\documentclass[reqno]{amsart} \usepackage{amssymb} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 03, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/03\hfil Maximizers for the Strichartz inequalities] {Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schr\"odinger equation} \author[S. Shao\hfil EJDE-2009/03\hfilneg] {Shuanglin Shao} \address{Shuanglin Shao \newline Department of Mathematics, University of California, CA 90095, USA} \curraddr{Institute for Advanced Study, Princeton, NJ 08540, USA} \email{slshao@math.ias.edu} \thanks{Submitted October 13, 2008. Published January 2, 2009.} \subjclass[2000]{35Q55} \keywords{Maximizers; Profile decomposition; Schr\"odinger equation; \hfill\break\indent Strichartz inequality} \begin{abstract} In this paper, we first show that there exists a maximizer for the non-endpoint Strichartz inequalities for the Schr\"odinger equation in all dimensions based on the recent linear profile decomposition result. We then present a new proof of the linear profile decomposition for the Schr\"oindger equation with initial data in the homogeneous Sobolev space; as a consequence, there exists a maximizer for the Sobolev-Strichartz inequality. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} We consider the free Schr\"odinger equation \begin{equation}\label{eq:free-schrodinger} i\partial_t u+\Delta u=0, \end{equation} with initial data $u(0,x)=u_0(x)$ where $u:\mathbb{R}\times \mathbb{R}^d\to \mathbb{C}$ is a complex-valued function and $d\ge 1$. We denote the solution $u$ by using the Schr\"odinger evolution operator $e^{it\Delta}$: \begin{equation}\label{eq:schr-evolution} u(t,x):=e^{it\Delta}u_0(x):= \int_{\mathbb{R}^d} e^{ix\cdot\xi-it|\xi|^2}\hat{u}_0(\xi)d\xi, \end{equation} where $\hat{u}_0$ is the spatial Fourier transform of $u_0$ defined via \begin{equation}\label{eq:def-fourier-transfm} \hat{u}_0(\xi):=\int_{\mathbb{R}^d}e^{-ix\cdot\xi}u_0(x)dx, \end{equation} where $x\cdot\xi$ (abbr. $x\xi$) denotes the Euclidean inner product of $x$ and $\xi$ in the spatial space $\mathbb{R}^d$. Formally the solutions to this equation have a conserved mass \begin{equation}\label{eq:mass-consv} \int_{\mathbb{R}^d} |u(t,x)|^2 dx. \end{equation} A family of well-known inequalities, the Strichartz inequalities, is associated with \eqref{eq:free-schrodinger}, which is very useful in nonlinear dispersive equations. It asserts that, for any $u_0\in L^2_x(\mathbb{R}^d)$, there exists a constant $C_{d,q,r}>0$ such that \begin{equation}\label{eq:Strichartz-inequ.} \|e^{it\Delta}u_0\|_{L^q_tL^r_x(\mathbb{R}\times \mathbb{R}^d)} \le C_{d,q,r}\|u_0\|_{L^2_x(\mathbb{R}^d)} \end{equation} holds if and only if $(q,r,d)$ is Schr\"odinger admissible; i.e., \begin{equation}\label{eq:schrod-admiss} \frac 2q+\frac dr=\frac d2, \quad (q,r,d)\neq(2,\infty, 2),\quad q, r\ge2. \end{equation} For $(q,r)=(2, \frac {2d}{d-2})$ when $d\ge 3$ or $(q,r)=(4,\infty)$ when $d=1$, the inequality \eqref{eq:Strichartz-inequ.} is referred to as the ``endpoint'' estimate, otherwise the ``non-endpoint'' estimate for the rest pairs. It has a long history to establish \eqref{eq:Strichartz-inequ.} for all Schr\"odinger admissible pairs in \eqref{eq:schrod-admiss} expect when $(q,r)=(\infty,2)$, in which case it follows from \eqref{eq:mass-consv}. For the symmetric exponent $q=r=2+\frac 4d$, Strichartz established this inequality in \cite{Strichartz:1977} which in turn had precursors in \cite{Tomas:1975:restrict}. The non-endpoints were established by Ginibre and Velo \cite{Ginibre-Velo:1992:non-endpoint-Strichartz-inequality}, see also \cite[Theorem 2.3]{Tao:2006-CBMS-book} for a proof; the delicate endpoints in higher dimensions were treated by Keel and Tao \cite{Keel-Tao:1998:endpoint-strichartz}. When $(q,r,d)=(2,\infty, 2)$, it has been known to fail, see e.g., \cite{Montgomery:1998:schrod} and \cite{Tao:2006:counterexample-bilinear-strichartz}. A close relative of the Strichartz inequality for the Schr\"odinger equation is the Sobolev-Strichartz inequality: for $2\le q<\infty$, and $2\le r<\infty$ and $u_0\in \dot{H}^{s(q,r)}_x(\mathbb{R}^d)$ with $s(q,r):=\frac d2-\frac 2q-\frac dr>0$, there exists a constant $C_{d,q,r}>0$ such that \begin{equation}\label{eq:sobolev-strichartz} \|e^{it\Delta}u_0\|_{L^q_tL^r_x(\mathbb{R}\times \mathbb{R}^d)}\le C_{d,q,r} \|u_0\|_{\dot{H}_x^{s(q,r)}(\mathbb{R}^d)}, \end{equation} which can be proven by using the usual Sobolev embedding and the Strichartz inequality \eqref{eq:Strichartz-inequ.}. In this paper, we are interested in the existence of maximizers for the Strichartz inequality \eqref{eq:Strichartz-inequ.} and the Sobolev-Strichartz inequality \eqref{eq:sobolev-strichartz}, i.e., functions which optimize \eqref{eq:Strichartz-inequ.} and \eqref{eq:sobolev-strichartz} in the sense that they become equal. The answer to the former is confirmed for the non-endpoints by an application of a recent powerful result, the profile decomposition for Schr\"odinger equations, which was developed in \cite{Bourgain:1998:refined-Strichartz-NLS, Merle-Vega:1998:profile-schrod, Carles-Keraani:2007:profile-schrod-1d, Begout-Vargas:2007:profile-schrod-higher-d} and had many applications in nonlinear dispersive equations, see \cite{Killip-Visan:2008:clay-lecture-notes} and the reference within. The problem of the existence of maximizers and of determining them explicitly for the symmetric Strichartz inequality when $q=r=2+\frac 4d$ has been intensively studied. Kunze \cite{Kunze:2003:maxi-strichartz-1d} treated the $d=1$ case and showed that maximizers exist by an elaborate concentration-compactness method; when $d=1,2$, Foschi \cite{Foschi:2007:maxi-strichartz-2d} explicitly determined the best constants and showed that the only maximizers are Gaussians by using the sharp Cauchy-Schwarz inequality and the space-time Fourier transform; Hundertmark and Zharnitsky \cite{Hundertmark-Zharnitsky:2006:maximizers-Strichartz-low-dimensions} independently obtained this result by an interesting representation formula of the Strichartz inequalities; recently, Carneiro \cite{Carneiro:2008:sharp-strichartz-norm} proved a sharp Strichartz-type inequality by following the arguments in \cite{Hundertmark-Zharnitsky:2006:maximizers-Strichartz-low-dimensions} and found its maximizers, which derives the results in \cite{Hundertmark-Zharnitsky:2006:maximizers-Strichartz-low-dimensions} as a corollary when $d=1,2$; very recently, Bennett, Bez, Carbery and Hundertmark \cite{Bennett-Bez-Carbery-Hundertmark:2008:heat-flow-of-strichartz-norm} offered a new proof to determine the best constants by using the method of heat-flow. The answer to the latter is true as well. The proof follows almost along similar lines as in the $L^2_x$ case if we have an analogous profile decomposition for initial data in the homogeneous Sobolev spaces. We offer a new proof for this fact, which we have not seen in the literature. \subsection{} In this subsection, we investigate the existence of maximizers for the non-endpoint Strichartz inequalities. To begin, we recall the profile decomposition result in \cite{Begout-Vargas:2007:profile-schrod-higher-d} in the notation of the symmetry group which preserves the mass and the Strichartz inequalities. \begin{definition}[Mass-preserving symmetry group]\label{def:symmetry} \rm For any phase $\theta\in \mathbb{R}/2\pi\mathbb{Z}$, scaling parameter $h_0>0$, frequency $\xi_0\in \mathbb{R}^d$, space and time translation parameters $x_0, t_0\in \mathbb{R}^d$, we define the unitary transformation $g_{\theta, h_0,\xi_0,x_0,t_0}: L^2_x(\mathbb{R}^d)\to L^2_x(\mathbb{R}^d)$ by the formula \begin{equation}\label{eq:gp-elments} [g_{\theta, h_0,\xi_0,x_0,t_0}\phi](x)=e^{i\theta}e^{ix\cdot\xi_0}e^{-it_0\Delta}[\frac {1}{h_0^{d/2}}\phi(\frac {\cdot-x_0}{h_0})](x). \end{equation} We let $G$ be the collection of such transformations; $G$ forms a group. \end{definition} \begin{definition}\label{def:orthogonal} \rm For $j\neq k$, two sequences $\Gamma^j_n=(h^j_{n},\xi^j_n, x^j_n,t^j_n)_{n\ge 1}$ and $\Gamma^k_n=(h^k_n,\xi^k_n,x_k^n,t^k_n)_{n\ge 1}$ in $(0,\infty) \times\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}$ are said to be orthogonal if one of the followings holds: \begin{itemize} \item $\lim_{n\to\infty}\left(\frac {h^k_n}{h^j_{n}}+\frac {h^j_n}{h^k_n}+h_n^j|\xi_n^j-\xi_n^k|\right)=\infty,$ \item $\lim_{n\to\infty}\left(\frac{|t_n^j-t_n^k|}{(h^j_n)^2}+\big|\frac{x^j_n-x^k_n} {h^j_n}+\frac{t_n^k(\xi^k_n-\xi^j_n)}{h^j_n}\big|\right)=\infty$. \end{itemize} \end{definition} We rephrase the linear profile decomposition theorem in \cite{Begout-Vargas:2007:profile-schrod-higher-d} by using the notation in Definition \ref{def:symmetry}. \begin{theorem}\label{thm:lin-profile} Let $\{u_n\}_{n\ge 1}$ be a bounded sequence in $L^2_x$. Then up to passing to a subsequence of $(u_n)_{n\ge 1}$, there exists a sequence of functions $\phi^j\in L^2_x$ and group elements $(g_n^j)_{n\ge 1,j\ge 1}=g_{0,h_n^j,\xi_n^j,x_n^j,t_n^j}\in G$ with orthogonal $(h_n^j,\xi_n^j,x_n^j,t_n^j)$ such that for any $N\ge 1$, there exists $e_n^N\in L^2_x$, \begin{equation}\label{eq:profile-decom} u_n=\sum_{j=1}^{N}g_n^j(\phi^j)+e_n^N, \end{equation} with the error term having the asymptotically vanishing Strichartz norm \begin{equation}\label{eq:strich-err} \lim_{N\to \infty}\lim_{n\to \infty}\|e^{it\Delta}e_n^N\|_{L^{2+4/d}_{t,x}}=0, \end{equation} and the following orthogonality properties: for any $N\ge 1$, \begin{equation}\label{eq:pf-L2-ortho} \lim_{n\to\infty} \Big(\|u_n\|^2_{L^2_x}-(\sum_{j=1}^N\|\phi^j\|^2_{L^2_x} +\|e_n^N\|^2_{L^2_x})\Big)=0, \end{equation} for $j\neq k$, \begin{gather}\label{eq:pf-Stri-ortho} \lim_{n\to \infty}\|e^{it\Delta}g_n^j(\phi^j)e^{it\Delta}g_n^k(\phi^k)\|_{L^{1+2/d}_{t,x}}=0, \\ \label{eq:pf-L2-wk-ortho-1} \lim_{n\to \infty}\langle g_n^j(\phi^j),g_n^k(\phi^k)\rangle_{L^2_x}=0, \end{gather} for any $1\le j\le N$, \begin{equation}\label{eq:pf-L2-wk-ortho-2} \lim_{n\to \infty}\langle g_n^j(\phi^j),e_n^N\rangle_{L^2_x}=0. \end{equation} \end{theorem} The first main result in this paper concerns on the existence of maximizers for the symmetric Strichartz inequality $L^2_x\to L^{2+4/d}_{t,x}$. \begin{theorem}\label{thm:Stri-max} There exists a maximizing function $\phi\in L^2_x$ such that, $$ \|e^{it\Delta}\phi\|_{L^{2+\frac 4{d}}_{t,x}}=S\|\phi\|_{L^2_x} $$ with $S:=\sup\{{\|e^{it\Delta}u_0\|_{{L^{2+\frac {4}{d}}_{t,x}}}} :\|u_0\|_{L^2_x}=1\}$ being the sharp constant. \end{theorem} The proof of this theorem uses Theorem \ref{thm:lin-profile} and the following crucial inequality in \cite{Begout-Vargas:2007:profile-schrod-higher-d}: for any $N\ge 1$, \begin{equation}\label{eq:Stri-ortho} \lim_{n\to\infty}\|\sum_{j=1}^Ne^{it\Delta}g_n^j(\phi^j) \|^{2+4/d}_{L^{2+4/d}_{t,x}} \le \sum_{j=1}^N\lim_{n\to\infty}\|e^{it\Delta}\phi^j \|^{2+4/d}_{L^{2+4/d}_{t,x}}. \end{equation} \begin{remark} \rm The inequality \eqref{eq:Stri-ortho} is a consequence of \eqref{eq:pf-Stri-ortho} by an interpolation argument in \cite{Begout-Vargas:2007:profile-schrod-higher-d}, which we will generalize in the proof of Lemma \ref{le:ortho-other-Stri}. When $d=1,2$, one can actually show that \eqref{eq:Stri-ortho} is an equality by using the fact that $2+4/d$ is an even integer. \end{remark} The inequality \eqref{eq:Stri-ortho} suggests a way to obtain similar claims as in Theorem \ref{thm:Stri-max} for other non-endpoint Strichartz inequalities if the following lemma were established. \begin{lemma}\label{le:ortho-other-Stri} Let $(q,r,d)$ be non-endpoint Schr\"odinger admissible pairs and $N\ge 1$. If $q\ge r$, \begin{equation}\label{eq:Stri-ortho-1} \lim_{n\to\infty}\|\sum_{j=1}^Ne^{it\Delta}g_n^j(\phi^j)\|^r_{L_t^qL^r_x} \le \sum_{j=1}^N\lim_{n\to\infty}\|e^{it\Delta}\phi^j\|^r_{L_t^qL^r_x}; \end{equation} if $q\le r$, \begin{equation}\label{eq:Stri-ortho-2} \lim_{n\to\infty}\|\sum_{j=1}^Ne^{it\Delta}g_n^j(\phi^j)\|^q_{L_t^qL^r_x} \le \sum_{j=1}^N\lim_{n\to\infty}\|e^{it\Delta}\phi^j\|^q_{L_t^qL^r_x}. \end{equation} \end{lemma} Indeed, this is the case. Together with Theorem \ref{thm:lin-profile} again, this lemma yields the following corollary. \begin{corollary}\label{coro:Stri-max}Let $(q,r,d)$ be non-endpoint Schr\"odinger admissible pairs. There exists a maximizing function $\phi\in L^2_x$ such that, $$ \|e^{it\Delta}\phi\|_{L_t^qL^r_x}=S_{q,r}\|\phi\|_{L^2_x} $$ with $S_{q,r}:=\sup\{\|e^{it\Delta}u_0\|_{L_t^qL^r_x}:\|u_0\|_{L^2_x}=1\}$ being the sharp constant. \end{corollary} The proof of this corollary is similar to that used in Theorem \ref{thm:Stri-max} and thus will be omitted. Instead, we will focus on proving Lemma \ref{le:ortho-other-Stri}. \begin{remark} \rm When $(q,r)=(\infty, 2)$, from the conservation of mass \eqref{eq:mass-consv}, we see that every $L^2_x$-initial data is a maximizer for the Strichartz inequality. \end{remark} \subsection{} In this subsection we concern on the existence of maximizers for the Sobolev-Strichartz inequality \eqref{eq:sobolev-strichartz} for the Schr\"odinger equation. \begin{theorem}\label{thm:sobolev-strichartz-max} Let $(q,r,d)$ be defined as in \eqref{eq:sobolev-strichartz}. Then there exists a maximizing function $\phi\in \dot{H}_x^{s(q,r)}$ for \eqref{eq:sobolev-strichartz} with $C_{d,q,r}$ being the sharp constant $$ S^{q,r}:=\sup\{\|e^{it\Delta}u_0\|_{L_t^qL^r_x}: \|u_0\|_{\dot{H}^{s(q,r)}_x}=1\}. $$ \end{theorem} As we can see, it suffices to establish a profile decomposition result for initial data in $\dot{H}^{s(q,r)}_x$. \begin{theorem}\label{thm:pf-homog-sobolev} Let $s(q,r)$ be defined as in \eqref{eq:sobolev-strichartz} and $\{u_n\}_{n\ge 1}$ be a bounded sequence in $\dot{H}^{s(q,r)}_x$. Then up to passing to a subsequence of $(u_n)_{n\ge 1}$, there exists a sequence of functions $\phi^j\in \dot{H}^s_x$ and a sequence of parameters $(h_n^j,x_n^j,t_n^j)$ such that for any $N\ge 1$, there exists $e_n^N\in \dot{H}^s_x$, \begin{equation}\label{eq:ss-profile-decom} u_n=\sum_{j=1}^{N}e^{-it_n^j\Delta} \Big(\frac {1}{(h_n^j)^{d/2-s}}\phi^j(\frac {\cdot-x_n^j}{h_n^j})\Big)+e_n^N, \end{equation} with the parameters $(h_n^j,x_n^j,t_n^j)$ satisfying the following constraint: for $j\neq k$, \begin{equation}\label{eq:ss-param-constrnt} \lim_{n\to\infty} \Big(\frac {h_n^j}{h_n^k}+\frac {h_n^k}{h_n^j} +\frac {|t_n^j-t_n^k|}{(h_n^j)^2}+\frac {|x_n^j-x_n^k|}{h_n^j}\Big)=\infty, \end{equation} and the error term having the asymptotically vanishing Sobolev-Strichartz norm \begin{equation}\label{eq:ss-profile-err} \lim_{N\to \infty}\lim_{n\to \infty}\|e^{it\Delta}e_n^N\|_{L_t^qL^r_x}=0, \end{equation} and the following orthogonality property: for any $N\ge 1$, \begin{equation}\label{eq:ss-pf-L2-ortho} \lim_{n\to\infty} \Big(\|u_n\|^2_{\dot{H}^s_x}-(\sum_{j=1}^N\|\phi^j\|^2_{\dot{H}^s_x} +\|e_n^N\|^2_{\dot{H}^s_x})\Big)=0. \end{equation} \end{theorem} When $s=1$ and $d\ge 3$, Keraani \cite{Keraani:2001:profile-schrod-H^1} established Theorem \ref{thm:pf-homog-sobolev} for the Schr\"odinger equation based on the following Besov-type improvement of the Sobolev embedding \begin{equation}\label{eq:keraani-impv-sobolev} \|f\|_{L^{2d/(d-2)}_x}\lesssim \|Df\|_{L^2_x}^{1-2/d}\|Df\|^{2/d}_{\dot{B}^{0}_{2,\infty}}, \end{equation} where $\|\cdot\|_{\dot{B}^{0}_{2,\infty}}$ is the Besov norm defined via $$ \|f\|_{\dot{B}^0_{2,\infty}}:=\sup_{k\in \mathbb{Z}}\|f_k\|_{L^2_x} $$ with $f_k$ denoting the $k$-th Littlewood-Paley piece defined via the Fourier transform $\hat{f}_k:=\hat{f}1_{2^k\le |\xi|\le 2^{k+1}}$ \footnote{For a rigorous definition of the Littlewood-Paley decomposition (or dyadic decomposition) in terms of smooth cut-off functions, see \cite[p.241]{Stein:1993}.}, and $D^s$ the fractional differentiation operator defined via the inverse Fourier transform, $$ D^s f(x):=\int_{\mathbb{R}^d}e^{ix\xi}|\xi|^s \hat{f}(\xi)d\xi. $$ He followed the arguments in \cite{Bahouri-Gerard:1999:profile-wave} where Bahouri and G\'erard established the profile-decomposition result in the context of the wave equation with initial data in $\dot{H}^1_x(\mathbb{R}^3)$. Recently under the same constraints on $s$ and $d$, Killip and Visan \cite{Killip-Visan:2008:clay-lecture-notes} obtained the same result by relying on their interesting improved Sobolev embedding involving the critical $L^{2d/(d-2)}_x$-norm on the right-hand side: \begin{equation}\label{eq:killip-visan-impv-sobobev} \|f\|_{L^{2d/(d-2)}_x}\lesssim \|Df\|_{L^2_x}^{1-2/d} \sup_{k\in \mathbb{Z}}\|f_k\|_{L^{2d/(d-2)}_x}^{2/d}. \end{equation} Note that \eqref{eq:killip-visan-impv-sobobev} implies \eqref{eq:keraani-impv-sobolev} by the usual Sobolev embedding. By following their approaches, we will generalize both Keraani's and Killip-Visan's improved $\dot{H}^1_x$-Sobolev embeddings to those with $\dot{H}^s_x$ norms where $\frac 1r+\frac sd=\frac 12$ and $d\ge 1$ in the appendix of this paper. Consequently almost same approaches as in \cite{Keraani:2001:profile-schrod-H^1} or \cite{Killip-Visan:2008:clay-lecture-notes} would yield Theorem \ref{thm:pf-homog-sobolev} without difficulties but we choose not to do it in this paper for simplicity. However, we will offer a new proof of Theorem \ref{thm:pf-homog-sobolev} by taking advantage of the existing $L^2_x$ linear profile decomposition, Theorem \ref{thm:lin-profile}. The idea can be roughly explained as follows. For $(u_n)_{n\ge 1}\in \dot{H}^s_x$, we regard $(D^su_n)_{n\ge 1}$ as an $L^2_x$ sequence and then apply Theorem \ref{thm:lin-profile} to this new sequence. Then the main task is to show how to eliminate the frequency parameter $\xi_n^j$ from the decomposition. To do it, we have two cases according to the limits of the sequence $(h_n^j\xi_n^j)_{n\ge 1}$ for each $j$: when the limit of $h_n^j\xi_n^j$ is finite, we will change the profiles $\phi^j$ so that we can reduce to $\xi_n^j=0$; on the other hand, when it is infinite, we will group this term into the error term since one can show that its Sobolev Strichartz norm is asymptotically small. We organize this paper as follows: in Section \ref{sec:notation} we establish some notations; in Section \ref{sec:Stri-max} we prove Theorems \ref{thm:Stri-max}, \ref{le:ortho-other-Stri}; in Section \ref{sec:sobolev-strichartz-max} we prove Theorem \ref{thm:sobolev-strichartz-max}; finally in Appendix, we include the arguments for the general Keraani's and Killip-Visan's improved Sobolev embeddings. \subsection{Notation}\label{sec:notation} We use $X\lesssim Y$, $Y\gtrsim X$, or $X=O(Y)$ to denote the estimate $|X|\le C Y$ for some constant $00$, there exists $n_0$ so that for all $N\ge n_0$ and $n\ge n_0$, \begin{equation*} S-\epsilon\le \|\sum_{j=1}^{N} e^{it\Delta}g_n^j(\phi^j)\|_{L^{2+4/d}_{t,x}}. \end{equation*} Thus from \eqref{eq:Stri-ortho}, there exists $n_1\ge n_0$ such that when $n, N\ge n_1$, \begin{equation*} S^{2+4/d}-2\epsilon\le\sum_{j=1}^{N}\|e^{it\Delta} \phi^j\|^{2+4/d}_{L^{2+4/d}_{t,x}}. \end{equation*} Choosing $j_0\in [1,N]$ such that $e^{it\Delta} \phi^{j_0} $ has the largest $L^{2+4/d}_{t,x}$ norm among $1\le j\le N$, we see that, by the usual Strichartz inequality, \begin{align}\label{eq:local-1} S^{2+4/d}-2\epsilon \le \|e^{it\Delta} \phi^{j_0}\|^{4/d}_{L^{2+4/d}_{t,x}}\sum_{j=1}^{N} \|e^{it\Delta} \phi^j\|^2_{L^{2+4/d}_{t,x}}\le S^{2+4/d}\|\phi^{j_0}\|^{4/d}_{L^2_x}\le S^{2+4/d} \end{align} since \eqref{eq:pf-L2-ortho} gives \begin{equation}\label{eq:local-2} \sum_{j=1}^\infty \|\phi^j\|^2_{L^2_x}\le \lim_{n\to\infty}\|u_n\|^2_{L^2_x}=1. \end{equation} This latter fact also gives that $\lim_{j\to\infty}\|\phi^j\|_{L^2_x}=0$, which together with \eqref{eq:local-1} shows that $j_0$ must terminate before some fixed constant which does not depend on $\epsilon$. Hence in \eqref{eq:local-1} we can take $\epsilon$ to zero to obtain \begin{equation*} \|\phi^{j_0}\|_{L^2_x}=1. \end{equation*} This further shows that $\phi^j=0$ for all but $j=j_0$ from \eqref{eq:local-2}. Therefore $\phi^{j_0}$ is a maximizer. Thus the proof of Theorem \eqref{thm:Stri-max} is complete. \end{proof} We will closely follow the approach in \cite[Lemma 5.5]{Begout-Vargas:2007:profile-schrod-higher-d} to prove Lemma \ref{le:ortho-other-Stri}. \begin{proof}[Proof of Lemma \ref{le:ortho-other-Stri}] We only handle \eqref{eq:Stri-ortho-1} since the proof of \eqref{eq:Stri-ortho-2} is similar. By interpolating with \eqref{eq:pf-Stri-ortho}, we see that for $j\neq k$ and non-endpoint Schr\"odinger admissible pair $(q,r,d)$, \begin{equation}\label{eq:loc-3} \lim_{n\to\infty}\|e^{it\Delta}g_n^j(\phi^j)e^{it\Delta}g_n^k(\phi^k) \|_{L^{q/2}_tL^{r/2}_x}=0. \end{equation} Now we expand the left hand side of \eqref{eq:Stri-ortho-1} out, which is equal to \begin{align*} &\Big(\int\Big(\int\big|\sum_{j=1}^N e^{it\Delta}g_n^j(\phi^j)\big|^rdx\Big)^{q/r}dt\Big)^{r/q}\\ &\le\Big(\int\Big(\int\sum_{j=1}^N\big|e^{it\Delta}g_n^j(\phi^j)\big|^2 \big|\sum_{l=1}^{N}e^{it\Delta} g_n^l(\phi^l)\big|^{r-2}\\ &\quad+ \sum_{k\neq j} |e^{it\Delta}g_n^j(\phi^j)||e^{it\Delta}g_n^k(\phi^k)| |\sum_{l=1}^{N}e^{it\Delta}g_n^l(\phi^l)|^{r-2}dx\Big)^{q/r}dt\Big)^{r/q}\\ &\le\sum_{j=1}^N\Big(\int\Big(\int|e^{it\Delta}g_n^j(\phi^j)|^2 |\sum_{l=1}^{N}e^{it\Delta}g_n^l(\phi^l)|^{r-2}dx\Big)^{q/r}dt\Big)^{r/q}\\ &\quad +\sum_{k\neq j}\Big(\int\Big(\int|e^{it\Delta}g_n^j(\phi^j)| |e^{it\Delta}g_n^k(\phi^k)||\sum_{l=1}^{N}e^{it\Delta}g_n^l (\phi^l)|^{r-2}dx\Big)^{q/r}dt\Big)^{r/q}\\ &=:A+B. \end{align*} For $B$, since $\frac rq=\frac 2q+\frac {r-2}{q},\quad 1=\frac 2r+\frac {r-2}{r},$ the H\"older inequality yields \begin{equation*} B\le \sum_{k\neq j}\|e^{it\Delta}g_n^j(\phi^j)e^{it\Delta}g_n^k (\phi^k)\|_{L_t^{q/2}L_x^{r/2}}\|\sum_{l=1}^N e^{it\Delta}g_n^l(\phi^l)\|^{r-2}_{L_t^{q}L_x^{r}}, \end{equation*} which approaches zero by \eqref{eq:loc-3} as $n$ approaches infinity. Hence we are left with estimating $A$. For $A$, since $(q,r,d)$ is in the non-endpoint region and $q\ge r$, we have $2< r\le 2+4/d$, i.e., $00$ and $\psi^j$ is assumed to be Schwartz. In view of this, we will organize $D^{-s}g_n^j(\psi^j)$ into the error term $e^N_n$. Hence the decomposition \eqref{eq:ss-profile-decom} is obtained. Finally the $\dot{H}^s_x$-orthogonality \eqref{eq:ss-pf-L2-ortho} follows from \eqref{eq:pf-L2-ortho}, and the constraint \eqref{eq:ss-param-constrnt} from Definition \ref{def:orthogonal} since $\xi_n^j\equiv 0$ for all $j,n$. Therefore the proof of Theorem \ref{thm:pf-homog-sobolev} is complete. \end{proof} \section{Proof of the improved Sobolev embeddings} Here we include the arguments for the generalized Keraani's and Killip-Visan's improved Sobolev embeddings, which can be used to derive Theorem \ref{thm:pf-homog-sobolev} as well. Firstly the generalization of \eqref{eq:keraani-impv-sobolev} is as follows: for any $10$, we define $f_{A}$ via \begin{equation*} \hat{f}_{A}(\xi)=1_{|\xi|> A}\hat{f}(\xi). \end{equation*} From the Riemann-Lebesgue lemma, \begin{equation*}\|f_{0$ and $2^K\le A$, $$ \|f_{0$. We write \begin{equation*} \|f\|^r_{L^r_x}\sim\int_0^{\infty} \lambda^{r-1} |\{x\in \mathbb{R}^d: |f|>\lambda\}| d\lambda \end{equation*} and set \begin{equation*} A(\lambda):=\Big(\frac {\lambda}{2C\|D^s f\|_{\dot{B}^{0}_{2, \infty}}} \Big)^{\frac {1}{d/2-s}}. \end{equation*} Thus we obtain $$ \|f_{\lambda\}|\le |\{f_{>A(\lambda)}>\frac \lambda 2\}|\lesssim \frac {\|\hat{f}_{>A(\lambda)}\|^2_{L^2_x}}{\lambda^2}. $$ Hence we have \begin{align*} \|f\|^r_{L^r_x} &\lesssim \int_{0}^{\infty} \lambda^{r-3} \int_{|\xi|>A(\lambda)} |\hat{f}(\xi)|^2d\xi d\lambda \\ & \lesssim \int_{0}^{\infty} |\hat{f}(\xi)|^2 \int_{0}^{2C\|D^s f\|_{\dot{B}^{0}_{2, \infty}}|\xi|^{d/2-s}}\lambda^{r-3} d\lambda d\xi\\ & \lesssim \|D^s f\|^{r-2}_{\dot{B}^{0}_{2, \infty}}\int_{0}^{\infty} |\xi|^{2s} |\hat{f}(\xi)|^2 d\xi \\ &\lesssim \|D^s f\|^2_{L^2_x} \|D^s f\|^{r-2}_{\dot{B}^{0}_{2,\infty}}. \end{align*} Therefore the proof of \eqref{eq:g-keraani-impv-sobolev} is complete. \end{proof} Next we prove the generalized version of \eqref{eq:killip-visan-impv-sobobev}: For any $14$, we let $r^*=[r/2]$, the largest integer which is less than $r/2$. Still by \eqref{eq:loc-5}, the H\"older inequality and the Bernstein inequality, we have \begin{align*} &\|f\|^r_{L^r_x}\\ &\sim \int \Big(\sum_{M_1}|f_{M_1}|^2\Big)\Big(\sum_{M_2}|f_{M_2}|^2\Big)^{r^*-1} \Big(\sum_{M}|f_{M}|^2\Big) ^{r/2-r^*} dx\\ &\lesssim \sum_{M_1\le M_2\le\dots\le M_{r^*-1}\le M} \int |f_{M_1}||f_{M_1}|f_{M_2}|^2|f_{M_3}|^2 \times\dots \times|f_{M_{r^*-1}}|^2|f_{M}|^{r-2r^*}dx\\ &\lesssim \sum_{M_1\le M_2\le\dots\le M_{r^*-1}\le M} \|f_{M_1}\|_{L^r_x}\|f_{M_1}\|_{L^\infty_x} \|f_M\|^{r-2r^*}_{L^r_x}\|f_{M_2}\|_{L^{r/2}_x}\\ &\quad \times\|f_{M_2}\|_{L^r_x}\|f_{M_3}\|^2_{L^r_x}\dots \|f_{M_{r^*-1}}\|^2_{L^r_x}\\ &\lesssim\Big(\sup_{k\in \mathbb{Z}}\|f_k\|_{L^r_x}\Big)^{r-2}\sum_{M_1\le M_2}M_1^{d/2-s}M_2^{s-d/2} \|D^sf_{M_1}\|_{L^2_x}\|D^sf_{M_2}\|_{L^2_x}. \end{align*} Since $d/2-s>0$, the Schur's test again concludes the proof. Hence the proof of \eqref{eq:g-killip-visan-impv-sobobev} is complete. \end{proof} \subsection*{Acknowledgments} The author is grateful to his advisor Terence Tao for many helpful discussions, to Professor Changxing Miao for his comments on the earlier version of this paper, and to the anonymous referees for their valuable comments. \begin{thebibliography}{10} \bibitem{Bahouri-Gerard:1999:profile-wave} H.~Bahouri and P.~G{\'e}rard. \newblock High frequency approximation of solutions to critical nonlinear wave equations. \newblock {\em Amer. J. Math.}, 121(1):131--175, 1999. \bibitem{Begout-Vargas:2007:profile-schrod-higher-d} P.~B{\'e}gout and A.~Vargas. \newblock Mass concentration phenomena for the {$L\sp 2$}-critical nonlinear {S}chr\"odinger equation. \newblock {\em Trans. Amer. Math. Soc.}, 359(11):5257--5282, 2007. \bibitem{Bennett-Bez-Carbery-Hundertmark:2008:heat-flow-of-strichartz-norm} J.~Bennett, N.~Bez, A.~Carbery, and D.~Hundertmark. \newblock Heat-flow monotonicity of strichartz norms. \newblock {\em arXiv:0809.4783}. \bibitem{Bourgain:1998:refined-Strichartz-NLS} J.~Bourgain. \newblock Refinements of {S}trichartz' inequality and applications to {$2$}{D}-{NLS} with critical nonlinearity. \newblock {\em Internat. Math. Res. Notices}, (5):253--283, 1998. \bibitem{Carles-Keraani:2007:profile-schrod-1d} R.~Carles and S.~Keraani. \newblock On the role of quadratic oscillations in nonlinear {S}chr\"odinger equations. {II}. {T}he {$L\sp 2$}-critical case. \newblock {\em Trans. Amer. Math. Soc.}, 359(1):33--62 (electronic), 2007. \bibitem{Carneiro:2008:sharp-strichartz-norm} E.~Carneiro. \newblock A sharp inequality for the strichartz norm. \newblock {\em arXiv:0809.4054}. \bibitem{Foschi:2007:maxi-strichartz-2d} D.~Foschi. \newblock Maximizers for the {S}trichartz inequality. \newblock {\em J. Eur. Math. Soc. (JEMS)}, 9(4):739--774, 2007. \bibitem{Ginibre-Velo:1992:non-endpoint-Strichartz-inequality} J.~Ginibre and G.~Velo. \newblock Smoothing properties and retarded estimates for some dispersive evolution equations. \newblock {\em Comm. Math. Phys.}, 144(1):163--188, 1992. \bibitem{Hundertmark-Zharnitsky:2006:maximizers-Strichartz-low-dimensions} D.~Hundertmark and V.~Zharnitsky. \newblock On sharp {S}trichartz inequalities in low dimensions. \newblock {\em Int. Math. Res. Not.}, pages Art. ID 34080, 18, 2006. \bibitem{Keel-Tao:1998:endpoint-strichartz} M.~Keel and T.~Tao. \newblock Endpoint {S}trichartz estimates. \newblock {\em Amer. J. Math.}, 120(5):955--980, 1998. \bibitem{Keraani:2001:profile-schrod-H^1} S.~Keraani. \newblock On the defect of compactness for the {S}trichartz estimates of the {S}chr\"odinger equations. \newblock {\em J. Differential Equations}, 175(2):353--392, 2001. \bibitem{Killip-Visan:2008:clay-lecture-notes} R.~Killip and M.~Visan. \newblock Nonlinear schr\"odinger equations at critical regularity. \newblock {\em Lecture notes for the summer school of Clay Mathematics Institute, 2008.} \bibitem{Kunze:2003:maxi-strichartz-1d} M.~Kunze. \newblock On the existence of a maximizer for the {S}trichartz inequality. \newblock {\em Comm. Math. Phys.}, 243(1):137--162, 2003. \bibitem{Merle-Vega:1998:profile-schrod} F.~Merle and L.~Vega. \newblock Compactness at blow-up time for {$L\sp 2$} solutions of the critical nonlinear {S}chr\"odinger equation in 2{D}. \newblock {\em Internat. Math. Res. Notices}, (8):399--425, 1998. \bibitem{Montgomery:1998:schrod} S.~J. Montgomery-Smith. \newblock Time decay for the bounded mean oscillation of solutions of the {S}chr\"odinger and wave equations. \newblock {\em Duke Math. J.}, 91(2):393--408, 1998. \bibitem{Stein:1993} E.~Stein. \newblock {\em Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals}, volume~43 of {\em Princeton Mathematical Series}. \newblock Princeton University Press, Princeton, NJ, 1993. \newblock With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. \bibitem{Strichartz:1977} R.~Strichartz. \newblock Restrictions of {F}ourier transforms to quadratic surfaces and decay of solutions of wave equations. \newblock {\em Duke Math. J.}, 44(3):705--714, 1977. \bibitem{Tao:2007-247A-fourier-analysis} T.~Tao. \newblock Math 247a, fourier analysis. \newblock {\em http://www.math.ucla.edu/~tao/247a.1.06f/}. \bibitem{Tao:2006:counterexample-bilinear-strichartz} T.~Tao. \newblock A counterexample to an endpoint bilinear {S}trichartz inequality. \newblock {\em Electron. J. Differential Equations}, pages No. 151, 6 pp. (electronic), 2006. \bibitem{Tao:2006-CBMS-book} T.~Tao. \newblock {\em Nonlinear dispersive equations}, volume 106 of {\em CBMS Regional Conference Series in Mathematics}. \newblock Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. \newblock Local and global analysis. \bibitem{Tomas:1975:restrict} P.~Tomas. \newblock A restriction theorem for the {F}ourier transform. \newblock {\em Bull. Amer. Math. Soc.}, 81:477--478, 1975. \end{thebibliography} \end{document}