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SUFFICIENT CONDITIONS OF LOCAL SOLVABILITY FOR
PARTIAL DIFFERENTIAL OPERATORS ON SPACES OF
COLOMBEAU TYPE

CLAUDIA GARETTO

ABSTRACT. We provide sufficient conditions of local solvability for partial dif-
ferential operators with variable Colombeau coefficients. We mainly concen-
trate on operators which admit a right generalized pseudodifferential parame-
trix and on operators which are a bounded perturbation of a differential op-
erator with constant Colombeau coefficients. The local solutions are intended
in the Colombeau algebra G(€2) as well as in the dual £(G.(€2),C).

1. INTRODUCTION

Colombeau algebras of generalized functions [2], [I3] have proved to be a well-
organized and powerful framework where to solve linear and nonlinear partial dif-
ferential equations involving non-smooth coefficients and strongly singular data.
So far, the purpose of many authors has been to find for a specific problem of ap-
plicative relevance the most suitable Colombeau framework where first to provide
solvability and second to give a qualitative description of the solutions. We recall
that several results of existence and uniqueness of the solution have been obtained
in this generalized context for hyperbolic Cauchy problems with singular coeffi-
cients and initial data [I7, 18, 19, 23] 24], for elliptic and hypoelliptic equations
[10, 20}, 21] and for divergent type quasilinear Dirichlet problems with singularities
[27]. The setting of generalized functions employed is the Colombeau algebra G(§2)
constructed on an open subset {2 of R, or more in general the Colombeau space Gg
of generalized functions based on a locally convex topological vector space E (see
[4, 5] for definitions and properties). For instance in [T}, [20] solvability is provided
in the Colombeau space based on H*®(R"™) = NgerH*(R™). Recently, in order to
enlarge the family of generalized hyperbolic problems which can be solved and in
order to provide a more refined microlocal investigation of the qualitative properties
of the solution, the dual £(G.(€2),C) has replaced the classical Colombeau setting
G(Q) [26].

This paper is devoted to the longstanding general problem of solvability or more
precisely local solvability in the Colombeau context for partial differential operators
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with Colombeau coefficients. Namely, it is the starting point of a challenging project
which aims to discuss and fully understand solvability and local solvability of partial
differential operators in the Colombeau context.

Instead of dealing with a specific equation P(x, D)u = v and looking for a new
setting of generalized functions tailored to this particular problem, we want to de-
termine a class of locally solvable partial differential operators. This will be done by
finding some sufficient conditions on P of local solvability in the Colombeau context
G(€) or £(G(Q),C). As in the classical theory of partial differential operators with
smooth coefficients, mainly developed by Hormander in [I4] [16], different mathe-
matical methods and level of technicalities concern the investigation of solvability
when the coefficients are constant or not. The Malgrange-Ehrenpreis theorem es-
sentially reduces the solvability issue to the search for a fundamental solution in
the constant coefficients case but clearly this powerful tool loses efficiency when the
coeflicients are variable. In this situation indeed, not only the structural properties
of the operator but also the geometric features of the set 2 where we want to solve
the equation play a relevant role in stating existence theorems of local or global
solvability.

Differential operators with constant Colombeau coefficients; i.e. coefficients in
the ring C of complex generalized numbers, have been studied by various authors
[7, @ 20]. In particular a notion of fundamental solution has been introduced in
[7] as a functional in the dual £(G(R™),C) providing, by means of a generalized
version of the Malgrange-Ehrenpreis theorem, a straightforward result of solvability
in the Colombeau context. In detail, a solution to the equation P(D)u = v, P(D) =
Z\a|§m co D with ¢, € C has been obtained via convolution of the right hand side
v with a fundamental solution F and certain regularity qualities of the operator
P(D), the G- and G*°-hypoellipticity for instance, have been proven to be equivalent
to some structural properties of its fundamental solutions [9, Theorems 3.6, 4.2].

In this paper we concentrate on differential operators with variable Colombeau
coefficients, i.e. P(z, D)= }_, <, ca(z)D®. Being aware of the objective difficulty
of investigating solvability in wide generality, we fix our attention on two classes
of operators: the operators which are approximately invertible, in the sense that
they admit a right generalized pseudodifferential parametrix, and the operators
which are locally a bounded perturbation of a differential operator with constant
Colombeau coefficients. In both these cases we will formulate sufficient conditions
of solvability which will require suitable assumptions on the moderateness prop-
erties of the coefficients and the right-hand side. Note that the symbolic calculus
for generalized pseudodifferential operators developed in [3] [8 [10] is essential for
studying the first class of operators whereas the theory of fundamental solutions
in the dual £(G.(R"),C) is heavily used in finding a local Colombeau solution for
operators of bounded perturbation type. This paper can therefore be considered a
natural follow-up of [7].

We now describe the contents of the paper in more detail. Section [2] collects
the needed background of Colombeau theory and recalls, for the advantage of the
reader, the results of solvability obtained in the generalized constant coefficients
case. Definition and properties of a fundamental solution in the dual £(G.(R™),C)
are the topic of Subsection Inspired by the work of Hérmander in [I5 Section
10.4], in Subsection we introduce an order relation between operators with
constant Colombeau coefficients in terms of the corresponding weight functions. In
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other words, we make use of the weight function P(¢) = (Z\a|gm |0 P(£)[?)1/?

(with values in I@) in order to determine the differential operators which are stronger
(or weaker, respectively) than P(D). By stating this notion in few equivalent
ways (Proposition we prove that an m-oder differential operator P(D) with
coefficients in C is stronger than any differential operator with coefficients in C of
order less than or equal to m if and only if it is G-elliptic. Analogously, we prove
that if P(D) is of principal type then it is stronger or better it dominates (Definition
any differential operator with order les than or equal to m — 1. These results
of comparison among differential operators with constant Colombeau coefficients
will be used in Sections [l and [6l

In Section [3| we begin our investigation of local solvability in the Colombeau
context by considering differential operators with coefficients in G that admit a
right generalized pseudodifferential operator parametrix. Given P(z, D) this means
that there exists a pseudodifferential operator ¢(x, D) such that P.(z, D)g.(x, D) =
I 4+ r(z, D) holds at the level of representatives with (r.). a net of regularizing
operators. The moderateness properties of the reminder term r. are crucial in
determining for each zg € R™ a sufficiently small neighborhood € such that the

equation P(z,D)T = F on  is solvable in £(G.(Q2),C) for any L% -moderate
functional F. Different notions of a generalized hypoelliptic symbol have been
introduced in the recent past in [8, 10, [{I]. They all assure the existence of a
generalized parametrix ¢(z, D) but in general do not guarantee the moderateness
properties on the regularizing operator r(x, D) which are essential for the previous
result of local solvability. For this reason in Propositions and we make
use of a definition of generalized hypoelliptic symbol, first presented in [3], which
is less general than the ones considered in [8, 10, [I1], but that combining the right
moderateness and regularity properties, provides local solvability in £(G.(2), (E) as
well as in G(Q2) and G ().

Section [4] deals with a special class of differential operators: the operators which
are G-elliptic in a neighborhood of a point zy. Since they have a generalized hypoel-
liptic symbol they admit a local generalized parametrix and from the statements
of Section [3] we easily obtain results of local solvability. The most interesting fact
is that this locally solvable operators are actually a perturbation of a differential
operator with constant Colombeau coefficients, namely the same operator evalu-
ated at x = xg. Using the concepts of Subsection we prove that a differential
operator P(x, D) which is G-elliptic in 2y can be written in the form

Py(D) + > ¢;(z)P;(D), (L.1)
j=1

where Py(D) = P(z9, D), the operators P;(D) have coefficients in C and are all
weaker than Py(D) and the generalized functions ¢; belong to the Colombeau al-
gebra G(R™). This fact motivates our interest for the wider class of generalized
differential operators which are locally a bounded perturbation of a differential op-
erator with constant Colombeau coefficients as in . The precise definition and
some first examples are the topic of Section

In Section[6] we provide some sufficient conditions of local solvability for operators
of bounded perturbation type as defined in Section The local solutions are
obtained by using a fundamental solution in £(G.(R™), C) of Py(D), the comparison
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between the operators P;(D) and Py (D) and, at the level of representatives, suitable
estimates of B), -moderateness. Theorem and Theorem have Hormander’s
theorem of local solvability for operators of constant strength ([I4, Theorem 7.3.1],
[15, Theorem 13.3.3]) as a blueprint.

The paper ends with a sufficient condition of local solvability for operators which
are not necessarily of bounded perturbation type or do not have a generalized
parametrix. In Section [7} inspired by [28, Chapter 4], we prove that a certain
Sobolev estimate from below on the adjoint of a generalized pseudodifferential op-
erator is sufficient to obtain local solvability in the dual £(G(2),C). The proof
has the interesting feature of using the theory of generalized Hilbert C-modules
developed in [I2] and in particular the projection theorem on an internal subset.
We finally give some examples of generalized differential and pseudodifferential op-
erators fulfilling this sufficient condition.

2. COLOMBEAU THEORY AND PARTIAL DIFFERENTIAL OPERATORS WITH
CONSTANT COLOMBEAU COEFFICIENTS

In this section we recall some basic notions of Colombeau theory and, for the
advantage of the reader, what has been proved in [7, 20] about solvability in the
Colombeau context of partial differential operators with generalized constant coef-
ficients.

2.1. Basic notions of Colombeau theory. Main sources of this subsection are
2] @, 5, 00, [T 3.

Nets of numbers. Before dealing with the major points of the Colombeau construc-
tion we begin by recalling some definitions concerning elements of C(0:1,

A net (ug)e in C(Y is said to be strictly nonzero if there exist 7 > 0 and 5 € (0,1]
such that |uc| > " for all € € (0,n]. The regularity issues discussed in this paper
will make use of the following concept of slow scale net (s.s.n). A slow scale net is
anet (re). € C(0:1 guch that

Vg >03c, >0Ve € (0,1] |re]? < et

Colombeau spaces based on E. Let E be a locally convex topological vector space
topologized through the family of seminorms {p; };c;. The elements of

Mg = {(u.). € EOV: Vie IIN e N pi(u.) = 0(EN) as e — 0},
¢ = {(uc). € B Vi e T3 (we)e ssm. pi(ue) = O(we) as € — 0},
Ng = {(u:). € EOV: VieIVge N pi(u.) = O(c?) as € — 0},

are called F-moderate, E-moderate of slow scale type and E-negligible, respectively.
We define the space of generalized functions based on E as the factor space Gg :=
Mg /NEg. The expression “of slow scale type” is used for the generalized functions
of the factor space G35 := M35 /Ng. The elements of Gg are equivalence classes for
which we use the notation u = [(uc)e].

Let © be an open subset of R™. For coherence with the notations already in use,
we set Ea7(Q) = Mgy, N(Q) = Ny, Eu = Mc and N = Ne. The Colombeau
algebra G(€2), as originally defined in its full version by Colombeau in [2], is obtained
as the space Gy with E = £(2). Analogously, the rings C and R of complex and
real generalized numbers are the Colombeau spaces G¢c and Ggr respectively. Cis
also the set of constants of G(R™). The space of distributions D’(2) is embedded
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into G(€) via convolution with a mollifier (see [I3] for more details). Since G(2) is
a sheaf with respect to € one has a notion of support for u € G(Q2) and a subalgebra
G.(9) of compactly supported generalized functions.

Regularity theory. Regularity theory in the Colombeau context as initiated in [25]
is based on the subalgebra G () of all elements u of G(€2) having a representative
(ue)e belonging to the set

ExT(Q) == {(u.). € €[ : VK € QIN € NVa € N,

sup [0%u.(z)| = O(e™V) as e — 0}.

rzeK
G>°(f2) coincides with the factor space £57(Q2)/N(R2) and by construction has the
intersection property G (Q) N D'(Q) = C>(Q).
Topological theory of Colombeau spaces. The family of seminorms {p;};c; on E
determines a locally convex C-linear topology on Gg (see [4, Definition 1.6]) by
means of the valuations

Vp, ([(ue)e]) == v, ((ue)e) := sup{b € R : p;(u.) = O(¢®) as & — 0}

and the corresponding wultra-pseudo-seminorms {P;}icr, where Pi(u) = e Vri(W),
For the sake of brevity we omit to report definitions and properties of valuations and
ultra-pseudo-seminorms in the abstract context of C-modules. Such a theoretical
presentation can be found in [4, Subsections 1.1, 1.2]. More in general a theory
of topological and locally convex topological C-modules has been developed in [5].
The Colombeau algebra G(€) has the structure of a Fréchet C-modules and G(€2)
is the inductive limit of a family of Fréchet C-modules. We recall that on C the
valuation and the ultra-pseudo-norm obtained through the absolute value in C are
denoted by vz and | - [ respectively.

The dual £(G.(22),C) and its basic functionals. £(Gc(€2),C) is the set of all con-
tinuous C-linear functionals on G.(€2). As proven in [] it contains (via contin-
uous embedding) both the algebras G*°(€2) and G(Q); ie., G*(Q) C G(Q) C
L£(Ge(€),C). The inclusion G(2) C L£(Gc(€),C) is given via integration (u —
(v — [, u(z)v(z)dz), for definitions and properties of the integral of a Colombeau
generalized functions see [I3]). A special subset of £(G¢(€2),C) is obtained by re-
quiring the so-called “basic” structure. In detail, we say that T € L£(G.(), (E) is
basic (or equivalently T € Ly (G¢(2),C)) if there exists a net (T.). € D'(Q)©1
fulfilling the following condition: for all K & 2 there exist j € N, ¢ > 0, N € N
and n € (0,1] such that

Ve Dr(Q)Ve € (0,n] [To(f)| <ce™ sup [0%f(x)]
zeK,|a|<j
and Tu = [(T.u.),] for all u € G.(Q).

Analogously one can introduce the dual £(G(€2),C) and the corresponding set
L1(G(Q),C) of basic functionals. As in distribution theory, Theorem 1.2 in [4]
proves that £(G(€2),C) can be identified with the set of functionals in £(G.(€2), C)
having compact support.

Generalized differential operators. G(Q2) is a differential algebra, in the sense that
derivatives of any order can be defined extending the corresponding distributional
ones. We can therefore talk of differential operators in the Colombeau context
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or, for simplicity, of generalized differential operators. Clearly, a differential opera-
tor with singular distributional coefficients generates a differential operator in the
Colombeau context by embedding its coefficients in the Colombeau algebra. Let

P(z,D)= Y ca(x)D?,

lal<m

with ¢, € G(Q) for all a. Its symbol

Pa.&)= Y cal)D"

|| <m

is a polynomial of order m with coefficients in G(2) and representatives

Po(z,8)= > cacla)D"

la|<m

The operator P(z, D) maps G.(€2), G(Q) and £(G(Q),C) into themselves respec-
tively and G*°(Q) into G°(Q) if the coefficients are G°-regular. When the coeffi-

cients are constant (¢, € C for all @) we use the notation P(D).

2.2. Fundamental solutions in £, (G.(R"),C). Let P(D) be a partial differential

operator of order m with coefficients in C. Any net of polynomials (P ). determined
by a choice of representatives of the coefficients of P(D) is called a representative

of the polynomial P. Consider the weight function P:R" — R defined by

PAg) =) [0°PE)F.
la] <mn
The arguments in [14, (2.1.10)] yield the following assertion: there exists C' > 0
depending only on m and n such that for all (P.). the inequality

Po(¢+n) < (1+ClEN™Pe(n) (2.1)

is valid for all £&,n € R™ and all € € (0,1]. When the function P:R" - R is
invertible in some point {; of R™ Lemma 7.5 in [20] proves that for all representative
(P:)c of P there exist N € N and n € (0,1] such that

P.&) 2 N1+ Clg — €)™, (2.2)

for all £ € R™ and € € (0,7n]. This means that P is invertible in any £ once it is
invertible in some &y. Note that the constant C' > 0 is the same appearing in
and £V comes from the invertibility in R of P(&). It is not restrictive to assume
for some strictly non-zero net (A;). that

P(§) 2 A(1+Cléo —&D™™,

for all € € (0,1].

In the sequel K is the set of tempered weight functions introduced by Hérmander
in [I4], Definition 2.1.1]; i.e., the set of all positive functions k on R™ such that for
some constants C' > 0 and N € N the inequality

k(€ +mn) < 1+ ClENNE(n)

holds for all £,7 € R™. Concerning the Hérmander spaces B, ;, which follow, main

references are [I4) [I5]. Typical example of a weight function is k(§) = (£)* =
(L+1£%)%/2, s e R.
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Definition 2.1. If k£ € K and p € [1,400] we denote by B, ,(R™) the set of all
distributions w € ./(R™) such that @ is a function and

[wllp . = (2m) " [[kw]l, < oo

B, x(R™) is a Banach space with the norm introduced in Deﬁnition We have
L (R™) C By x(R™) € &' (R™) (in a topological sense) and that C°(R™) is dense in
B, (R™) for p < co.

The inequality says that E is a tempered weight function for each € so it
is meaningful to consider the sets BOO’E(R”) of distributions as we will see in the
next theorem, proven in [7].

Theorem 2.2. To every differential operator P(D) with coefficients in C such
that P(§) is invertible in some § € R™ there exists a fundamental solution E €
L1,(G.(R™),C). More precisely, to every ¢ > 0 and (P:). representative of P there

exists a fundamental solution E given by a net of distributions (E¢)e such that
E./cosh(c|z|) € B 5 (R™) and for all

E.
_ < C
Hcosh(c|33|) Hoo,ﬁ; =70

where the constant Cy depends only on n,m and c.

One sees in the proof of Theorem (Proposition 3.5 and Theorem 3.3 in [9])
that for each ¢ the distribution E. is a fundamental solution of the operator P (D).
Theorem [2.2] entails the following solvability result.

Theorem 2.3. Let P(D) be a partial differential operator with coefficients in C
such that P is invertible in some & € R™. Then the equation
P(D)u=w (2.3)
(i) has a solution u € G(R™) if v € G.(R™),
(ii) has a solution u € G=(R™) if v € G (R™),
(ili) has a solution u € L(G.(R"),C) if v € L(G(R"),C),
(iv) has a solution u € L,(G.(R™),C) if v € L,(G(R™),C).
Theorem extends to the dual the solvability result obtained in G by Hérmann
and Oberguggenberger in [20]. A more detailed investigation of the properties of u,
which heavily makes use of the theory of B, x-spaces, can be found in 7, Appendix].

Remark 2.4. The condition of invertibility of Pina point &, of R™ turns out
to be equivalent to the solvability statement (i) of Theorem More precisely,
Theorem 7.8 in [20] shows that if v is invertible in some point of {2 and the equation
P(D)u = v is solvable in G(£2) then P is invertible in some point of R™. In the same
paper the authors prove that the invertibility of the principal symbol Py, in some
&o implies the invertibility of P(£p). The converse does not hold as one can see from
P.(§) = a.& + i, with a = [(ac)c] # 0 real valued and not invertible. The principal
symbol P is not invertible (in any point of R™) but P2(0) = 1 + a2 is invertible
in R. In the same way we have that the existence of an invertible coefficient in the
principal part of P(D) is a sufficient but not necessary condition for the invertibility
of the weight function P. Note that there exist differential operators where all the
coeflicients are not invertible which still have an invertible weight function. An
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example is given by P.(&1, &) = a-&y +ib-&, where a. = 1ife =n~!, n € N, and 0
otherwise, and b, = 0ife = n~!, n € N, and 1 otherwise. The coefficients generated
—~2

by (ac)e and (be). are clearly not invertible but P. (1,1) = 2(a2 + b?) = 2.

2.3. Comparison of differential operators with constant Colombeau co-
efficients. Inspired by [I5] Section 10.4] we introduce an order relation between
operators with constant Colombeau coefficients by comparing the corresponding
weight functions.

Definition 2.5. Let P(D) and Q(D) be partial differential operators with coeffi-

cients in C. We say that P(D) is stronger than Q(D) (Q(D) < P(D)) if there exist
representatives (P:). and (Q:). and a moderate net (A;)e such that

Qe(§) < AP (§)
for all £ € R™ and € € (0, 1]
In the sequel we collect some estimates valid for polynomials with coefficients in
C proven in [I5, Theorem 10.4.1, Lemma 10.4.2]. We recall that @(f,t) denotes
the function (3°, |Q(®)(€)|?t?1*1)1/2 for @ polynomial of degree less than or equal
to m in R™ and ¢ positive real number. Clearly @(f, 1) = @(f)

Proposition 2.6.

(i) There exists a constant C > 0 such that for every polynomial Q of degree
less than or equal to m in R™,

D < ap 1t + )l < €Al (2.4
Inl<t

for all e R™ and t > 0.
(ii) There exist constants C' and C" such that for all polynomials P and @ of
degree less than or equal to m,

C'P(€)Q(€) < PQ(E) < C"P(£)Q(€) (2.5)
for all € € R™.

Proof. The first assertion is Lemma 10.4.2 in [I5]. Concerning (ii) the second
inequality is clear from Leibniz’rule. From (2.4]) for any polynomial @ we find 5
with |n] <1 such that

Q&) < ClRE +m)| < CQE+) (2:6)
for all £. Since from [14, (2.1.10)] there exists a constant Cp depending only on m
and n such that Q(§+0) < (1 + Cp|8))"Q(§) for all £,0 € R™, we get

CQ(E+m) < C1+Coln)™Q¢) < C1Q(6),
where the constant C; does not depend on (). Hence
QE+mn)

Q) .

c - O
Taylor’s formula gives Q(& + 1+ 60) = Q(€ +1) + Yy QUER) g and then, for
1 chosen as above,

(@)
Qe+ n+0) = je + )|~ Y0 IETEE g
a0 ’

Q€ +n)| >
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Q(f"‘ﬁ) ~ 1 a
> T —Q(§+77)O;)a|9 |
> QI Gie v moan

1
= O+ 1) (= — Col6)

Ch
for all |0] < 1, with C5 independent of Q. It follows that

1 ~
Q& +n+0) > EQ(»SM)

for all ¢ € R™, for |n| < 1 depending on @ and for all 6 with 0] < (2C1C2)~ L.
Writing P as PQ/Q we obtain |[P(§ 4+ 1+ 0)| < 2C1|PQ(§ +n + 0)]/Q(& + n).
Concluding, from the first assertion, the property of the polynomial weight
functions and the bound from below , we have, for some # suitably smaller
than min(1, (2C;Cs)~!) and 1 depending on @, the inequality

P(e) < (14 Colnl) ™ P(e +n) < ColP(e +n+0) < ¢, PLEX LN _ o PAE)

s 0G5
Q€ +n) Q)
where the constants involved depend only on the order of the polynomials P and
Q@ and the dimension n. O

Proposition [2.6] clearly holds for representatives (P.). and (Q.). of generalized
polynomials with the constants C, C' and C” independent of ¢.

Proposition 2.7. Let P(D), P1(D), P,(D),Q(D),Q1(D) and Q2(D) be differential
operators with constant Colombeau coefficients.
(i) If @1(D) < P(D) and Q2(D) < P(D) then a1Q1(D) + a2Q2(D) < P(D)
for all ay,as € C.
(ii) If Q1(D) < P(D) and Q2(D) < P2(D) then Q1Q2(D) < PP (D).

(iii) P(D)+ aQ(D) < P(D) for all a € C if and only if Q(D) < P(D).

Proof. (i) The first assertion is trivial. (ii) Working at the level of representatives
from Proposition ii) we can write @Q1,:Q2.c < C"Q1,:Q2.. It follows

1"

— C ——
QI,EQQ,E < C//)\l,e)\Q,ePLEPZE < F)\l,a)\Q,EPI,sPZm

with (%/:)\1,5)\275)5 moderate net.

(iii) One direction is clear. Indeed, since P < P from the first assertion of this
proposition we have that if Q < P then P+ a@ < P for all a € C. Conversely, let
P+a@Q < P. From —P < P and (i) we have that a@Q < P. Finally, choosing a =1
we obtain @) < P. (]

The following necessary and sufficient conditions for @) < P are directly obtained
from the first assertion of Proposition [2:6]

Proposition 2.8. Let Q(D) and P(D) be differential operators with constant Co-
lombeau coefficients. The following statements are equivalent:

(i) Q(D) < P(D);
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(ii) there exist representatives (Qe)e and (P:)e and a moderate net (\e)e such
that

Qe(§)] < AP (§)
for all € € R™ and € € (0,1];
(iil) there exist representatives (Qc)e and (P:). and a moderate net (AL). such
that . .
QE(Ea t) S >‘/€PE(€7 t)
for all £ € R™, for all e € (0,1] and for all t > 1.

Proof. The implications (i) = (i7) and (4#i1) = (i) are trivial. We only have to
prove that (ii) implies (iii). Proposition i) yields, for ¢t > 1,

Q:(&,t) < C sup |Q(§ + )

In<t

< CA. sup P.(€ +1)
[nl<t

= O\ sup Po(€ +1n,1)

[n|<t

<C?\. sup P.(€+1)
Inl<t+1

< COAPL(E,t+ 1)
<AL+t MPLS 1),

Hence, Q-(£,1) < X.P.(&,t) for all € € R, ¢ > 1 and £ € (0, 1] with X, = C3).2™.
O

The G-elliptic polynomials (see [9] Section 6]) and their corresponding differential
operators can be characterized by means of the order relation <. We recall that
a polynomial P(&) with coefficients in Cis G-elliptic (or equivalently the operator
P(D) is G-elliptic) if there exists a representative (P, ¢)e of Py, a constant ¢ > 0
and a € R such that

| Prn,e (§)] = ce®[€]™ (2.7)

for all € € (0,1] and for & € R™. Estimate (2.7)) is valid for any representative of
P with some other constant ¢ > 0 and on a smaller interval (0,e0]. Due to the
homogeneity of P, it is not restrictive to assume (2.7)) valid only for all £ with

€ =1.

Proposition 2.9. Let P(D) be a differential operator of order m with coefficients

in C. P(D) is stronger than any differential operator with coefficients in C of order
less than or equal to m if and only if it is G-elliptic.

Proof. We assume that P(D) is G-elliptic and we prove that the G-ellipticity is a
sufficient condition. Let (P, ). be a representative of P, such that |P,, ()] >
ce®|&|™ for some constants ¢ > 0 and a € R, for all £ € R™ and for all ¢ € (0,1]. It
follows that P, () is invertible in any £ = £y of R™ and therefore from Remark
(and more precisely from [20, Proposition 7.6]) we have that P is invertible in &o-
The estimate [P, c(§)| > c£®|¢|™ yields

cz® €)™ < |Pne(€)] < [Pe()] + |Pe(€) = Pre(©)] < |P=(€) + C=(1 + [,



EJDE-2009/116 SUFFICIENT CONDITIONS OF LOCAL SOLVABILITY 11

a

where (c.). is a strictly nonzero net. Assuming |¢| > 2C.c 1e~® we obtain the

inequality
ce®[¢™ < 2 Po()] + 2C: < 2P(€) + 2C-..
For |€| > R., where R. = max{(4C.c1e=%+1)w,2C.c e}, the following bound
from below
T e < P(©) (2.8)

holds. Since, from the invertibility of Pin &o there exists a strictly nonzero net
(Ae)e such that

Ps(g) 2 )\5(1 + C|§O - €|)—m’
for all € € (0,1], we can extend (2.8) to all £ € R™. More precisely,

Ac(1+Clol + CR)™™(1+ Re)™™ (1 + [¢)™
< A(L4Clgo — )T (L + €)™ (L + €)™ < P(€)

holds for |¢| < R.. The net (R.). is strictly nonzero. Hence there exists a moderate
net w, such that

(1+1€™) < weP2(€)
for all € € (0,1] and € € R™. Now if Q(D) is a differential operator with coefficients

in C of order m’ < m, yields
Q=(6) < Q-(0) (1 +Cleh™ .

Hence, - - N -
Q:(§) < Q(0)c' (1 + [¢]™) < ' Q:(0)we P:(§),

where (c’@:(O)wE)E is moderate. This means that Q(D) < P(D).

We now prove that the G-ellipticity of P(D) is necessary in order to have Q(D) <
P(D) for all Q of order less than or equal to m. If P(D) is not G-elliptic then we
can find a representative (P.), a decreasing sequence ¢, — 0 and a sequence &,
with [£., | =1 such that

|Pre, (§,)] < ed
for all ¢ € N. We set £, = &, for ¢ = ¢, and 0 otherwise. By construction
(I€&])e ¢ NV and

(Prme(ée))e € N

Since there exists a moderate net (¢). such that
—~2
P (t6) < 267" P e ()] + o™ 72(g)*" 2
for all £ € R™ and t > 1, we obtain
P(t€.) < t"n. + ™Y,

where (n:). € N and (c.). € Ep. Since (|€2|)e € Epr \ N there exists a component
&i - such that (| c|)e € Ear \N. We take the homogeneous polynomial of degree m
Q(§) = &™ and we prove that Q(D) £ P(D). By Proposition 2.8 assume that there
exists representatives (Q.). and (P.). of @ and P respectively and a moderate net
(A¢)e such that

1Q-(&)| < APL(€)
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for all £ and e. Q-(§) is of the form (1+n )& where (n1.). € N and concerning

— 2 —~2
PI(&) we have P! (&) < 2P (£) 4 n2..(£)*™ with (n2.). € N. This entails the
estimate

(14 11,0)€" ] < ALP2(€) + ma ()™
and for £ =t t > 1,

1+ [t |EM] < MLP-(tE:) + g e (t6:)™ < myet™ + /™1,

where (). is moderate and strictly nonzero. The inequality
1+l —nae _
c// —

€
is valid for all ¢ > 1. Hence |1 + nq ¢|[{]".] — na,e < 0 and from the invertibility of
(11 + n1el)e we get

m N4
) < =
™ < e
with (HZ“T;‘)E € N. Concluding the net (|&; c|). is negligible in contradiction with
our assumptions. [

We introduce another order relation which is closely connected with Q(D) <

P(D).
Definition 2.10. Let P(D) and Q(D) be differential operators with coefficients in
C. We say that P(D) dominates Q(D) (and we write P(D) »=> Q(D) or Q(D) <<
P(D)) if there exist

e representatives (P;). and (Q:)e of P and @ respectively,

e a moderate net (A;)e,

e a function C(t) > 0 with lim; , - C(¢t) = 0 and the property

VacRIBERVE>e" Ct) <€
such that - -
Q:=(&:t) < AC()P(E,1)

forall £ e R" e € (0,1] and ¢t > 1.

Clearly Q(D) << P(D) implies Q(D) < P(D) and P(D) dominates P(® (D)

for all o # 0. Indeed, P (¢,¢) < t7101P.(¢,1).

Proposition 2.11. Let P(D), Pi(D), Po(D),Q1(D) and Q2(D) be differential op-
erators with constant Colombeau coefficients.
(i) If Q:(D) << P(D) and Q2(D) << P(D) then a1Q1(D) + a2Q2(D) <<
P(D) for all ay,as € C.
(ii) If Q1(D) << P1(D) and Q2(D) < P2(D) then Q1Q2(D) << PP(D).

Proof. The first statement is trivial. By applying Proposition ii) to P(t£) and
Q(t€) we obtain for any polynomials P and @ the estimate

C'PE Q1) < PQ(E.1) < C"PE, Q1) (2.9)
where C’ and C” depend only on the order of P and (). Hence, for all t > 1 we

have

Q1eQae(6:) < C"Quo(E,1)Qae(E:1) < C"ALC(E) Pro (€, )Qac(E,1).
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Proposition iii) combined with the estimate (2.9)) yields
Q1eQ2c(61) < C"NC()PLL(E Ao Poc(§,8) < AC(1)Pr e Pac (6, 1),
valid for all ¢ > 1, for all € € (0,1] and for all £ € R™. O

The order relation << is used in comparing an operator of principal type with
a differential operator of order strictly smaller.

Definition 2.12. A partial differential operator P(D) with constant Colombeau
coefficients is said to be of principal type if there exists a representative (P, ). of
the principal symbol P,,, a € R and ¢ > 0 such that

Ve Pre(€)] 2 ccle[™ !
for all € € (0,1] and all £ € R™.

As for G-elliptic operators the previous estimate holds for any representative
(P:). of P, for some constant ¢ and in an enough small interval (0, o).

Proposition 2.13. Let P(D) be a differential operator with coefficients in C of
principal type and degree m and let one of the coefficients of Py, (D) be invertible.
Then,

(i) P(D) dominates any differential operator with coefficients in C of order
less than or equal to m — 1;

(ii) if Q(D) has order m and there exists a moderate net (\;)e and representa-
tives (Qm.e)e and (Pr.e)e such that

Qe (O] < Ac| e (€]
for all £ € R"™ and € € (0,1], then Q(D) < P(D).
Proof. (i) Let (P, <) be a representative of Py, such that |V P, o (£)] > ce?|¢|™ !

for some constants ¢ > 0 and a € R, for all £ € R™ and for all € € (0,1]. We have,
for some strictly nonzero net (C¢). the inequality

IVePe(&)] 2 [VePrn o () = [Ve(Pe = Prn.c)|
> C/€a<€>m71 _ C€<£>m72 > %C/ga(l + |£|m71),

valid for |¢| > R, with (R.). moderate and big enough. Hence,

() 2 1/2 1 /a m—1
(IPD©R) 7 2 IVeP(9)] = g+ g

a#0
for || > R.. (From the invertibility of one of the coefficients of the principal part
we get the bound from below

we < PP,
a#0
where (w.)e is moderate. It follows, for || < R,
DIPEEOP = we(L+ ™) T2 A4 1Em ) = we (L4 (R)™ ) 21+ )%
a#0
Summarizing, we find a moderate and strictly nonzero net (A.)e such that

AL+ [EPm2) < Y|P
a0
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for all £ € R™ and € € (0,1]. This implies
ML [¢Pm2) < Y2 PP < P, ), (2.10)
a#0

forallt > 1, £ € R" and € € (0, 1].
Let Q(D) be a differential operator with coefficients in C and order m’ < m — 1.
We have, for some moderate net (c.). the inequality

Qe(&)] < cc(1+ )™
and therefore from ,
Q:=()] < (A AL+ ™) < (AP ).

Arguing as in proof of Proposition 2.8 and making use of Proposition 2.6 we obtain
that there exists a moderate net (¢). such that

Q(&,1) < t7LPL(€,1).

Indeed
Q-(6,) < C sup |Q-(€ + )]
Inl<t
< CA 't sup Po(€+,t)
[nl<t

< C?NM T sup sup |Po(€4n+0))
Inl<t l6l<t

< CPINMT sup [Po(E+ )
[n|<2t

< CRIATUTIPL(€,2t) < CPRM AT TP, ).

This means that Q(D) << P(D).

(ii) Let Q(D) be a differential operator of order m satisfying the condition (ii).
From the first statement we already know that Q(D) — Qm (D) << P(D) and thus
Q(D) — Qm(D) < P(D). It remains to prove that P(D) is stronger than Q,,(D).

—~2
Wiiting Qe as [Quel* + 3 50 QM-
than or equal to m — 1, we have

Qe (€) < X2 [P o () + Ao P (€)
< OP(E)[2 + 222|(P — P ) ()7 + A Pe ()
< (202 £ dae + Ao) B (6).
Hence Qm(D) < P(D). 0

2. and since the second term has order less

The following proposition determines a family of equally strong operators.

Proposition 2.14. Let P(D) and Q(D) be differential operators with coefficients
in C. If Q(D) << P(D) then P(D) < P(D)+ aQ(D) < P(D) for all a € C.

Proof. Since Q(D) << P(D) implies Q(D) < P(D), from the third assertion of
Proposition we have that P(D) + aQ(D) < P(D) for all a € C. We now fix
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a € C and take R(D) = P(D) + aQ(D). Arguing at the level of representatives we
obtain

P(6t) = S IR — a Q@)

<2R.(6,1) + 2]a- Q. (£,1)
< OR(E,1) + 20acPA2CE (B P (6, 1).

By the moderateness assumption we have that |a.|?A2 < 2@ for all ¢ small enough.
Choosing b € R such that C(t) < e~*! for t > £® we can write the inequality

—~2 —~2 ~2
P.(§,1) < 2R. (&) + 2™ 2P (€, 1)
for t > £b, for € small enough and for all £&. It follows that

—~2 ~2 1=2
Ps (§7t) < 2R€ (gat) + §PE (£,t>
for t > max(1,£%) and ¢ € (0,&¢] with ey < 27!. Hence,

P.(&,t) < 2R.(&,1),

under the same conditions on ¢ and t. Let (t.). € &y with t. > max(1,¢%). We
can write

Po(€) < Pe(é,1.) < 2Ro(€,1.) < 2™ R.(€) < AR.(€),

valid for some moderate net (A\;). and for ¢ € (0,£0]. This means that P(D) <
R(D) = P(D) + aQ(D). O

The next corollary is straightforward from P(*)(D) << P(D).

Corollary 2.15. For all « € N”,
P(D) < P(D) + P“)(D) < P(D).

3. PARAMETRICES AND LOCAL SOLVABILITY

We begin our investigation of locally solvable differential operators in the Colom-
beau framework, by showing that differential operators which admits a generalized
pseudodifferential parametrix (at least a right generalized parametrix) are locally
solvable. Some needed notions of generalized pseudodifferential operator theory are
collected in the following subsection.

3.1. Preliminary notions of generalized pseudodifferential operator the-
ory.
Symbols. Throughout this paper S™(R?") denotes the space of Hormander symbols
fulfilling global estimates on R?"*. In detail |a\&mg is the seminorm
sup (€) " HN9g o] a(, €.

(z,6)ER"
In a local context, that is on an open subset Q of R™, we work with symbols that
satisfy uniform estimates on compact subsets of 2. In this case we use the notation
S™(Q x R™) and the seminorms

i = sup (@7 9gda(x, €)].
zEKEQ,EERN
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The corresponding sets of generalized symbols are introduced by means of the
abstract models Gg and Gy introduced in Section [2| where E = Sm(RZ") or £ =
S™(Q x R™).
Mapping properties. A theory of generalized pseudodifferential operators has been
developed in [3] 10] for symbols in Ggm g2ny and G&. (R2n) and for more elaborated
notions of generalized symbols and amplitudes. We address the reader to the basic
notions section of [8] for an elementary introduction to the subject. In the sequel
G.»(R™) is the Colombeau space based on E = .(R") and G% (R") is the subspace
of G (R™) of those generalized functions u having a representative (u.). fulfilling
the following condition:
dN € NVa,5 € N"  sup |x°‘85u€(x)\ = O(E_N).
rER™

Finally £(G.»(R"),C) is the topological dual of G (R™).

Let now p € Ggm (g2n). The pseudodifferential operator

paDyu= [ @yl Oale) de

(i) maps G (R™) into G~ (R™),
(ii) can be continuously extended to a C-linear map on £(G.»(R™),C),
(iii) maps basic functionals into basic functionals,
(iv) maps GZ(R™) into itself if p is of slow scale type.
Generalized symbols and asymptotic expansions. The notion of asymptotic expan-
sion for generalized symbols in Ggm g2y is based on the following definition at the
level of representatives.

Definition 3.1. Let {m;};en be sequences of real numbers with m,; \, —co, mg =
m. Let {(ajc)c}jen be a sequence of elements (a; ). € Mgm;gen). We say that
the formal series Z;’;O(a”)e is the asymptotic expansion of (a.). € E[R?*"], (a). ~
>_j(aj.e)e for short, if and only if for all 7 > 1

r—1
(aE — Z aj’5> € MS‘NLT(RZn.).
€
Jj=0

By arguing as in [8, Theorem 2.2] one proves that there exists a net of symbols
with a given asymptotic expansion according to Definition [3.1
Theorem 3.2. Let {(ajc)c}jen be a sequence of elements (ajc)e € Mgmi(gen
with m; \, —oo and mg = m. Then, there exists (a:). € Mgmmen) such that
(ae)e ~ Zj(a#)e. Moreover, if (al) ~ Zj(aj@)E then (ac — al)e € Mg—oo(m2n).

We now take in consideration regular nets of symbols. Inspired by the notations
of [3] we say that (a.). belongs to Mgm geny if and only if \a5|gﬁﬂ) = O(g?) for all
«a and (. In other words we require the same kind of moderateness for all orders
of derivatives. A closer look to the proof of Theorem 2.2 in [8] yields the following
corollary.

Corollary 3.3. Let {(ajc)c}jen as in Theorem . If (aje)e € Mgmi(manyy for
each j then there exists (ac)e € Mgmmenyy such that

r—1
(ae — E aj,e) S .MS'"LT(]RZ'VL)J).
=0 °°
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for every r > 1. This result is unique modulo Mg-oc (r2n) -

Note that this statement recalls the first concept of asymptotic expansion for
nets of symbols studied in [3] but avoids global estimates on the e-interval (0, 1].
It is clear that when p € Ggm (g2n) has a representative in Uper M gm r2n);, then
p(x, D) maps G (R™) into G2 (R™).
Kernels and regularizing operators. Any generalized pseudodifferential operator has
a kernel in £(Gs(R2"),C) but when p € Gg—o(r2ny then k, € G, (R*") with a
representative (k, o). fulfilling the following property:

Vo, 8 € N*"Vd € N3(\:)e € Ep Ve € (0,1]
sup {(z)" %y 8;’8616, z,y)| < Ae,
(m,y)eRz"< /100y ()] < A (3.1)
sup  (z)%(y)~ |8a86kp, (z,y)] < Ae.
(z,y)ER™
If pe G& oo (R2n) then (A¢)e in (3.1) is a slow scale net. With a symbol of order
—oo the pseudodifferential operator p(x, D) can be written in the form

p(z, D)u = . kp(z, y)u(y) dy.
It maps £(G»(R™),C) into G, (R™) and L(G(R™),C) into G»(R™). If p is of slow
scale type then the previous mappings have image in G2°(R™) and G (R™) respec-
tively.
L?-continuity. We finally discuss some L?-continuity. From the well-known estimate
(see [22] Chapter2, Theorem 4.1])

la(z, Dyullz < Co max o]V ull,  for u e S (R™)
la+B|<lo ’

valid for a € S°(R"), for some Iy > 0 and for a constant Cy depending on the
space dimension n, one easily has that a generalized pseudodifferential operator
p(z, D) with symbol p € Ggo(rzn) maps Gr2(rn) continuously into itself. If we now
consider a basic functional T of E(gy(R”)7(6) given by a net (1.). € Mp2gn),
we have that p(z, D)T is a basic functional in £(G«(R"),C) with the same L2-
structure. We introduce the notation £4(G.»(R™), C) for the set of basic functionals
in £(G»(R"),C) with a representative in Mi2®ny. Hence, a pseudodifferential
operator with symbol in p € Ggorzn) has the mapping property

p(a,D) : L2(G#(R™),C) — L2(G#(R"™),C). (3.2)

Analogously, in the dual £(Ge(R™), C) one can define the subset £y Joc(Gc(R™), C) of
those basic functionals T" defined by a net (1:). € Mz (gny, ie. (¢1:)c € Mp2(rn)
for all ¢ € C°(R™).

If P(x, D) is a differential operator with Colombeau coefficients and P(z,§) €
Ggm (ren) then in addition to the mapping properties as a pseudodifferential operator
we have that the restriction to any open subset  maps G.(Q), G(€2), £(G(€2),C) and
ﬁ(gc(Q),@) into themselves respectively. Typical example is obtained by taking
the coefficients co of P(z,D) = >, /<, Ca(®)D* in the algebra Gg with E =
NsW#>°(R™). In this case one can use the notation Go(R™) for simplicity.
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3.2. A first sufficient condition of local solvability.

Theorem 3.4. Let P(z,D) = 3., <, ca(®)D* be a differential operator with
coefficients co € Goo(R™). Let (P:)e a representative of P. If
(i) there ezist (q:)e € Mgm' pany withm’ <0 and (r). € Mg-oo(r2n) such that
P.(z,D)q.(z,D) = I +r.(x,D)
on S (R™) for all € € (0,1],
(ii) there exists | < —n such that |r. (()l,)o = 0(1),

then for all xo € R™ there exists a neighborhood ) of x¢ and a cut-off function ¢,
identically 1 near xqg, such that the following solvability result holds:

VF € L310¢(Go(R™),C) 3T € L£(Ge(Q),C) P(z,D)T =¢F onQ.  (3.3)

Proof. We begin by dealing with the regularizing operator r.. From (ii) it follows
that

rg(a:,mu:/ o (2, y)u dyf/ / Vs (i, €) de u(y) dy,
with u € S (R"™),
b (2y) = / Vs (2, €) de
and

sup |k (z,y)| = O(1). (3.4)
zER™ yER®

We now take a neighborhood € of z¢ and a cut-off ¢ € C°(2) and investigate the
properties of the net of operators r.(z, D)¢ on €. For all g € L?(Q) we have that
¢g € L*(R™) and therefore

re(e.D)6g)la = [ e n)otwa) o)

This net of distributions actually belongs to L?(€). Indeed,

/2
Ire(e.D)elalle < [ ([ ) ae) lowig(w)lav
< |9 sup [kr, (z, 9)l[[8]2]lg]l2-
QxQ
From ([3.4) by choosing €2 small enough and a suitable ¢ € C2°(Q2), we obtain that

1
Ire(z, D)(¢g)lellz < 5llgl2
for all g € L?(Q) uniformly on an interval (0, £o]. In other words the net of operators

e : L2(Q) — L*(Q), 7e(g) = re(z,D)(¢g)la
has operator norm less than or equal to % for all € € (0,g0]. In the same way we
define

I:12(Q) — L3(Q), I(9) = ¢g,
@ L2(Q) = L2(Q),  4(9) = g-(z, D)(d9)lo-
This last mapping property follows from qe(:c D) : L*(R™) — L?(R") valid because

m/ < 0. One can choose ¢ such that || — I|| is very small and in particular
|I — I +7.| < 1 uniformly on (0,0]. The series S |I — I +7.|™ is convergent.
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Hence, from Theorem 2 in [29, Chapter 2] we have that I + 7. has a continuous
linear inverse on L?(12) for all € € (0, g0] with operator norm uniformly bounded in
€.

Let now (F:). be a net in /\/lleoc(Rn) representing F' € L2 10c(G(R™),C). We
have that (¢F.). € M2y and we can define for € € (0, €] the net

Te = G.(I +7.) Y (oF.). (3.5)
T. belongs to L?(Q) for all € € (0,0 and the properties of the operators involved
in (3.5) yield
I Te]l2 = 1g-(1 +72) " (O F) 2
= llg=(z, D)($(I +72) " ($F%))lall2
< el NI + ) F) 2 < € lael T+ 7) M |G Fz o

This means that, restricting € on the interval (0, £¢], the net (T%). is L?(Q)-moderate
and therefore generates a basic functional T in £(G.(€2), C). T solves the equation
P(z,D)T = ¢F on Q. Indeed, working at the level of the representatives we have

P.(z, D)|o(@-(I +7.) Y ($F:)) = Pe(z, D)|a(g-(z, D)o(I + =)~ ($F.))
= P.(z, D)g.(x, D)|a(s(I + =) (¢F.))
= ([ +7)(I +7.) " (¢F.) = ¢F..
O

Remark 3.5. It is not restrictive to consider differential operators with coefficients
in Goo(R™) when one wants to investigate local solvability in the Colombeau con-
text. Indeed, if we assume to work on an open subset {2’ and we take P(z, D) =
2 la|<m Ca(x)D* with co € G(€'), by choosing the neighborhood € of zy small
enough the equation P(x, D)T = ¢F on € is equivalent to Py(x, D)T = ¢F with

Pi(e,D)= 3 plw)ea(s)D"
la]<m
and ¢ € C° (V) identically 1 on Q. It follows that ¢c, € G.(2) C Goo(R™) and
therefore we are in the mathematical set-up of Theorem

In the next proposition we find a family of differential operators which satisfy the
hypotheses of Theorem [3.4] in other words a condition on the symbol which assures
the existence of a parametrix ¢ with regularizing term r as above. We go back to
some definition of generalized hypoelliptic symbol introduced for pseudodifferential
operators in [3]. Here the attention is focused not so much on the parametrix ¢
but on the required boundedness in e of the regularizing operator r. This makes
us to avoid some more general definitions of hypoelliptic symbol already employed
in Colombeau theory, see [8, [10, [I1], which have less restrictive assumptions on the
scales in e, guarantee the existence of a parametrix but not the desired behaviour
of r.

Proposition 3.6. Let P(z, D) = 3, <., ca()D* be a differential operator with
coefficients cq € Goo(R™). We assume that there exists a,a’ €R, a <a’, 0 <m’ <
m, R >0 and a representative (P:). of P fulfilling the following conditions:

@) 1P| = O() for all a, B € N*;
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(ii) there exists ¢ > 0 such that |P-(x,€)| > ce® (€)™ for allz € R™, for || > R
and for all € € (0,1];
(ili) for all oo, B € N™ there exists (ca,p,e)e With ca g = O(1) such that
0805 Pe(,8)| < cape| P, £)[(€) 1
for all z € R™, for |£| > R and for all ¢ € (0,1].
Then there exists (g:)c € Mg’ gany _q and (re)e € Mg—oo(r2n),a—q’ such that

P.(z,D)q.(z,D) = I +r.(z,D)

for all e € (0,1]. Moreover there exists sc(x, D) with (sc)e € Mg-oo(r2n) 20—24’
such that
ge(x, D)P:(xz,D) = I + sc(x, D)
for all e € (0,1].
Proof. Let 1 be a smooth function in the variable ¢ such that (£) =0 for |{| < R
and ¥ (&) = 1 for || > 2. By adapting the proof of [3| Proposition 8.1 and Theorem
8.1] to our situation one easily obtains from the hypotheses (i) and (ii) that
® do,e ‘= w(g)Psil(xvg) defines a net in MS‘”'(R%)
° (qo,sagang)g € Mg-jal(renyo for all , 3 € N",
e for each j > 1, the net

)
1
qj,e ‘= _{ Z ( ’7)' 8gP86;;YQZ,E}q0,E

Y| +i=3,1<j

’
,—a’?

belongs to M g—m/—j(gzn) _q/-
Corollary implies that there exists (¢:)e € ./\/ls_m/(Rzn)),a, having {(gj.e)e};

as asymptotic expansion with fixed moderateness £~ Let us now consider the
composition P.(x, D)g.(x,D) = A(z,D). Basic properties of symbolic calculus

show that

—\hl
1
()\s - Z ( ’)/)' 8217’533(15)5 S MSm,—m,’—r(]RQn))a_al

[vl<r

for all » > 1. Making use of (¢ — ))—g qi.c) € Mg/ —r(g2ny _q We can write

i\l Ayl
3 ( jy)’” 0{P.0)g: = > Z S Vet DL + Se

[v|<r |y|<r 1=0

—)h
- EqOE+ZPEQJE+Z Z ( ’Y)' agpsa;cyql,s

I=1 | H=4,1<]

+ E (_ )' 8’YP a'y(ﬂ e+ Se,
v
[y[+1>r, |y|<r, I<r

where (s¢)e € Mgm—m’—r(g2n) q—q- By definition of go and g;. we have that the
right-hand side of the previous formula equals

1+ Z (=M PO} que + se
’Y'
[y[H+12>r, |y|<r, I<r
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when [{| > 2R. Hence the net (A: —1). belongs to Mgm—m'—r(gzny q_q for [{] > 2R.
Since g P-(x,€) —1 =9(€) — 1 € C3°(R™) the domain restriction can be dropped.
Concluding, (A: — 1) := (rc). is an element of Mg—cc(p2n) q—q/. Analogously one
can construct a net of symbols (¢;): € Mg’ gan) _,s such that ¢l (z, D) P-(z, D) =
I+rl(x, D) with (r]). € Mg-ce(m2n)a—a- By applying ¢.(z, D) P.(x, D) to ¢.(z, D)
we get
(I +ri(z,D))ge(z, D) = q(x, D)Pe(x, D)¢e(x, D) = ¢.(x, D)(I + re(z, D))
which at the level of symbols means
ge + 780 = gL + qlfre.

Thus, (¢ — ¢.) € Mg-so(@2n)q—2o and since a — a’ > 2a — 2a’ the equality
¢e(2, D)P.(x, D) = I + s.(x, D) holds with (s.): € Mg-co(m2n) 2024’ O

A straightforward combination of Proposition [3.6] with Theorem [3.4] entails the
following result of local solvability.
Proposition 3.7. Let P(z, D) =}, <., ca(2)D* be a differential operator with
coefficients co, € Goo(R™). Let (P:). be a representative of P fulfilling the hypotheses

of Proposition[3.6| with a = a’. Then for all zo € R™ there exists a neighborhood §
of xg and a cut-off function ¢, identically 1 near xg, such that

VE € Lg10¢(Ge(R™),C) 3T € L(G.(Q),C) P(x, D)T = $Fon Q.
Proof. If a = a’ from Propositionwe have that there exists a parametrix ¢.(x, D)
with (ge)e € Mg’ (g2n), g —m’ < 0, and a regularizing operator r.(z, D) with
(re)e € Mg—oo(r2n),0. This means that |r. é% = O(1) for all I € R. The conditions
under which Theorem [3.4] holds are therefore fulfilled. O

Example 3.8. As an explanatory example we consider the operator generated by
P.(z,D) = —e"A+ Z Cae(2) DY,
lee|<1

where

n 92
A:ZaQa Cae = Ca * Pu(e)s CQELOO(Rn)a
i=1 %i

¢ is a mollifier in .7(R™) and (w™!(¢)) a slow scale net. It follows that [(cq.c)e]
belongs to Goo (R™) with

10%¢a.elloe < llcalloo w(e) ™07 ¢ll1 < e

for all b > 0. For any a < 0 this operator is locally solvable in the sense of Theorem
because it fulfills the conditions (i), (ii), (iii) of Proposition [3.6| with a = a'.

Due to the existence of a generalized parametrix for the operator P(x, D) of
Proposition the local solution inherits the regularity properties of the right
hand-side.

Proposition 3.9. Let P(z, D) =}, <., ca()D* be a differential operator with
coefficients co, € Goo(R™). Let (P-). be a representative of P fulfilling the hypotheses
of Proposition[3.6| with a = a’. Then for all zo € R™ there exists a neighborhood
of g and a cut-off function ¢, identically 1 near xg, such that

VieGR") JueG(Q) Plx,Du=¢f onQ,
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VieG®R") Jue G>®(Q) Plx,Du=a¢f onfd

Proof. First f € G(R™) can be regarded as an element of LQVIOC(QC(R”),@). Let
(fe)e be a representative of f. From Theorem we can construct a local solution
u € L£(G.(22),C) having a representative
us = (I +72) " (@)
in Mpz(q). The equality
ge(x, D)P.(xz,D) = I + sc(x, D)

holds on ./(R™). Taking the restrictions of the previous operators to the open set
€, since they all map L?(Q) into L?(2) we have that

ge(z, D)P.(x,D)v = v + sc(z, D)v (3.6)

holds on  for all v € L?(€2). Here and in the sequel we omit the restriction notation
| for the sake of simplicity. From (3.6|) follows

Ue + Ss(xa D)Ue = qE(xa D)(¢fs)
Since s¢(z, D) is a regularizing operator and (f:)c is a net of smooth functions we
already see that (uc)e is a net of smooth functions as well. In particular, from
the mapping properties of generalized pseudodifferential operators we know that
(g (2, D)(¢f:))= € Meoe (o) = Em (). Finally we write s-(z, D)u. as

[ eyt do
Combining the boundedness of the open set €2 with the following kernel property
VaeN"VdeN  sup (x)"Uy)!030)ks. (x,y)] = O(1)

(z,y)ER?"
we obtain
sup |0%se(z, D)ue| < sup 107 ks, (@, ) 22(0) luellL2@) < cllucllL2(o) (3.7)
S S

for e small enough. Hence (s.(z, D)u.). € Ep(€2). Concluding the net (u. ). belongs
to Ear(€2) and generates a solution w in G(Q2) to P(x, D)u = ¢ f.

When f € G*(R"™) since the net of symbols (g.). is regular we have that
(g=(z,D)(¢f:))e generates an element of G*(2). Clearly as one sees in also
s(z, D)u belongs to G*=(£2). Hence u € G(Q). O

4. LOCAL SOLVABILITY OF PARTIAL DIFFERENTIAL OPERATORS G-ELLIPTIC IN A
NEIGHBORHOOD OF A POINT

In this section we concentrate on a special type of partial differential operators
with coefficients in G(R™). Their properties will inspire the more general model
introduced in Section 4. In the sequel we often refer to the work on generalized
hypoelliptic and elliptic symbols in [8], @} [10].

Definition 4.1. Let P(z,D) = }_, <, Ca(x)D® be a partial differential operator
with coefficients in G(R™). We say that P(z, D) is G-elliptic in a neighborhood of z¢

if there exists a representative (P, ). of the principal symbol P,,, a neighborhood
Q of zg, a € R and ¢ > 0 such that

| Prne(z, )| > (4.1)
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for all z € Q, for |£] =1 and for all £ € (0,1].

Remark 4.2. It is clear that holds for an arbitrary representative (P.). of
P on a smaller interval (0,7n] and with some smaller constant ¢ > 0. In addition
if P(z, D) is G-elliptic in a neighborhood of zy then P(xg, D) is G-elliptic. The
converse does not hold. Indeed, let ¢ € C°(R) with ¢(0) = 1 and ¢(z) = 0 for
|#| > 2. The differential operator P(x, D) with representative P.(z, D) = o(x/c)D?
is G-elliptic in 0 but not in a neighborhood {|z| < r} of 0. This is due to the fact
that P.(z,£) =0 for x # 0 and ¢ < 271|z|.

As for G-elliptic operators with constant Colombeau coefficients (see [, Sec-
tion6]) the following estimates hold in a neighborhood of xy.

Proposition 4.3. Let P(xz, D) be G-elliptic in a neighborhood of xo. Then there
exists a representative (P:)c of P, a neighborhood Q of xy, moderate strictly nonzero
nets (Re)e and (ca,pe)e and a constant co > 0 such that

|Pe(2,€)] > coc(§)™,
|08 0 P=(,€)| < ca .l Pe(w, )1(€) 7
for x € Q, |§] > R, and for all € € (0,1].
Proof. (From Definition [£.1] we have
|Pe(2, )| 2 | Prne(@,€)] — |Pe(2,6) — Poye(,€)] = ce€]™ — e, (€)™

forall¢ e R", z € Q, ¢ € (0,1] and with (¢;,—1.¢). & moderate and strictly nonzero
net. Defining the radius R. = max{1,2"¢,,_1 .c 1%} we get for z € , |¢| > R.
and for all €, the inequality

- - c a m a m
P, €)] 2 1617 (e — cmr 27 el ) > SEIE™ > coc(€)
Concerning the derivatives we have, always for || > R.,
10207 P-(2, €)] < Aays, (€)™

< AaygeCo e Pe(, €)|(€) 71
Pe(z,€)[(€)7 1.

= Ca,pe

O

By adapting the arguments of Proposition to this kind of nets of symbols,
and in analogy with [I0, Theorem 6.8], [8 Propositions 2.7, 2.8], we obtain that a
differential operator G-elliptic in a neighborhood of zy admits a local parametrix.

Proposition 4.4. Let P(z, D) be G-elliptic in a neighborhood of xo. Then there
exists a neighborhood 2 of xo and generalized symbols ¢ € Gg-mxrn) and 1,5 €
Gg-s(Qxrrn) such that

P(z,D)q(xz,D) =I + r(z, D),

q(z, D)P(z,D) = I + s(z, D) (4.2)

as operators acting on G.(2) with values in G(Q2).
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Note that if we take 2 bounded we can assume that the estimates involving the
symbols in are global in & and x as well. The equalities between generalized
operators followed from the corresponding equalities at the level of representatives.
More precisely,

P.(z,D)q.(z,D) = I +r.(z, D),
qe(z, D)P:(x,D) = I + s.(x, D)

for all € € (0,1]. Since P(x, D) is properly supported ¢(z, D)P(x, D) = I + s(x, D)
holds on G() and £(G¢(€),C) as well. It follows that if P(z, D) is G-elliptic in a
neighborhood of ¢ and locally solvable then it inherits the regularity of the right-
hand side, in the sense that if P(z, D)T = von Q with T € £(G.(2),C and v € G()
then T € G(€). The problem is that Definition in general does not guarantee
the assumption on the parametrix (g.). and the regularizing term (r.). which allow
to apply Theorem and obtain local solvability. In the following particular case
an operator which is G-elliptic in a neighborhood of g is also locally solvable at
Zo-

Proposition 4.5. Let P(x,D) =}, /<, Ca(x)D* be G-elliptic in a neighborhood
of xy with

| P, (%, €)| > ce*
in a neighborhood Q1 of xg, for all £ € R™ with |§| =1 and for all € € (0,1]. If the
coefficients ¢, are G°-regular in xo of order a; i.e. on a neighborhood Qs of xq the

following

Vs e N*,  sup |(“)ﬁca’€($)| = 0(e%)
x€EQNY

holds, then there exist a neighborhood 2 of xo and a cut-off function ¢ € C°(Q)
identically 1 near xo such that:

(i) for all F € Ly10c(Ge(R™),C) there exist T € L(G(Q),C), which is a solu-
tion of P(x,D)T = ¢F on Q;
(ii) for all f € G(R™) there exists u € G(Q) solving P(x, D)u = ¢f on §;
(iii) for all f € G (R™) there exists u € G () solving P(x, D)u = ¢f on Q;

Proof. We can choose a representative (P: ). such that the inequalities | Py, o (z,§)| <
ce® and |P.(2,€) — Pre(2,8)| < ¢m-18%(€)™! hold on the interval (0, 1], for all
x in a neighborhood of zy and all £ € R™. By following the proof of Proposition
we see that the radius does not depend on € and that the nets (cq g,c) are O(1)
as € tends to 0. We are under the hypotheses of Proposition This yields the
first assertion. Proposition [{.4] and the considerations above on the regularity of
P(z, D) prove assertion (ii). Finally, assertion (iii) is clear for Proposition[3.9] O

We have found a class of partial differential operators with coefficients in G(R™),
that under the hypothesis of G-ellipticity in a neighborhood xy and under suitable
assumptions on the moderateness of the coefficients, are locally solvable at xg.
These locally solvable operators belong to the wider family of operators which can
be written in the form

Py (D) + Z ¢;(x)P;(D), (4.3)

in a neighborhood of zy. Here the operators Py(D), P;(D), j = 1,...,r have
constant Colombeau coefficients and each c; is a Colombeau generalized function.
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We conclude this section by proving that a differential operator P(x, D) with
coefficients in G which is G-elliptic in xg, i.e. P(x, D) is G-elliptic, can be written

in the form (4.3)).

Proposition 4.6. Let P(z, D) =}, <., ca(®)D* be a differential operator with
coefficients in G(R™) which is G-elliptic in xo. Then P(x, D) can be written in the
form with
e ¢; € G(R"), ¢j(zo) =0, Py(D) and P;j(D) operators with constant Colom-
beau coefficients,

e Py invertible in some point of R™,
e Py(D) stronger than any P;(D).

Proof. We set Py(D) = P(zg, D) and we have
P(z,D) = Py(D)+ Y (ca(z) — calzo)) D"

lo|<m

Clearly the coefficients ¢, () — co(zo) belong to G(R™) and vanish for z = z,.
For each o € N we find an operator P, (D) = D®. By hypothesis Py(D) is
G-elliptic in zg. Hence from Proposition we have that Py(D) is stronger than
any Pj(q)(D) with |a] <m and the weight function Py is invertible in any point of
R™. O

A differential operator which is G-elliptic in a neighborhood €2 of xg is in par-
ticular G-elliptic in zg and therefore it can be written in the form on the
whole of R™. The special structure of the G-elliptic operators motivates the
investigations of Section

5. BOUNDED PERTURBATIONS OF DIFFERENTIAL OPERATORS WITH CONSTANT
COLOMBEAU COEFFICIENTS: DEFINITION AND EXAMPLES

In this section we concentrate on operators with coeflicients in G(R™) which are
locally a bounded perturbation of a differential operator with constant Colombeau
coefficients as in ([£.3). More precisely, we say that P(z, D) = 2 la|<m Calz)D is
of bounded perturbation type, or of BP-type, in a neighborhood 2 of x if it has the
form

Po(D) + Z ¢j(z)P;(D),

when restricted to 2, with
(H1) ¢; € G(Q), ¢j(xo) = 0, Py(D) = P(x9,D) and P;(D), j =1,...,r, opera-
tors with constant Colombeau coefficients
(H2) Py invertible in some point of R™,
(H3) Py(D) stronger than any P;(D).

Remark 5.1. Our definition of BP-type is clearly inspired by the classical theory
of operators of constant strength (see [14] [I5]). The direct generalization of this
concept to the Colombeau setting would mean to require P(zo,D) < P(z,D) <
P(zp, D) for all z in neighborhood 2 of xy with < the order relation introduced
in Section 1. However, due to some some structural and technical constraints of
our framework, it is not clear at the moment if one can obtain from this general
definition a local bounded perturbation property as above. This is related to the
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fact that one can not use the properties of a linear space on the set of differential
operators with coefficients in C weaker than Py(D). Indeed this set has the algebraic
structure of a module over C and C is only a ring and not a field.

As for the operators with constant Colombeau coefficients in [20, Theorem 7.8],
the local solvability of P(z, D) in the Colombeau algebra G(£2), where Q2 is an open

neighborhood of xg, implies the invertibility of the weight function Py in some point
of R™.

Proposition 5.2. Let P(x, D) be a differential operator with coefficients in G(R™)
such that has the form
Po(D) + 3 ;(2)P;(D),
j=1

in a neighborhood Q0 of xy and fulfills the hypothesis (H1). Let v € G(Q) with
v(xg) invertible in C. If the equation P(x,D)u = v is solvable in G(Q) then Py is
invertible in some point of R™.

Proof. We begin by observing that
v(xg) = P(xo, D)u(zg) = Po(D)u(xp).

From (2.2) we see that Py is invertible in some point of R™ if and only if it is

invertible in any point of R™ and then in particular in £ = 0. We assume that 150(0)
is not invertible. It follows that for all ¢ there exists e, € (0,¢'] such that

—2
P., (0) = Z |ca75q(mo)\2(a!)2 <el.
lee|<m
Choosing €4 \, 0 we have
[ca.e, (0)|* < (al) %) < (al) 2]

for all v > ¢. Hence, for ¢ =1 for ¢ = ¢4, ¢ € N, and ¢, = 0 otherwise, all the
nets (ce - ca,e(®0))e are negligible. Concluding, for ¢ = [(cc)c] € R the equality
v(xo) = Po(D)u(xo) implies

c-v(zg) = ¢ Po(D)u(wg) = Y (¢ calxo))Du(z) =0,
|| <m
in contradiction with ¢ - v(zg) # 0. O
We now collect some examples of operators of BP-type. It is clear by Proposition

that the differential operators which are G-elliptic in x¢ are of BP-type in any
neighborhood of xg. For the advantage of the reader we write two explicit examples.

Example 5.3. (i) Let ¢; € G(R), i = 0, ..., 3, with ¢,(0) invertible in C, supp cs C
(—=3/2,—1/2) and supp ez C (—1,1). The operator

P(z,D) = c3(2)D? + ca(2)D? + ¢1(2) D + co(x)

is a bounded perturbation of P(0, D) in the neighborhood Q := (—1/4,1/4). In-
deed, P(z,D)|q = c2|aD? + c1]aD + ¢yl and P(z, D)|q is G-elliptic in 0.
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(i) For i = 1,2 let ¢; € C°(R), i(0) =1 and ¢; o (x) = i(x/e). Let cq € G(R)
for || < 1. The operator P(z, D) with representative

P.(z,D) = ¢16(2) D7, + p22(2) D3, + Y cae()D
ler|<1
is a bounded perturbation of P(0, D). More precisely we can write
P.(x,D) = D2 + D2, + (p1,-(x) — 1)D2, + (p2,e(x) —1)DZ,
+ Y (Cae(@) = a,c(0)) D
le|<1

A statement analogous to Proposition holds for operators of principal type.
Proposition 5.4. Let P(z, D) =}, <., ca(z)D* be a differential operator with
coefficients in G(R™). Let the coefficients of the principal part be constant with at

least one of them invertible in C. If P(x, D) is of principal type then it is of BP-type
in any neighborhood Q of any point xo € R™.

Proof. We take Py(D) = P(20, D) = Pin(D)+ 3| 4j<m—1 Ca(z0)D*. By hypothesis
we have that Py(D) is of principal type. Moreover, the invertibility of one of the
coefficients of P, (D) entails the invertibility of Py(£). Now we write
P(z,D) =Py(D)+ > (ca(x) = calx0))D*.
loe|<m—1

The operators Pj,)(D) = D® are all of order less than or equal to m — 1 and
therefore by Proposition i) Po(D) dominates any Pjq). O

In the next proposition we see an example of operator of BP-type where the
decomposition is obtained by deriving with respect to &.

Proposition 5.5. Let P(z,&) = ca 08} + 11616 + c0.265 + c1.0(2)é1 + co1(2)é2 +
co.0(z) be a polynomial in the R?-variable (&1,&2) with coefficients in G(R?). Let the
coefficients of the principal part be constant with at least one invertible. Let zo € R?
and Py(D) = P(zo, D). If 4c2,0c0,2 — cil and 2cz 0 + 2cg 2 + 1,1 are invertible in
C then for j = 1,2,3 there exists cj € G(R?) with c;(z¢) = 0 such that
P(x,D) = Py(D) + ¢1(x) Py (D) + co(z) P2 (D) + c3(x) P5(D),
where
Pi(D) = Fy""(D),  Py(D) = Py" (D),
Py(D) = Py*"/(D) + B3V (D) + B (D).
Hence, P(x, D) is of BP-type in any neighborhood of xg.
Proof. We argue at the level of symbols. By fixing x = x¢ we have
Py(€) = P(x0,€) = 2,08} + c1,1&16 + 0,285 + c1,0(z0)&1 + co,1(20)&2 + co,0(20)
PO(€) = 2e0,061 + €116 + e1,0(20),
Péo’l)(f) = c1,1&1 + 2¢0,262 + o1 (20),
Po(l’l)(f) =ci,1,
PO(€) = 2¢2.0,
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(0,2)
PO (f) = 26072.

From the invertibility of one of the principal part’s coefficients we have that ﬁa is
invertible in any point &, of R™. Moreover, P := Péo’l) << Py, P, := Péo’l) << P
and P; := PSQ’O) + Po(l’l) + PO(O’Q) << Py. The operator

P(z,D) = Py(D) + (c1,0(z) — e1,0(x0)) Day + (co,1(x) — €0,1(20)) Day
+ (co,0(x) — co,0(%0))
can be written as
P()(D) + C1 ({L‘)Pl(D) + CQ(LL‘)PQ(D) + Cg(CU)Pg(D)7

where the generalized functions ¢ (), ca(z) and c3(z) are solutions of the system:

2e2,0 1 () + e1,1 ¢2(x) = e1,0(x) — ¢1,0(20)
c11¢1(x) + 2¢9,2 co(x) = co,1(x) — co,1(x0)

01’0(3]0) C1 (IL’) + 6071(1'0) CQ(ZIZ) + (26270 + 20072 + 6171)03(1) = 00,0(1') — COV()(CE()).

9
7

In detail,
o1 (2) = 2¢0,2(c1,0(%) — c1.0(%0)) — cra(coa () = co.a(x0))
402706072 — C%,l ’
er() = 2¢2,0(c0,1(2) — c01(%0)) — cra(e1,0(x) — c10(0))
462706072 — C%,l ’
ea(z) = (co.0(x) = co.0(20)) = c1,0(z0)er () — coa (o) ()
K 2c2,0 + 202 + €11 -
It is clear that ¢1(z), ca(z) and c3(x) vanish at x = xy. O

6. CONDITIONS OF LOCAL SOLVABILITY FOR OPERATORS OF BOUNDED
PERTURBATION TYPE IN THE COLOMBEAU CONTEXT

Purpose of this section is to provide sufficient conditions of local solvability for an
operator P(z, D) =3, <, ca(@)D® with coefficients in G(R") which is of bounded
perturbation type in a neighborhood 2 of zg, that is

P(z, D) = Py(D) + Y ¢;(w)P;(D)

on ) with,
(H1) forallj=1,...,n,¢; € G(Q), ¢;(x0) =0, Py(D) and P;(D) operators with
constant Colombeau coefficients
(H2) Py invertible in some point of R™,
(H3) Py(D) stronger than any P;(D).
This requires some specific properties of the spaces By, which are proven in [I5]
Chapters X, XIII] and collected in the sequel.
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6.1. The spaces B, : properties and calculus. Given k € K we define for any
v > 0 the functions

ku(€) = sup e k(¢ —n), M) = sup k(& +n)/k(n). (6.1)

One easily proves that k, and Mj are both tempered weight functions. More
precisely there exists a constant C, > 0 such that for all £ € R™,

1<k, (§)/k() < C..
If k(€ +1) < (1+ Cl€))Nk(n) then
My, (&) < (1+ClEHY,

for all v > 0. In particular M}y, — 1 uniformly on compact subsets of R™ when
v — 0. The following theorem collects some important properties of the spaces
B, 1, which are proven in [I5, Chapters X, XIII].

Theorem 6.1. (i) If u1 € Bpiy, NE" and ug € Boo i, then uy * ug € By gk,
and

Hu'l *UQHIJJClkz < ||u1||l)7kl ”uQ”OO,kQ'

(i) Ifu e By and ¢ € S (R™) then ¢u € By, and
Pl < ll¢|
(iii) For every ¢ € Z(R™) there exists vg > 0 such that

[pullp,r, <26

101 [|ullp k-

1 llullp k.,

for all v € (0,vp).
(iv) If ¢ € C(R™), xo € R™ and h is a C*®-function with h(xg) = 0 then for
V5,20 (x) = Y((x — x0)/5) one has

[¥s,000l[1,1 = O(3)
as § — 0.

Note that the number v in (iii) depends on ¢ and the weight function k while
the norm of the operator u — ¢u does not depend on k.
The next proposition concerns nets of distributions and nets of B, j-elements.

Proposition 6.2.

(i) If (g)- € E'(R™)OY generates a basic functional L(G(R™),C) then for all
p € [1,+o0] there exists k € K such that (g.)e € Mp, ,(&n); in particular if
(gc)e is the representative of a generalized function in G.(R™) then (g:). €
Mg, (&n) for all k.

(i) If (go)e € E'(R™)OU with suppg. € K € R™ for all € and (g.). €
Mg, , () then (gc)e generates a basic functional in L(G(R"), C).

(ili) If (9e)e € Mp, @) and (£)7k~1(§) € LY(R™) with 1/p+ 1/q = 1 then
(ge)e € Meimny-

(iv) If (S.)e and (T.). generate basic functionals in L(G(R™),C) then (S *T.).
defines a basic functional too.
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Proof. (i) The definition of a basic functional implies that there exists a moderate
net (¢)e, a compact set K € R™ and a number m € N such that the estimate
9:(©)1 = lge(e™™*) < e sup |97 ¢| < cefg)™
zeK,|a|<m

—mp—n—1

holds for all € € (0,1] and £ € R™. For k(&) :=(§)™ » we obtain

loell = [ @t @pde < [ g as

R

Thus (g:): € Mp, , ®n). The second assertion of (i) is clear since if (g.). is the
representative of a generalized function in G.(R™) then (g:). is a moderate net of
functions in .(R™) and clearly a moderate net of B, ;-functions for all k.

(ii) Let f € C*°(R™) and v be a cut-off function identically 1 in a neighborhood
of K. We can write g.(f) as g-((¢¥f)) = kge (k=1 (xf)"). Hence,

l9e (O < Ikgelp 16~ (0 f Vg,

with 1/p + 1/¢ = 1. By choosing h large enough, using the bound from below
k(&) > k(0)(1 + Cl¢])~N and the continuity of the inverse Fourier transform on
Z(R™) we are led to

|9 ()] < cllkgel, D (©" o ((wf))

ER™ |a|<h
and, for some i/ € N and ¢’ > 0, to

19:(F)] < cNlkgell, sup 07 f ().
x€supp ¥,| G| <h’

Since (ge)e is By i-moderate it follows that (g.). defines a basic functional in

L(G(R™),C).

(iii) From the hypothesis (£)7k~!(¢) € LY(R") and (ge). € Mp, , &n) it follows
that (£g:). € Mpi(gny for all @ with |a| < j. Therefore, ge(z) = [5. €™¢g:(£) d¢
is a moderate net of C’-functions.

(iv) Combining the property of basic functionals with the definition of convolu-
tion we get

|Se # To(f)] = [Se 2Ty (f (2 + 9))]

Sce sup  |OF(Tey(f(z +v)))
zeK,|a|<m

=C  Sup Tz, (0% f(z +y))|
zEK,|a|<m

<c. sup . sup [0°TPf(z+y)
veK Jal<m  yeK',|B|<m’

< cecl sup |07 f(2)],
zeK+K',|v|<m+m/

valid for all f € C*°(R") and for all ¢ € (0, 1] with (c.). and (c.). moderate nets. O

In the course of the paper we will use the expression basic functional T €

L(G(R™),C) of order N for a functional T defined by a net of distributions (7%). €
E'(R™)(©:1 such that

[Te(HI <A sup 0% f(2)]

zeKER",|a|<N
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holds for all f € C*(R"™), for all € € (0,1] and for some moderate net (A;)e. It
follows from Proposition (1) that (7.). is a moderate net in B, 5 (R")1 with
—Np—n—1
k(&) =) 7
In our investigation of the local solvability of P(x, D) we distinguish between

(1) the coefficients ¢; are standard smooth functions,

(2) the coefficients ¢; are Colombeau generalized functions.
In both these cases we will adapt the proof of [I5, Theorem 13.3.3] (or [I4, Theorem
7.3.1]) to our generalized context. ;From the assumption of BP-type in Q it is not
restrictive in the following statements to take P(z, D) = Py(D)+ Z;:1 ¢j(x)P;(D)
with coefficients ¢; € G(Q).

6.2. Local solvability: case c; € C*°.

Theorem 6.3. Let ) be a neighborhood of xo and let
P(x,D) = Po(D) + ) c;(x)P;(D)
j=1

with ¢; € C*(Q) for all j. If the hypotheses (H1), (H2), (H3) are fulfilled and in

addition
(H4) Pj.(&) < XjPo(€), where A\j . =O(1)

holds for all j and for a certain choice of representatives, then there exists a suffi-
ciently small neighborhood Qs := {x : |x — xo| < 8} of xo such that

(i) for all F € Ly(G(R™),C) there exists T € L, (G(R™),C) solving P(x, D)T =
F on Q(s,
(ii) for allv € G.(R™) there exists u € G.(R™) solving P(x,D)u = v on Q5.

Proof. We organize the proof in a few steps.

Step 1: the operator Py(D). Since P, is invertible in some point of R™ from
Theorem [2.2| we know that there exists a fundamental solution Ey € Ly, (Ge(R™), C)
having a representative (Eg ). such that

EOE ‘
R L < C
Hcosh(c|x\) ‘ o

for all € € (0,1]. Note that the constant Cy does not depend on e. It follows from
Theorem ii), the inequality (2.1)) and the definition of M o the estimate

Ey,
leBocllo, mr. < e coshicle)1,ar,- H c

= Il cosh(c|z|) Hoo,ﬁ;;

< [I(T+ Clg)™ F(p coshle] - D)€ - Co < G

valid for all ¢ € C°(R™) and ¢ € (0, 1] with m order of the polynomial Fj.

Step 2: the equation F,.(D)u = f when f € &'(R") with supp f C Qs,.
Let 09 > 0 and let x be a function in C2°(R™) identically 1 in a neighborhood of {z :
|z] <2dp}. jFrom the previous considerations we have that Fy . := xFo . € BOO)PO‘E
with [|[Foc||, g < C1 for all e. Moreover, for all f € &'(R") with supp f C Qs,
we have that

EO,s*f:FO,s*f
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on s,. Hence, by definition of a fundamental solution of Py(D), we can write on
Q&g 5

Poe(D)(Foe* f) = . (6.2)
Step 3: the operator ) _, cj(z)P;(D) on Q5 C Qs,. We now study the
operator

> ¢;(x)P;(D).
j=1

Let ¢ € C°(R™) such that ¢(x) = 1 when |2| < 1 and ¢(x) = 0 when |z| > 2.
We set 5.5, (x) = ¥((x — x0)/5). We fixed the representatives (Fo.)e, (Pj.). and
(Aje)e fulfilling (H4) and we study the net of operators

A5:(9) =D Ps.00¢iPrc(D)(Foc * g)
j=1

defined for g € D'(R™). More precisely for k € K, 1 < p < oo and k, as in (6.1))
we want to estimate As. on By, . Since s ,,c¢; belongs to #(R™) by Theorem
ﬂ(iii) we find a sufficiently small v5, depending on the coefficients ¢; and on 5 4,
such that

145,20 e (D) (Fo,e * 9)llp e, < 20195,00¢5 11,1 (12, (D) (Fo.e * 9)llp 1,

holds for all v < vs. Hence, from Theorem [6.1[i), the properties of the net (Fp ).
and (H4) we have

1 45,6 (9)llp,k,
T
< 20[W5.205l111 1P e (D) (Fo e 9)
j=1
T
<D 2050061111125 (D) Foclloo 1|9l k.
j=1
T s o
= 205206511111 P Foelloolgllp k< 2085005111111 P Fo clloolgllp k.
j=1 j=1
T T
<2 Ws00cillg Me 1 Focll o 9l < 2C1 Y 195.00¢i 101 Asie N9]lp.i,
Jj=1 j=1

Since ¢;j(zg) = 0 the assumptions of Theorem [6.1{(iv) are satisfied. Hence, we have
1105 2o cilli,1 = O(6). Combining this fact with |A; .| = O(1) we conclude that there
exist 01 and €; small enough such that

145, llpr, <27 gl

is valid for all § < 4y, for all v < vg, for all g € B, j, (R™) and for all € € (0,¢7).
Since B,y = By, it follows that for all f € B, x(R™) there exists a unique solution
(gg)ae(om) with g. € By (R™) of the equation

g+ Aé,e (g) = wé,xof

for € € (0,e1). Note that both 6; and £; do not depend on the weight function k
and that this is possible thanks to the equivalent norm || - ||, x, -

pky
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Step 4: the equation P(z,D)T = F on Q; with F € Ly(G(R"),C). Let
(F.)e be a net in &'(R™)(%! which defines F. By Proposition i) we know that
(F.)e € Mg, (&ny for some k. Let us take (25 with 6 < d; < Jo such that the
previous arguments are valid for B, = By with v < v5. We study the equation
at the level of representatives on €25 which can be written as

Poc(D)(Te) + ) 5,00€5 ;e (D) T2 = s, P
j=1
Let (g-)e be the unique solution of the equation
ge + Aé,s(ge) = wd,ngs

on the interval (0,e1). We have that (gc). is By p-moderate (for simplicity we can
set g = 0 for € € [e1,1]). Indeed,

ngnp,ky < ||A67€(96)Hpuku + ”@[J&moFer,ku < 2_1”96|

p.k, T ||w57IOF5 p,ky

and
9ellpke < clls,eoFellpre < clltsmllimm 1Fellpr < A, (6.3)

with (A;): € Em. Since supp Asc(g) C supp sz, C Qos for all g € D'(R™) we
conclude that supp g is contained in a compact set uniformly with respect to e
(and therefore supp g C s, for some &y). From Proposition [6.2[(ii) it follows that

(9e)e generates a basic functional in £(G(R™),C). Let now
Te = FO,E * ge.

The fourth assertion of Proposition yields that the net (7.). defines T €
Ly,(G(R™),C). By construction (steps 2 and 3) and for € small enough, we have

Py (D)(T2)|o; + Z(wé,xocjpj,s(D)Ts”Qs = Po,e(D)(Fo.e * ge)la, + Aselge)ls
j=1
= gelos + A578(98)|95
= ¢5,$0FE|95 = FE|95'
Hence P(z, D)T|q; = Fla,-
Step 5: the equation P(z, D)u = v on Qs with v € G.(R"). Let (v.). be a
representative of v. By Proposition i) we know that we can work in the space

B, x(R™) with k arbitrary. Moreover, the interval (0, 1) and the neighborhood Qs
do not depend on k. This means that we can write

gE + A5,6(g€) = wé,wovea

where, combining the moderateness of ||ge||px in (6.3) for any & with Proposition
6.2(iii), we have that (g9-)c € Mceo(rny = Epm(R™). The convolution between a

basic functional in £y,(G(R™),C) and a Colombeau generalized function in G.(R™)
gives a generalized function in G.(R™) (see [6, Propositions 1.12, 1.14 and Remark
1.16]). Hence, u with representative

Ue 1= FO,E * ge

belongs to G.(R™) and P.(x, D)u. = 15 4,ve = ve on {5 by construction. O
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Example 6.4. On R? we define the operator

e"D? — EbDi + c1(x,9)e" Dy + ca(2,y)e? Dy + c3(x, y)es,
where ¢;, ¢3 and ¢z are smooth functions and a,b,c € R with ¢ > min{a,b}. We
set Py (D) =¢e"D2 —e"D2, Py (D) = "Dy, Py (D) = "D, and Ps (D) = ¢°.
Assume that all the coefficients ¢; vanish in a point (z¢,yo). The hypotheses of
Theorem [6.3] are fulfilled. Indeed,

Poc (61,6) = (€} — "60)° + (2:°€1)° + (26760)° + 4620 + 4%
is invertible in (1,0) and concerning the functions
PLE) =g b et Bl (@) = MG +et, Pol =
the following inequalities hold:
PL(6) = 6 4+ 2 < 4 1 42 < B (60, 60),
P (€)= + 2% < 4G 44 < B (6,60),
]33?2 — 220 < ge20 4 4o2 < —%2<§17§2).
6.3. Local solvability: case c¢; € .
Theorem 6.5. Let ) be a neighborhood of xo and let

P(z,D) = Py(D) + Z ¢;(x)P;(D)

with ¢j € G(Q) for all j.
If, for a certain choice of representatives, the hypotheses (H1)—(H3) are fulfilled
and in addition,
(H5) Pj,s(f) < )\j,aPO,s(§> with
sup sup |[0%¢;e () Aje = O(1)
la| <n14 25 4 N 2EQ
for some p € [1,00), for some N € N and forallj=1,...,r,
then there exists a sufficiently small neighborhood Qs == {z : |x — 20| < 6} of zo
such that
(i) for all F € Ly(G(R™),C) of order N there exists T € L,(G(R™), C) solving
P(x,D)T = F on Q5.
If, for a certain choice of representatives, the hypotheses (H1)—(H3) are fulfilled
and in addition,
(H6) Pj,s(f) < )\j,EPO,S(f) with
VN eNda>0 sup  sup |0%; ()| Aje = O(e?)
la|<n+1+N z€Q
forallj=1,... r,
then there exists a sufficiently small neighborhood Qs := {x : |x — xo| < 6} of xo
such that

(i) for all F € L(G(R™),C) there exists T € L(G(R™),C) solving P(x, D)T =
F on Q.
(ili) for all v € G.(R™) there exists u € G.(R™) solving P(x, D)u =v on 5.
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Proof. As for Theorem [6.3] we organize the proof in few steps. Clearly the steps 1
and 2 are as in the proof of Theorem since Py(D) is an operator with constant
Colombeau coeflicients. New methods have to be applied to Z;:1 ¢;(x)P;(D) since
the coefficients c; are Colombeau generalized functions. We work on a neighborhood
Q = Qqs, of ¢ and we use the notation introduced in proving Theorem [6.3

First set of hypotheses. We begin with the assumptions (H1), (H2), (H3)
and (H5).

Step 3: the operator 22:1 cj(z)P;(D) on Q5 C Qs,. We fix a choice of
representatives (c;.) and the representatives P;. and Py, of the hypothesis. Let
k€ K and p € [1,00) as in (H5). We define the operator

r
A57E (g) = Z ¢5,xo¢§0,wocj,epj,a (D) (FO,E * g)

j=1

It maps D’(R™) into &'(R™). We want to estimate the B, i, -norm of As.(g). We
begin by observing that by Theorem [6.1|iv) there exists §; < o such that

Hw&zgwéo,zo ||1,1 < cd

for all § < 61. Choosing 6 < §1 and ¢ = V5,5, ¥s0,2, € 7 (R™) from Theorem iii)
we obtain a certain vs such that for all v € (0, v5) and for all € € (0, 1] the following
estimate holds:

)
poky <23 [ hs.00Ws0.m0

[ As.e(g) 11,1 1¥50,20 5,6 Pje (D) (Fo,e * 9)lp, ke,
=1
<266 Y |[v69,205.c Py (D) (Forc % 9)lp, -
=1

We assume k(£ +1n) < (1 + |§|)N+%k(n) for all £&. Tt follows that My, (&) <

(1+ |£\)N+% for all v. An application of the first two assertions of Theorem
combined with (H5) and the properties of Fj . entails, on a certain interval (0, &)
depending on k, the inequality

145.(9) .,

<2e5 " W50 w0Cie 1,00, 1P (D) (Foe * 9)lp b,
j=1
- n+1

<2e0 ) 1+ CUDYTH F(Ws,m050) (11 1P (D) (Fo.) oo 1 191,
j=1

<20 o) s sup 0@ Focll o pr gl
j=1 |a|§n+1+"T+1+N;CEQ )

S QCl(ky 50? ¢)5||g||P7kV :

This means that for any k there exist § = J; small enough and ¢; small enough
such that

145D llpks <27 gllp.rs
holds for all € € (0,¢x) and for all g € B, (R") = B, x(R™). It follows that for all
[ € By x(R™) there exists a unique solution (g:).c(o,c,) With g € By x(R") of the
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equation

9+ Ase(9) = Vo0 f
for e € (0,ex).

Step 4: the equation P(x,D)T = F on Qs with F € £,(G(R™),C). Let
(F.) be a net in &'(R™)(®1 which defines F of order N. By Proposition i)
know that (F.). € M?}{Yk(Rn) for k(&) = <§>_N_WTT1, Hence, for all v > 0 we have
My, (€) < (1+]€))Y T and we are under the hypothesis of the previous step. Let

us take Q5 with 0 = d;, such that the previous arguments are valid for B, 1, = By k.
At the level of representatives we can write

we

PO,E(D)(TE) + Z w&,zgquo,zocj,spj,E(D)TE = ¢5,a:0F£

j=1
on Q5. Let (go)e be the unique solution of the equation

ge + Aé,e(ge) = zpé,one

on the interval (0,&;). Asin Theoremone easily sees that (g. ). is By, y-moderate.
Since supp As,:(g) C supp 5,2, C Qas for all g € D'(R™) we conclude that supp g.
is contained in a compact set uniformly with respect to € (and therefore supp g. C
s, for some dp). From Proposition ii) it follows that (g.). generates a basic
functional in £(G(R"),C). Let now

TE = FO,E * Je-

The fourth assertion of Proposition yields that the net (T:). defines T €
Ly,(G(R™),C). By construction, for all € € (0,e;) we have

PO,E(D)(TE)|Q<5 + Z(wé,rodjgo,rgCj,spj,s(D)Ts)|Qa

j=1

= PO,E(D)(FO,E * gE)lﬂé + A5’€(96>|Qa
= gelas —|—A575(gg)|95

= 7/)6,10Fs|95 = FE‘QJ'

We have solved the equation P(x, D)T = F on a neighborhood of zy which depends
on the weight function k£ or in other words on the order of the functional F.

Second set of hypotheses. We now assume that (H1), (H2), (H3) and (H6)
hold and we prove that in this case one can find a neighborhood €25 which does not
depend on the weight function k.

Step 3: the operator 22:1 ¢j(x)P;(D) on Q5 C Q5,. Let k be an arbitrary
weight function. Choosing § < §; and any v € (0,vs) our set of hypotheses com-
bined with the properties of Fj . yields on an interval (0,e;) depending on k the
estimates

[ As,e(Dlpk, <260 > 1Vs0,20C5. 1,010, [ P.c (D) (Fo.e * 9)lp,k,
j=1

<28y [|(1+ CLEN™ F(s0,00¢1.) () 111 Py (D) (Fo.0) o1 ],

Jj=1
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s
<25) c(Ws,x0)  supsup [0 (@) el Focllo g 90k,

= || <n+1+ Ny z€Q
< 20¢1(k, 60, 9)e* (|9l p ., -

At this point taking ej so small that ci(k,do,¥)er* < 1 and by requiring 6 < 1/4
we have that for all 6 < min(dy,1/4) there exist v5 such that for all v < vs the
inequality

145D Ik, < 27 glp,r,

holds in a sufficiently small interval ¢ € (0,ex). Note that ¢ does not depend on
k while e does. Clearly for all for all f € B, ,(R™) there exists a unique solution
(9e)ee(0,e0) With g. € By (R™) of the equation g + As.(g) = s, f for € € (0,ex).

Step 4: the equation P(z,D)T = F on Qs with F € £,(G(R"),C). Let
(F.) be a net in &'(R™)( which defines F. By Proposition i) we know that
(Fe)e € Mp, , (rn) for some weight function k. The previous arguments are valid in
a neighborhood Q5 of xg, with § independent of k£ and (g.). is the unique solution
of the equation

ge + Aé,s(gs) = w&,mng
on the interval (0,ey). The functional generated by
TE = FO,E * Je
is the solution 7" of the equation P(z, D)T = F on 5.

Step 5: the equation ) 7_, ¢;(z)P;(D) = v € Go(R") on Q5. Let (ve)e €
Enm(R™) be a representative of v € G.(R™). For ¢ € (0,¢;) the equation

As,ég +g= '(/)5@01)5 (64)

has a unique solution g. in By, ;. Moreover,

||gE| .k S CHwtso,IOUE p,k (65)

for all € € (0,ex). Since 155,v. belongs to any B, j space we can conclude that
there exists a net of distributions (g. ). which solve the equation in D’ and such
that for all k& € K the estimate holds on a sufficiently small interval (0,¢ey).
From the embedding B, r C € when (1 + [{[)7/k(§) € L%, 1/p+ 1/q = 1 the
inequality and the fact that (|15 4oV ||p.k)e is moderate we have the following:

V] € NHE]’ € (07 1]75j \ 0, (gs)se(o,sj) € MCj(R")'

In other words the net of distributions (g. ). solves the equation in D’ and has
more and more moderate derivatives as € goes to 0. (ge)e is the representative of a
basic functional g in £(G(R™),C). We already know that u = Fy*g € Ly, (G(R™),C)
solves the equation P(z, D)u = v in £(G¢(€s), C).

Step 6: g belongs to G.(R™) then u € G.(R™). We finally prove that g is an
element of G.(R™). Since we already know that g has compact support we just have
to prove that g belongs to G(R™). This will imply that u € G.(R™). We generate a
representative of g which belongs to £y (R™). Let (ne). € N with n. # 0 for all &
and p € C°(R™) with [ p = 1. For p,_(z) = p(x/n:)n;", the net g. * p,_ belongs
to Epr(R™). Indeed, g. * p,. € C* for each ¢ and taklng ¢ small enough

Sup [0 (920 )(0)] = sup 107 (). (2)] = sup]| [ 0%(o—nez)olz) | <.
rzeK reK rzeK
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Now, since

e = 9 () = [ (9:(0) — 9ol — me)p(2) s
and for all ¢ € N,
SUp [ge — ge * pu. (z)| = O(e7),
rzeK

we conclude that for all u € G.(R™), g(u) = [(ge * pn.)e](u) where [(ge * pn.)e] €
G(R™). This means that g is an element of G(R"). O

Remark 6.6. Note that in the proof we do not make use of the assertion (iii)
of Theorem with ¢ = 954,¢j and u = P;.(D)(Fp, * g) because this would
generate some vy depending on ¢ and therefore on . This would also lead to a
neighborhood €25 of xg whose radius depends on the parameter €. Finally, note
that the condition (H6) is an assumption of G*-regularity for the coefficients c;.

Example 6.7. On R? we define the operator
DQQ; - 5_1D§ + Cl,s(l'v y)Dz + C2,€(xa y)Dy + 0375(1', y),

where (¢1,¢)e, (c2,6)e and (c3 ). are moderate nets of smooth functions. We set
Pye(D) = D2 —e7'D;, Pi(D) = D,, P»(D) = D, and P3(D) = I. Assume that
the coefficients ¢; . vanish in a point (zg,yo) for all e. The weight function

ﬁov,sz(&,fz) = (6] — e 1)P + (261)2 + (2e716)2 + 4+ 4272

—~2 —~2
is invertible in (1,0) and concerning the functions P; (&) = &2 +1, Py (&) = £3+1
—~2
and P; =1 the following inequalities hold:
o2 2 2 52
P(&) =8 +1<4G+4< Py (6,8),
~2 1 1 5—2
P(&)=¢&+1= 152(45_2(53 +1)) < 152P0,s (€1, &2),
—~2 —2
Py =1<4< Py (1,62).

One easily sees that for \; =1, A\y. = 1c and A3 = 1 the assumptions (H1)-(H3)
and (H6) of Theorem are fulfilled if, on a certain neighborhood Q of (xg,yo)
and for all N € N, the following holds:

sup sup |0%;(x)] = O(e), sup sup|0%a2(z)| = O(1),
|a|]<N z€Q |a|<N zef

sup sup |0%¢s,<(z)] = O(e).

Ja]<N z€Q

Hence the operator
D —[(e7")] D + c1(x,y) Dy + oz, y) Dy + c3(x,y),

with G®-coefficients ¢1 = [(c1,¢)e), c2 = [(ca.e)e] and ¢3 = [(¢3.¢)e] is locally solvable
at (ro,%o) in both the Colombeau algebra G(R?) and the dual £(G.(R?),C).
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7. A SUFFICIENT CONDITION OF LOCAL SOLVABILITY FOR GENERALIZED
PSEUDODIFFERENTIAL OPERATORS

We conclude this article by providing a sufficient condition of local solvability
for generalized pseudodifferential operators. The generalization from differential to
pseudodifferential operators obliges us to find suitable functional analytic methods
able to generate a local solution which are not a simple convolution between the
right-hand side term and a fundamental solution. In particular, we will make
use of the Sobolev mapping properties of a generalized pseudodifferential operator
a(z,D). In the sequel we use the notation H°(R") = L?(R") and || - ||s for the
Sobolev H*-norm.

Proposition 7.1. Let a € Ggmmen). There exist Iy € N and a constant Cy > 0
such that the inequality

lac(e, Dyulls-m < Co max (€)*""tac2(€) ™[5 ulls (7.1)
holds for all s € R, for all w € H*(R™), for all representatives (ac). of a and for
all € € (0,1].

It is clear from ([7.1) that the moderateness properties of (a.). are the same of
(ac(x, D)u). as a net in H5~™(R")O1],
Remark 7.2. The Colombeau space Grz2gn) based on L?(R") is not contained in
the dual £(G.(R™),C). Indeed, for f € L2(R) N L'(R), f # 0, and (n.). € N we
have that f = [(ngl/Qf(-/nE))E] is not 0 in Gr2(g) but

/R w(@)f(z) dz = 0

for all u € G.(R). Analogously, the embedding H*'(R™) C H#®2(R") cannot be
reproduced at the level of the corresponding Colombeau spaces for s; > s5. This is
due to the fact that there exist nets in ./\/'HSQ(Rn) N Mpsi gy which do not belong
to N1 n). For example, for f € H*(R™) with [|f'[lo # 0 and (n.). € N we
have that (n2>f(-/n.))e € M1 @) N Ngow) but (nz /2 f/(-/n.)). & Ngow) and
therefore (n2/*f(-/n.))e & Nt g)-

The embedding issues of Remark lead us to study the equation a(x, D)T = F

in the dual £(G.(R™),C even when F belongs to a Colombeau space based on a
Sobolev space.

Theorem 7.3. Let a € Ggm(pany. Assume that there exist a representative (a).
of a*, a strictly non-zero net (A\:)e, a positive number § > 0 and 0 < s < m such
that

lells < Acllaz (@, D)lasello (7.2)
for all ¢ € C(Qs), Qs := {|z| <}, and for all € € (0,1].
Then, for all F € Ly(Ge(R™),C) generated by a net in M- mny there erists

T € L1(Gc(2s),C) generated by a net in Myz2(qy) such that
a(l‘vD)|QaT = F|Qé
in L£(Ge(Q5),C).
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The proof of Theorem uses the theory of Hilbert C-modules (see [12]) and

in particular of the projection operators defined on the Hilbert C-module G L2(Q)-
;From [12, Proposition 2.21] we have that if E is a nonempty subset in Grz2(q;)
generated by a net (E.). of nonempty convex subsets of L?*(Qs) (E = [(E:)] :=
{u € Groq,) + 3repr.(us): Ve € (0,1] u. € E.}) then there exists a map Pg :
Gr2(0,s) — E called projection on E such that ||u — Pg(u)|| = infycpg [[u — w]| for
all u € Gr2(qy). In this particular case we have in addition that the net (Pg_ (ue))e
is moderate in L?(£2s) and the property Pg(u) = [(Pg, (ue))e]. If E. is a subspace
of L?(£s) we easily have for all v € L?(£2s) the following inequality in the norm of
L2(Qs): [|1Pg vl < [lv — Pg vl + [[vl] < inf ez lv—w] + [lv] < 2]v].
Proof of Theorem[7.3 Let a* be the representative of a* fulfilling the hypotheses
of Theorem Let E. == {¢ € L?() : Jp € C(s) ¥ = aZ(z,D)|as(¢)}-
E. is a nonempty subspace of L?({)5) and therefore we can define the projection
operator Pg : Gr2(q,) — Eon B := [(E;).] C-submodule of Gr2(0s)- We use for the
operator C°(Qs) — L%(Qs) : ¢ — a*(x, D)|q, () the notation A*. The condition
means that A% : C°(Qs) — E. is invertible. Combining with the Sobolev
embedding properties we have that

1(AD) ™ oll2(05) < IAD) T 0lls < Aellvll L2y (7.3)
holds for all v € E.. Taking the closure E. of E. in L?(Qs) the inequality (7.3)

allows us to extend (A*)~! to a continuous operator from E. to H*(R") C L?(£s),
with (7.3)) valid for all v € E..

Let u be an element of E defined by the net (u.)e, uc € E.. Clearly (A?) tu. €
C°(Qs) with [[(AF)tuells < Acllucl|r2(q,) and if ul € E. is another net generating
u we obtain

(A2~ (e — ) < Aclue —
This means that we can define the C-linear functional
S:E—C:u=[(uc)e] = [(((AD) el Fo) paam))e]
where

(A2 ™ el Fo) g | = (2m) 71 ((€)* (A7) el (€)™ FL) 2|
< 1(AD ™ el Fell-s
< Acluellz o 1 Fell=s-
From the previous inequality we also have that the functional S is continuous. Since
FE is a C-submodule the projection Pg is continuous and C-linear. It follows that
So Pg:Grag, — C:u— S(Pg(u)

is a continuous C-linear functional on G 12(Q;) With basic structure. Indeed, it is
defined by the net L?(Q;) — C:v — ((Af)~'Pg_v|F.)L2(rn) such that

|((A2D) 7 Py, vlFe) paeny| < AellPp_ vllzzcog [ Fell-s < 2Xc|lFell—sllvll 2oy,

where the nets (A:). and (|| Fz||—s)e are moderate. By the Riesz representation the-

orem for Hilbert C-modules and C-linear functionals [12, Theorem 4.1 and Propo-
sition 4.4]) we have that there exists a unique ¢ € Gr2(q,) such that

(S0 Pg)(u) = (ult)r2(ay)
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for all u € Gr2(q,). More precisely there exists a representative (t.). of ¢ such that
the equality

((A:)APEE VL) 2 @ny = (V[te) L2(05)
holds for all v € L2(s). Let T be the basic functional in £(G.(€s), C) generated by
the net (t.)c. T solves the equation a(z, D)|q,T = F|q;. Indeed, since A% (z, D)y €
E. C L*(Qs) for all ¢ € C°(£)s5) we can write
((AD) "' Pg AL(z, D)p|Fe) 2 mny = ((AZ) T AL(z, D)@l Fe) L2mn) = (9 F2) L2 (gm)
= (AZ(z, D)(p|ts)L2(QE)-
Thus,
(SD\FE)H(R”) = (@|as($aD)|Qate)L2(Qé)
for all p € C°(Qs) or in other words, a.(z, D)|q,te = F:|q; in D' (Qs). O

Theorem tells us that classical operators which satisfy the condition
are locally solvable in the Colombeau context, in the sense that under suitable
moderateness conditions on the right hand side we will find a local generalized
solution. An example is given by differential operators which are at the same time
principally normal and of principal type at 0. More precisely, Proposition 4.3 in
[28] proves that a differential operator a(x, D) which is both principally normal
and of principal type at 0 fulfills the inequality [|¢|m-1 < |la*(z,D)pllo for all
@ € C°(0s) with ¢ small enough.

We now go back to the case of differential operators with generalized Colombeau
coefficients. In other words we assume that the symbol a is of the type a = [(a.):] =
2 laj<m Ca(2)€" with ca € Goo(R™). The next proposition shows that the local
solvability condition holds under an ellipticity assumption on the real part of
the symbol a.. We recall that for all m € N and for all § > 0 the inequality

”(PHm < 25”<p||m+1 (74)
is true for all p € C°(Qs) (see [28, Lemma 4.2]).

Proposition 7.4. Let a(x, D) be a generalized differential operator with symbol
a € Ggm(geny. If there exists b € R, a representative (ac)e € Mgmgenyp, a constant
co >0 and a net (cc)e € Mgm—1(r2n)y, such that

Ra(x,€) = coe™(§)™ + co(,€)

for all (x,€) and all € € (0,1], then there exist a sufficiently small § > 0 and a
constant C' > 0 such that

lelz < Ce™*llaZ(z, D)ello
for all p € C°(Qs) and for all € € (0,1].

Proof. We begin by writing 2% (¢|al(z, D)y) as (¢|(ae + a})(x, D)p). Recalling
that a = @: modulo Mgm-1(gn);, we have

2R (¢plal(z, D)) = (#]2c0e" X (D)) + (¢ler,e (. D)),
where X (D) has symbol (§)™ and (c1,c): € Mgm—1(g2ny,. Hence,
2R (plaZ(z, D)p) > c1e’| ol — (plere(z, D))
> ae’llel — el -illee(e, D)el -z
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Combining Proposition with we obtain
2R (¢plaZ(z, D)) = cre’llolh — lly
Concluding for ¢ small enough there exists a constant C > 0 such that

el < Ce™llpllzllal(z, D)pll-z < Ce™®|lpllz laZ(z, D)ell
holds for all ¢ € C°(Qs). O

Example 7.5. Note that the condition can be fulfilled by differential opera-
tors which are not a bounded perturbation of a differential operator with constant
Colombeau coefficients. This means that the results of this section enlarge the
family of generalized differential operators whose local solvability we are able to
investigate in the Colombeau context. As an explanatory example in R? consider

ac(x, D) = D1 + b.(x) Do,

where (b.). is the representative of a generalized function. The generalized differ-
ential operator a(z, D) generated by (a.). is not a bounded perturbation of the
operator at 0 if we take b.(0) = 0. However if (b.). is real valued and suitable mod-
erateness conditions are satisfied (for instance (b.). bounded in € together with all
its derivatives), the arguments of [28, Proposition 4.3] lead us to an estimate from
below of the type considered by Theorem

210’2 > el % — 28c2e” ol -
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