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EXISTENCE OF SOLUTIONS FOR QUASILINEAR DELAY
INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL

CONDITIONS

KRISHNAN BALACHANDRAN, FRANCIS PAUL SAMUEL

Abstract. We prove the existence and uniqueness of mild and classical solu-
tion to a quasilinear delay integrodifferential equation with nonlocal condition.

The results are obtained by using C0-semigroup and the Banach fixed point

theorem.

1. Introduction

The existence of solution to evolution equations with nonlocal conditions in
Banach space was studied first by Byszewski [6]. In that paper, he established
the existence and uniqueness of mild, strong and classical solutions of the nonlocal
Cauchy problem

u′(t) + Au(t) = f(t, u(t)), t ∈ (0, a] (1.1)

u(0) + g(t1, t2, . . . , tp, u(t1), u(t2) . . . , u(tp) = u0, (1.2)

where 0 < t1 < · · · < tp ≤ a, −A is the infinitesimal generator of a C0-semigroup
in a Banach space X, u0 ∈ X and f : [0, a] × X → X, g : [0, a]p × Xp → X are
given functions. The symbol g(t1, . . . , tp, u(·)) is used in the sense that in the place
of “·” we can substitute only elements of the set (t1, . . . , tp). For example

g(t1, . . . , tp, u(·)) = C1u(t1) + · · ·+ Cpu(tp),

where Ci (i = 1, 2 . . . , p) are given constants. Subsequently many authors extended
the work to various kind of nonlinear evolution equations [3, 4, 7, 8].

Several authors have studied the existence of solutions of abstract quasilinear
evolution equations in Banach space [1, 5, 10, 18]. Bahuguna [2], Oka [15] and Oka
and Tanaka [16] discussed the existence of solutions of quasilinear integrodifferen-
tial equations in Banach spaces. Kato [12] studied the nonhomogeneous evolution
equations and Chandrasekaran [9] proved the existence of mild solutions of the
nonlocal Cauchy problem for a nonlinear integrodifferential equation. Dhakne and
Pachpatte [11] established the existence of a unique strong solution of a quasilinear
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abstract functional integrodifferential equation in Banach spaces. An equation of
this type occurs in a nonlinear conversation law with memory

u(t, x) + Ψ(u(t, x))x =
∫ t

0

b(t− s)Ψ(u(t, x))x ds + f(t, x), t ∈ [0, a], (1.3)

u(0, x) = φ(x), x ∈ R. (1.4)

It is clear that if nonlocal condition (1.2) is introduced to (1.3), then it will also
have better effect than the classical condition u(0, x) = φ(x). Therefore, we would
like to extend the results for (1.1)-(1.2) to a class of integrodifferential equations in
Banach spaces.

The aim of this paper is to prove the existence and uniqueness of mild and
classical solutions of quasilinear delay integrodifferential equation with nonlocal
conditions of the form

u′(t) + A(t, u)u(t) = f(t, u(t), u(α(t))) +
∫ t

0

k(t, s, u(s), u(β(s)))ds, (1.5)

u(0) + g(u) = u0, (1.6)

where t ∈ [0, a], A(t, u) is the infinitesimal generator of a C0-semigroup in a Banach
space X, u0 ∈ X, f : I ×X ×X → X, k : ∆ ×X ×X → X, g : C(I : X) → X,
α, β : I → I are given functions. Here I = [0, a] and ∆ = {(t, s) : 0 ≤ s ≤ t ≤ a}.
The results obtained in this paper are generalizations of the results given by Pazy
[17], Kato [13, 14] and Balachandran and Uchiyama [5].

2. Preliminaries

Let X and Y be two Banach spaces such that Y is densely and continuously
embedded in X. For any Banach spaces Z the norm of Z is denoted by ‖ · ‖ or
‖·‖Z . The space of all bounded linear operators from X to Y is denoted by B(X, Y )
and B(X, X) is written as B(X). We recall some definitions and known facts from
Pazy [17].

Definition 2.1. Let S be a linear operator in X and let Y be a subspace of X.
The operator S̃ defined by D(S̃) = {x ∈ D(S) ∩ Y : Sx ∈ Y } and S̃x = Sx for
x ∈ D(S̃) is called the part of S in Y .

Definition 2.2. Let B be a subset of X and for every 0 ≤ t ≤ a and b ∈ B, let
A(t, b) be the infinitesimal generator of a C0 semigroup St,b (s), s ≥ 0, on X. The
family of operators {A(t, b)}, (t, b) ∈ I × B, is stable if there are constants M ≥ 1
and ω such that

ρ(A(t, b)) ⊃ (ω,∞) for (t, b) ∈ I ×B,

‖
k∏

j=1

R(λ : A(tj , bj))‖ ≤ M(λ− ω)−k

for λ > ω every finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, bj ∈ B, 1 ≤ j ≤ k.
The stability of {A(t, b)}, (t, b) ∈ I ×B implies (see [17]) that

‖
k∏

j=1

Stj ,bj (sj)‖ ≤ M exp
{
ω

k∑
j=1

sj

}
, sj ≥ 0

and any finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, bj ∈ B, 1 ≤ j ≤ k. k = 1, 2, . . .
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Definition 2.3. Let St,b(s), s ≥ 0 be the C0-semigroup generatated by A(t, b),
(t, b) ∈ I × B. A subspace Y of X is called A(t, b)-admissible if Y is invariant
subspace of St,b(s) and the restriction of St,b(s) to Y is a C0-semigroup in Y .

Let B ⊂ X be a subset of X such that for every (t, b) ∈ I × B, A(t, b) is
the infinitesimal generator of a C0-semigroup St,b(s), s ≥ 0 on X. We make the
following assumptions:

(E1) The family {A(t, b)}, (t, b) ∈ I ×B is stable.
(E2) Y is A(t, b)-admissible for (t, b) ∈ I × B and the family {Ã(t, b)}, (t, b) ∈

I ×B of parts Ã(t, b) of A(t, b) in Y , is stable in Y .
(E3) For (t, b) ∈ I×B, D(A(t, b)) ⊃ Y , A(t, b) is a bounded linear operator from

Y to X and t → A(t, b) is continuous in the B(Y, X) norm ‖.‖ for every
b ∈ B.

(E4) There is a constant L > 0 such that

‖A(t, b1)−A(t, b2)‖Y →X ≤ L‖b1 − b2‖X

holds for every b1, b2 ∈ B and 0 ≤ t ≤ a.

Let B be a subset of X and {A(t, b)}, (t, b) ∈ I×B be a family of operators satisfying
the conditions (E1)-(E4). If u ∈ C(I : X) has values in B then there is a unique
evolution system U(t, s;u), 0 ≤ s ≤ t ≤ a, in X satisfying, (see [17, Theorem 5.3.1
and Lemma 6.4.2, pp. 135, 201-202]

(i) ‖U(t, s;u)‖ ≤ Meω(t−s) for 0 ≤ s ≤ t ≤ a. where M and ω are stability
constants.

(ii) ∂+

∂t U(t, s;u)w = A(s, u(s))U(t, s;u)w for w ∈ Y , for 0 ≤ s ≤ t ≤ a.
(iii) ∂

∂sU(t, s;u)w = −U(t, s;u)A(s, u(s))w for w ∈ Y , for 0 ≤ s ≤ t ≤ a.

Further we assume that

(E5) For every u ∈ C(I : X) satisfying u(t) ∈ B for 0 ≤ t ≤ a, we have

U(t, s;u)Y ⊂ Y, 0 ≤ s ≤ t ≤ a

and U(t, s;u) is strongly continuous in Y for 0 ≤ s ≤ t ≤ a.
(E6) Y is reflexive.
(E7) For every (t, b1, b2) ∈ I ×B ×B, f(t, b1, b2) ∈ Y .
(E8) g : C(I : B) → Y is Lipschitz continuous in X and bounded in Y , that is,

there exist constants G > 0 and G1 > 0 such that

‖g(u)‖Y ≤ G,

‖g(u)− g(v)‖Y ≤ G1 max
t∈I

‖u(t)− v(t)‖X .

For the conditions (E9) and (E10) let Z be taken as both X and Y .

(E9) k : ∆×Z → Z is continuous and there exist constants K1 > 0 and K2 > 0
such that∫ t

0

‖k(t, s, u1, v1)− k(t, s, u2, v2)‖Zds ≤ K1(‖u1(t)− u2(t) + v1(t)− v(t)‖Z),

K2 = max{
∫ t

0

‖k(t, s, 0, 0)‖Z ds : (t, s) ∈ ∆}.
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(E10) f : I × Z × Z → Z is continuous and there exist constants K3 > 0 and
K4 > 0 such that

‖f(t, u1, v1)− f(t, u2, v2)‖Z ≤ K3(‖u1 − u2‖Z + ‖v1 − v2‖Z)

K4 = max
t∈I

‖f(t, 0, 0)‖Z .

Let us take M0 = max{‖U(t, s;u)‖B(Z), 0 ≤ s ≤ t ≤ a, u ∈ B}.
(E11) α, β : I → I is absolutely continuous and there exist constants b > 0 and

c > 0 such that α′(t) ≥ b and β′(t) ≥ c respectively for t ∈ I.
(E12)

M0

[
‖u0‖Y + G + r[K3a(1 + 1/b) + K1a(1 + 1/c)] + a(K4 + K2)

]
≤ r

q =
[
Ka‖u0‖Y + GKa + M0G1 + M0[K3a(1 + 1/b) + K1a(1 + 1/c)]

+ Ka[r(K3a(1 + 1/b) + K1a(1 + 1/c))] + a(K4 + K2)
]

< 1.

Next we prove the existence of local classical solutions of the quasilinear problem
(1.5)–(1.6).

For a mild solution of (1.5)–(1.6) we mean a function u ∈ C(I : X) with values
in B and u0 ∈ X satisfying the integral equation

u(t) = U(t, 0;u)u0 − U(t, 0;u)g(u) +
∫ t

0

U(t, s;u)[f(s, u(s), u(α(s)))

+
∫ s

0

k(s, τ, u(τ), u(β(τ)))dτ ]ds.

(2.1)

A function u ∈ C(I : X) such that u(t) ∈ D(A(t, u(t))) for t ∈ (0, a], u ∈ C1((0, a] :
X) and satisfies (1.5))–(1.6) in X is called a classical solution of (1.5) -(1.6) on I.
Further there exists a constant K > 0 such that for every u, v ∈ C(I : X) with
values in B and every w ∈ Y we have

‖U(t, s;u)w − U(t, s; v)w‖ ≤ K‖w‖Y

∫ t

s

‖u(τ)− v(τ)‖dτ. (2.2)

3. Existence Result

Theorem 3.1. Let u0 ∈ Y and let B = {u ∈ X : ‖u‖Y ≤ r}, r > 0. If the as-
sumptions (E1)–(E12) are satisfied, then (1.5)–(1.6) has a unique classical solution
u ∈ C([0, a] : Y ) ∩ C1((0, a] : X)

Proof. Let S be a nonempty closed subset of C([0, a] : X) defined by S = {u : u ∈
C([0, a] : X), ‖u(t)‖Y ≤ r for 0 ≤ t ≤ a}. Consider a mapping P on S defined by

(Pu)(t) = U(t, 0;u)u0 − U(t, 0;u)g(u) +
∫ t

0

U(t, s;u)
[
f(s, u(s), u(α(s)))

+
∫ s

0

k(s, τ, u(τ), u(β(τ)))dτ
]
ds.

We claim that P maps S into S. For u ∈ S, we have

‖Pu(t)‖Y

= ‖U(t, 0;u)u0 − U(t, 0;u)g(u) +
∫ t

0

U(t, s;u)
[
f(s, u(s), u(α(s)))
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+
∫ s

0

k(s, τ, u(τ)u(β(τ)))dτ
]
ds‖

≤ ‖U(t, 0;u)u0‖+ ‖U(t, 0;u)g(u)‖

+
∫ t

0

‖U(t, s;u)‖
[
‖f(s, u(s), u(α(s)))− f(s, 0, 0)‖+ ‖f(s, 0, 0)‖

+ ‖
∫ s

0

[k(s, τ, u(τ), u(β(τ)))− k(s, τ, 0, 0)]dτ‖+ ‖
∫ s

0

k(s, τ, 0, 0)dτ‖
]
ds.

Using assumptions (E8)-(E11), we get

‖Pu(t)‖Y ≤ M0‖u0‖Y + M0G +
∫ t

0

M0

[
K3(‖u(s)‖+ ‖u(α(s))‖) + K4

+
∫ s

0

K1(‖u(s)‖+ u(β(τ))‖)dτ +
∫ s

0

K2dτ
]
ds

≤ M0‖u0‖Y + M0G + M0

[
K3ar + K3

∫ t

0

‖u(α(s))‖(α′(s)/b)ds

+ K4a + K1ar + K1

∫ t

0

(‖u(β(s))‖(β′(s)/c)ds + K2a
]

≤ M0‖u0‖Y + M0G + M0

[
K3ar + (K3/b)

∫ α(t)

α(0)

‖u(s)‖ds + K4a

+ K1ar + (K1/c)
∫ β(t)

β(0)

(‖u(s)‖ds + K2a
]

≤ M0

[
‖u0‖Y + G + r[K3a(1 + 1/b) + K1a(1 + 1/c)] + a(K4 + K2)

]
From assumption (E12), one gets ‖Pu(t)‖Y ≤ r. Therefore P maps S into itself.
Moreover, if u, v ∈ S, then

‖Pu(t)− Pv(t)‖
≤ ‖U(t, 0;u)u0 − U(t, 0; v)u0‖+ ‖U(t, 0;u)g(u)− U(t, 0; v)g(v)‖

+
∫ t

0

‖U(t, s;u)
[
f(s, u(s), u(α(s))) +

∫ s

0

k(s, τ, u(τ), u(β(τ)))dτ
]

− U(t, s; v)
[
f(s, v(s), v(α(s))) +

∫ s

0

k(s, τ, v(τ), v((β(τ)))dτ
]
‖ds

≤ ‖U(t, 0;u)u0 − U(t, 0; v)u0‖+ ‖U(t, 0;u)g(u)− U(t, 0; v)g(u)‖
− ‖U(t, 0; v)g(u)− U(t, 0; v)g(v)‖

+
∫ t

0

{∥∥∥U(t, s;u)
[
f(s, u(s), u(α(s))) +

∫ s

0

k(s, τ, u(τ), u(β(τ)))dτ
]

− U(t, s; v)
[
f(s, u(s), u(α(s))) +

∫ s

0

k(s, τ, u(τ), u((β(τ)))dτ
]
‖

+ ‖U(t, s; v)
[
f(s, u(s), u(α(s))) +

∫ s

0

k(s, τ, u(τ), u((β(τ)))dτ
]

− U(t, s; v)
[
f(s, v(s), v(α(s))) +

∫ s

0

k(s, τ, v(τ), v((β(τ)))dτ
]
‖
}

ds
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Using assumptions (E8)-(E12), one can get

‖Pu(t)− Pv(t)‖
≤ Ka‖u0‖Y max

τ∈I
‖u(τ)− v(τ)‖+ GKamax

τ∈I
‖u(τ)− v(τ)‖

+ M0G1 max
τ∈I

‖u(τ)− v(τ)‖

+ Kamax
τ∈I

‖u(τ)− v(τ)‖
[
K3

∫ t

0

‖u(s)‖ds + K3

∫ t

0

‖u(α(s))‖(α′(s)/b)ds

+ K4a + K1ar + K1

∫ t

0

‖u(β(s))‖(β′(s)/c)ds + K2a
]

+ M0

[
K3

∫ t

0

‖u(s)− v(s)‖ds + K3

∫ t

0

‖u(α(s))− v(α(s))‖(α′(s)/b)ds

+ K1amax
τ∈I

‖u(τ)− v(τ)‖+ K1

∫ t

0

‖u(β(s))− v(β(s))‖(β′(s)/c)ds

≤
[
Ka‖u0‖Y + GKa + M0G1 + M0[K3a(1 + 1/b) + K1a(1 + 1/c)]

+ Ka[r(K3a(1 + 1/b) + K1a(1 + 1/c))] + a(K4 + K2)
]
max
τ∈I

‖u(τ)− v(τ)‖

= q max
τ∈I

‖u(τ)− v(τ)‖

where 0 < q < 1. From this inequality it follows that for any t ∈ I,

‖Pu(t)− Pv(t)‖ ≤ q max
τ∈I

‖u(τ)− v(τ)‖,

so that P is a contraction on S. From the contraction mapping theorem it follows
that P has a unique fixed point u ∈ S which is the mild solution of (1.5))–(1.6) on
[0, a]. Note that u(t) is in C(I : Y ) by (E6) see [17, pp. 135, 201-202 Lemma 7.4].
In fact , u(t) is weakly continuous as a Y -valued function. This implies that u(t) is
separably valued in Y , hence it is strongly measurable. Then ‖u(t)‖Y is bounded
and measurable function in t. Therefore, u(t) is Bochner integrable (see e.g. [19,
Chap.V]). Using relation u(t) = Pu(t), we conclude that u(t) is in C(I : Y ).

Now consider the evolution equation

v′(t) + B(t)v(t) = h(t), t ∈ [0, a] (3.1)

v(0) = u0 − g(u) (3.2)

where B(t) = A(t, u(t)) and h(t) = f(t, u(t), u(α(t))) +
∫ t

0
k(t, s, u(s), u(β(s))ds,

t ∈ [0, a] and u is the unique fixed point of P in S. We note that B(t) satisfies
(H1)-(H3) in [17, Sec. 5.5.3] and h ∈ C(I : Y ). Theorem 5.5.2 of [17] implies that
there exists a unique function v ∈ C(I : Y ) such that v ∈ C1((0, a], X) satisfying
(3.1) and (3.2) in X and v is given by

v(t) = U(t, 0;u)u0 − U(t, 0;u)g(u) +
∫ t

0

U(t, s;u)[f(s, u(s), u(α(s)))

+
∫ s

0

k(s, τ, u(τ), u(β(τ)))dτ ]ds,

where U(t, s;u) is the evolution system generated by the family {A(t, u(t))}, t ∈ I of
the linear operators in X. The uniqueness of v implies that v = u on I and hence u is
a unique classical solution of (1.5))–(1.6) and u ∈ C([0, a] : Y )∩C1((0, a] : X). �
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