21)
lznl> 2 20l [l2all? Q ll2n I?

2 — 112
- PrtllZz, _ : ; 1
—||. The fact HZHRHQH = 1 implies 5 <

Since F,G > 0, then we have p, > ||z

2 2
|\zp:|\2 < 1. Assume 7“;:‘”2 — p3 > 0, hence p, — +oo. We may also assume
7Hf:|\ — &, 7‘@:” — & in H and 122 — &, HfTH — & ae. in Q. If x € Q such that

Izl
poto(z) + &1 (x) # 0, then uy,(x) = ppug(z) + ¢dn(x) — co. Similarly, if x € Q such
that pouo(z) + &2(x) # 0, we have v, () = pruo(x) + Yn(x) — oco. It follows from
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[2:21) that

1 P2 1 ||Z_||2 / F(z,v,), vn o, G(T,up), un o
0<si "5 —51.07 — /[ () + ()7 lda
2|zl 20zl®  Joo w2zl ui ozl
1 p? 1201 F(z,v,), vy
S - pn S — = || n ||2 _/ ( o )( )2 d(E (222)
2 |znl* 2 ||zl (pouo+eaz0y  Vn 2l

+

/ G(x,Qun)( Up, 12 do
{pouo+&1#0} Up ”ZnH

Let z = pozo + & with £~ = (£1,&2) and take limit in (2.22)), we get

1 _ l
Sl = 1€ - 5 [ (oo + &2)2
{pouo+£27#0}
m

-~ (pouo + &)* da > 0.
2 {pouo+£&1#0}

There are two cases: either £~ = (£1,&) € Eig, that is, & = —& € H! or §~ =
(£1,&) € Eap, that is, & = & € H?. In both cases we have fQ(uofl +upée) dz = 0.
By (2.23)), we obtain

1 _ .
0< S0lol? = [€71%) = min(t.m) [ (s + €1 o

(2.23)

1
< pg(/ |Vug|? — \ug d — min(l,m)/ ud dx) — §||£7||2 - min(l,m)/ & dx
Q Q Q
<0,
(2.24)
a contradiction. O
Proof of Theorem[I.1. Let L(u,v) = (v,u), we may check that L is a bounded
selfadjoint operator on H x H and that Ei1, E12, Eo1.F52 are invariant subspace
of L, so both E; and E_ are invariant subspace of L. (I1) of Lemma then
holds. (I2) follows from the Sobolev compact imbeddings; (i) and (ii) in (I3) are

consequences of Lemma [2.2{and Lemma The proof of (iii) in (I3) can be found
in [2] and [9]. The proof of Theorem [I.1]is complete. O

3. SUPERLINEAR CASE

Let ¢1, @2, ¢3,... be the eigenfunctions of —A in Q with Dirichlet boundary
condition, which consist of the orthogonal basis of L?(2). We assume that the
eigenfunctions are normalized in L?(Q); i.e, fQ ¢i¢; dx = 0;5. Thus,

Q) ={u=> &or: Y & < oo},
k=1 k=1
and -
(U7U)L2 = ngnka
k=1

with u = Y37, &bk, v =D pe NPk For u € L2(Q), we define operator (—A)7/2
by

(—A)"u=>" X epon

k=1
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with domain
D((—=A)7?) = 07(Q) = { ) &k Y M < oo}
k=1 k=1

for r > 0. It is proved in [7] that ©"(Q) = H{(Q) = H"(Q) if 0 < r < 3,
02(Q) = Hy)? (), 07(Q) = Hy(Q) it £ <r <1, and ©7(Q) = H"(Q) N HY(Q) if
1<r <2 Forr>0,0"(Q) is a Hilbert space with inner product

(u,v)er ) = (U, v) 12 + ((=A)2u, (=A)/?v) 2.
Let

E"(Q)=0"(Q)x 0> "(Q), 0<r<2,

Wechooser>OsuChthat2<p+1§Nzivr and 2 < ¢+ 1 < 2 By the

2 N+2r—a-
Sobolev embedding, the inclusion E"(Q) — LPTY(Q) x L1+1(Q) is compact.

The quadratic form Qx(u,v) = [,(VuVv — Auv) dz can be extended to E"(Q)
since

[ VuTede =Y v =Y Afa .
@ k=1 k=1
it implies
|| FuTuda] < (37 MY AR = ulerllollon--.
@ k=1 k=1
A direct calculation shows that for z € E"(Q),

Q=) = 5(L2 ),

0 (~8) A8y
L= (cay Pacar SVT) e

which is a bounded and self-adjoint operator in E"(2). In order to determine the
spectrum of L, we note that E"(£2) is the direct sum of the spaces Fy, k =1,2,...,
where E}, is the two-dimensional subspace of E"(2), spanned by (¢, 0) and (0, ¢ ).
An orthonormal basis of E}, is given by

where

1 1
{\ﬁ( 7

Every E} is invariant under L, and the restriction of L on E}, is given by the matrix

Ik = 0 AT =N
PV Y Vi 0 :

The eigenvalue of L* is pf =+(1- )\)\;1). Therefore, pf < 0 and p, > 0 if
k=1,...,ko; while ,u; >0and p,; <0if k= ko+1,.... Furthermore,

e T, 0), —= (0,7 o) }-

,uf—ul:l as k — oc.

Let HT(H™) be the subspace spanned by eigenvectors corresponding to positive
(negative) eigenvalues of Ly, then

E'Q)=Ht®oH".
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Both HT and H~ are infinite dimensional. Now we introduce an equivalent norm
[+ l« on E"(€2) by ,

*||Z||2 (Lz*,27) = (Lz7,27),

where z* € H*. Then the functional corresponding to (I.1)) is

1

s (Lz,2)pr) — T(2)

I(z) = 5

for z = (u,v) € E"(Q), where
L(z) = / F(z,v)dz+ | G(z,u)dz.
o Q

Lemma 3.1. The functional I satisfies the (PS) condition.

Proof. Let {z,} be a (PS) sequence of I in E" (), we need only to show that {z,}
is bounded. Since

1
M+ ellznll 2 I(zn) = 5 (20 2n)

11 (3.2)
> (5= U JuallgCeu)lde+ [ fonll o v)] do) -
7 Ja Q
we have
/ |unllg (@, un)| dx + /Q vnlf (2, vn)]dz < C + €|z . (3-3)

We write z& = (uX,vF), then
i II? = ellz || < KLz, 27) — I'(20) 2]

= (" (2n), 2 )]

\/ (z,un)u;, dx+/fxvnv dzx|
q+1

pt1 _q_
< latun) Y s + 170 5 Y o
< c{1+{/9 19, ) e} 757 +{/Q|f<x,vn>||vn\}#}||zﬂm
(3.4)
Dividing (3:3) by |||
|2l < CLL+] / 192, ) [ 757 + { /Q o)) (35)
It follows from (3.3 and ( - ) that

HzﬂEr < C{L+{C +ellznllpr} 7T +{C +ellz o} 71}, (3.6)
which implies that ||z, | g is bounded. The proof is complete. O

Er, We obtain

Proof of Theorem . The proof will be completed by verifying the conditions in
Lemma We denote E'= H* and E? = H, b(z) = I'(2) and L is defined by
(3-1). Apparently, (I1) and (I2) of Lemmahold. Now, we verify (I3).

For p > 0, let s; > p and sy be positive constants to be specified later. Let e* be
the eigenvectors corresponding to the positive eigenvalue and negative eigenvalue of
L! respectively and set [0,s1et] = {seT :0<s<s1}, Q=1[0,s1et] @ (Bs, N H),
H =span{e*} @ H-, S =0B,NH*.
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By assumption (B3), for any & > 0 there exists C. > 0 such that
G(x,u) < eu® + C(e)|ulPT, f(z,v) < ev? + C(e) v, Yu,v € R,

which implies
1
I(z%) = (5 —alz** = C@l=F P = Cle)l=F)|""

for z+ € ET. Thus, we may fix p > 0 and « > 0 such that I(z) > a on S. This
proves (i) of (I3) in Lemma[L.2]

Next we show that for suitable choices of s; and s9, I(2) < 0 on 9Q. Note that
the boundary of Q in H consists of three parts, i.e, 0Q = {QN{s = 0}}U{QN{s =
511} U{[0, s1et] @ (0Bs, N H™)}. It is obvious that I(z) <0 on @ N{s = 0} since
I(z) <0 for (u,v) < H™ and I'(z) is nonnegative. For the remaining parts of 9Q,
we write z = 2~ + set € H, then

1 1, _ _
I(z) = 532 - in |2 = T(2~ 4 se™). (3.7

We may show as in [6] that
Nz~ +set) >Cs -, (3.8)
where § = min{p + 1, ¢ + 1}. Therefore,

1 1
I(z7 +set) < 532 —CsP+ 0y — §||z*||2 (3.9)
Choose s; sufficient large such that
1
U(s) = 552 —CsP+C, <0Vs> sy,

and then choose sy large such that s3 > 2max,>¢%(s), then we get I(z) < 0 on
OQ. This proves (ii) of (I3) in Lemma [.2] Since S and dQ are link. The proof is
complete. 0
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