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SUFFICIENT CONDITIONS OF LOCAL SOLVABILITY FOR
PARTIAL DIFFERENTIAL OPERATORS ON SPACES OF

COLOMBEAU TYPE

CLAUDIA GARETTO

Abstract. We provide sufficient conditions of local solvability for partial dif-
ferential operators with variable Colombeau coefficients. We mainly concen-

trate on operators which admit a right generalized pseudodifferential parame-

trix and on operators which are a bounded perturbation of a differential op-
erator with constant Colombeau coefficients. The local solutions are intended

in the Colombeau algebra G(Ω) as well as in the dual L(Gc(Ω), eC).

1. Introduction

Colombeau algebras of generalized functions [2, 13] have proved to be a well-
organized and powerful framework where to solve linear and nonlinear partial dif-
ferential equations involving non-smooth coefficients and strongly singular data.
So far, the purpose of many authors has been to find for a specific problem of ap-
plicative relevance the most suitable Colombeau framework where first to provide
solvability and second to give a qualitative description of the solutions. We recall
that several results of existence and uniqueness of the solution have been obtained
in this generalized context for hyperbolic Cauchy problems with singular coeffi-
cients and initial data [17, 18, 19, 23, 24], for elliptic and hypoelliptic equations
[10, 20, 21] and for divergent type quasilinear Dirichlet problems with singularities
[27]. The setting of generalized functions employed is the Colombeau algebra G(Ω)
constructed on an open subset Ω of Rn, or more in general the Colombeau space GE
of generalized functions based on a locally convex topological vector space E (see
[4, 5] for definitions and properties). For instance in [1, 20] solvability is provided
in the Colombeau space based on H∞(Rn) = ∩s∈RH

s(Rn). Recently, in order to
enlarge the family of generalized hyperbolic problems which can be solved and in
order to provide a more refined microlocal investigation of the qualitative properties
of the solution, the dual L(Gc(Ω), C̃) has replaced the classical Colombeau setting
G(Ω) [26].

This paper is devoted to the longstanding general problem of solvability or more
precisely local solvability in the Colombeau context for partial differential operators

2000 Mathematics Subject Classification. 46F30, 35D99.
Key words and phrases. Algebras of generalized functions;

generalized solutions of partial differential equations.
c©2009 Texas State University - San Marcos.
Submitted June 22, 2009. Published September 21, 2009.
Supported by grant T305-N13 from FWF, Austria.

1



2 C. GARETTO EJDE-2009/116

with Colombeau coefficients. Namely, it is the starting point of a challenging project
which aims to discuss and fully understand solvability and local solvability of partial
differential operators in the Colombeau context.

Instead of dealing with a specific equation P (x,D)u = v and looking for a new
setting of generalized functions tailored to this particular problem, we want to de-
termine a class of locally solvable partial differential operators. This will be done by
finding some sufficient conditions on P of local solvability in the Colombeau context
G(Ω) or L(Gc(Ω), C̃). As in the classical theory of partial differential operators with
smooth coefficients, mainly developed by Hörmander in [14, 16], different mathe-
matical methods and level of technicalities concern the investigation of solvability
when the coefficients are constant or not. The Malgrange-Ehrenpreis theorem es-
sentially reduces the solvability issue to the search for a fundamental solution in
the constant coefficients case but clearly this powerful tool loses efficiency when the
coefficients are variable. In this situation indeed, not only the structural properties
of the operator but also the geometric features of the set Ω where we want to solve
the equation play a relevant role in stating existence theorems of local or global
solvability.

Differential operators with constant Colombeau coefficients; i.e. coefficients in
the ring C̃ of complex generalized numbers, have been studied by various authors
[7, 9, 20]. In particular a notion of fundamental solution has been introduced in
[7] as a functional in the dual L(Gc(Rn), C̃) providing, by means of a generalized
version of the Malgrange-Ehrenpreis theorem, a straightforward result of solvability
in the Colombeau context. In detail, a solution to the equation P (D)u = v, P (D) =∑

|α|≤m cαD
α with cα ∈ C̃ has been obtained via convolution of the right hand side

v with a fundamental solution E and certain regularity qualities of the operator
P (D), the G- and G∞-hypoellipticity for instance, have been proven to be equivalent
to some structural properties of its fundamental solutions [9, Theorems 3.6, 4.2].

In this paper we concentrate on differential operators with variable Colombeau
coefficients, i.e. P (x,D) =

∑
|α|≤m cα(x)Dα. Being aware of the objective difficulty

of investigating solvability in wide generality, we fix our attention on two classes
of operators: the operators which are approximately invertible, in the sense that
they admit a right generalized pseudodifferential parametrix, and the operators
which are locally a bounded perturbation of a differential operator with constant
Colombeau coefficients. In both these cases we will formulate sufficient conditions
of solvability which will require suitable assumptions on the moderateness prop-
erties of the coefficients and the right-hand side. Note that the symbolic calculus
for generalized pseudodifferential operators developed in [3, 8, 10] is essential for
studying the first class of operators whereas the theory of fundamental solutions
in the dual L(Gc(Rn), C̃) is heavily used in finding a local Colombeau solution for
operators of bounded perturbation type. This paper can therefore be considered a
natural follow-up of [7].

We now describe the contents of the paper in more detail. Section 2 collects
the needed background of Colombeau theory and recalls, for the advantage of the
reader, the results of solvability obtained in the generalized constant coefficients
case. Definition and properties of a fundamental solution in the dual L(Gc(Rn), C̃)
are the topic of Subsection 2.2. Inspired by the work of Hörmander in [15, Section
10.4], in Subsection 2.3 we introduce an order relation between operators with
constant Colombeau coefficients in terms of the corresponding weight functions. In
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other words, we make use of the weight function P̃ (ξ) =
( ∑

|α|≤m |∂αP (ξ)|2)1/2

(with values in R̃) in order to determine the differential operators which are stronger
(or weaker, respectively) than P (D). By stating this notion in few equivalent
ways (Proposition 2.8) we prove that an m-oder differential operator P (D) with
coefficients in C̃ is stronger than any differential operator with coefficients in C̃ of
order less than or equal to m if and only if it is G-elliptic. Analogously, we prove
that if P (D) is of principal type then it is stronger or better it dominates (Definition
2.10) any differential operator with order les than or equal to m− 1. These results
of comparison among differential operators with constant Colombeau coefficients
will be used in Sections 5 and 6.

In Section 3 we begin our investigation of local solvability in the Colombeau
context by considering differential operators with coefficients in G that admit a
right generalized pseudodifferential operator parametrix. Given P (x,D) this means
that there exists a pseudodifferential operator q(x,D) such that Pε(x,D)qε(x,D) =
I + rε(x,D) holds at the level of representatives with (rε)ε a net of regularizing
operators. The moderateness properties of the reminder term rε are crucial in
determining for each x0 ∈ Rn a sufficiently small neighborhood Ω such that the
equation P (x,D)T = F on Ω is solvable in L(Gc(Ω), C̃) for any L2

loc-moderate
functional F . Different notions of a generalized hypoelliptic symbol have been
introduced in the recent past in [8, 10, 11]. They all assure the existence of a
generalized parametrix q(x,D) but in general do not guarantee the moderateness
properties on the regularizing operator r(x,D) which are essential for the previous
result of local solvability. For this reason in Propositions 3.6, 3.7 and 3.9 we make
use of a definition of generalized hypoelliptic symbol, first presented in [3], which
is less general than the ones considered in [8, 10, 11], but that combining the right
moderateness and regularity properties, provides local solvability in L(Gc(Ω), C̃) as
well as in G(Ω) and G∞(Ω).

Section 4 deals with a special class of differential operators: the operators which
are G-elliptic in a neighborhood of a point x0. Since they have a generalized hypoel-
liptic symbol they admit a local generalized parametrix and from the statements
of Section 3 we easily obtain results of local solvability. The most interesting fact
is that this locally solvable operators are actually a perturbation of a differential
operator with constant Colombeau coefficients, namely the same operator evalu-
ated at x = x0. Using the concepts of Subsection 2.3 we prove that a differential
operator P (x,D) which is G-elliptic in x0 can be written in the form

P0(D) +
r∑
j=1

cj(x)Pj(D), (1.1)

where P0(D) = P (x0, D), the operators Pj(D) have coefficients in C̃ and are all
weaker than P0(D) and the generalized functions cj belong to the Colombeau al-
gebra G(Rn). This fact motivates our interest for the wider class of generalized
differential operators which are locally a bounded perturbation of a differential op-
erator with constant Colombeau coefficients as in (1.1). The precise definition and
some first examples are the topic of Section 5.

In Section 6 we provide some sufficient conditions of local solvability for operators
of bounded perturbation type as defined in Section 5. The local solutions are
obtained by using a fundamental solution in L(Gc(Rn), C̃) of P0(D), the comparison
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between the operators Pj(D) and P0(D) and, at the level of representatives, suitable
estimates of Bp,k-moderateness. Theorem 6.3 and Theorem 6.5 have Hörmander’s
theorem of local solvability for operators of constant strength ([14, Theorem 7.3.1],
[15, Theorem 13.3.3]) as a blueprint.

The paper ends with a sufficient condition of local solvability for operators which
are not necessarily of bounded perturbation type or do not have a generalized
parametrix. In Section 7, inspired by [28, Chapter 4], we prove that a certain
Sobolev estimate from below on the adjoint of a generalized pseudodifferential op-
erator is sufficient to obtain local solvability in the dual L(Gc(Ω), C̃). The proof
has the interesting feature of using the theory of generalized Hilbert C̃-modules
developed in [12] and in particular the projection theorem on an internal subset.
We finally give some examples of generalized differential and pseudodifferential op-
erators fulfilling this sufficient condition.

2. Colombeau theory and partial differential operators with
constant Colombeau coefficients

In this section we recall some basic notions of Colombeau theory and, for the
advantage of the reader, what has been proved in [7, 20] about solvability in the
Colombeau context of partial differential operators with generalized constant coef-
ficients.

2.1. Basic notions of Colombeau theory. Main sources of this subsection are
[2, 4, 5, 10, 11, 13].
Nets of numbers. Before dealing with the major points of the Colombeau construc-
tion we begin by recalling some definitions concerning elements of C(0,1].

A net (uε)ε in C(0,1] is said to be strictly nonzero if there exist r > 0 and η ∈ (0, 1]
such that |uε| ≥ εr for all ε ∈ (0, η]. The regularity issues discussed in this paper
will make use of the following concept of slow scale net (s.s.n). A slow scale net is
a net (rε)ε ∈ C(0,1] such that

∀q ≥ 0∃cq > 0∀ε ∈ (0, 1] |rε|q ≤ cqε
−1.

Colombeau spaces based on E. Let E be a locally convex topological vector space
topologized through the family of seminorms {pi}i∈I . The elements of

ME := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∃N ∈ N pi(uε) = O(ε−N ) as ε→ 0},

Msc
E := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∃(ωε)ε s.s.n. pi(uε) = O(ωε) as ε→ 0},

NE := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∀q ∈ N pi(uε) = O(εq) as ε→ 0},
are called E-moderate, E-moderate of slow scale type and E-negligible, respectively.
We define the space of generalized functions based on E as the factor space GE :=
ME/NE . The expression “of slow scale type” is used for the generalized functions
of the factor space Gsc

E := Msc
E/NE . The elements of GE are equivalence classes for

which we use the notation u = [(uε)ε].
Let Ω be an open subset of Rn. For coherence with the notations already in use,

we set EM (Ω) = ME(Ω), N (Ω) = NE(Ω), EM = MC and N = NC. The Colombeau
algebra G(Ω), as originally defined in its full version by Colombeau in [2], is obtained
as the space GE with E = E(Ω). Analogously, the rings C̃ and R̃ of complex and
real generalized numbers are the Colombeau spaces GC and GR respectively. C̃ is
also the set of constants of G(Rn). The space of distributions D′(Ω) is embedded
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into G(Ω) via convolution with a mollifier (see [13] for more details). Since G(Ω) is
a sheaf with respect to Ω one has a notion of support for u ∈ G(Ω) and a subalgebra
Gc(Ω) of compactly supported generalized functions.
Regularity theory. Regularity theory in the Colombeau context as initiated in [25]
is based on the subalgebra G∞(Ω) of all elements u of G(Ω) having a representative
(uε)ε belonging to the set

E∞M (Ω) :=
{
(uε)ε ∈ E [Ω] : ∀K b Ω ∃N ∈ N∀α ∈ Nn,

sup
x∈K

|∂αuε(x)| = O(ε−N ) as ε→ 0
}
.

G∞(Ω) coincides with the factor space E∞M (Ω)/N (Ω) and by construction has the
intersection property G∞(Ω) ∩ D′(Ω) = C∞(Ω).
Topological theory of Colombeau spaces. The family of seminorms {pi}i∈I on E

determines a locally convex C̃-linear topology on GE (see [4, Definition 1.6]) by
means of the valuations

vpi
([(uε)ε]) := vpi

((uε)ε) := sup{b ∈ R : pi(uε) = O(εb) as ε→ 0}

and the corresponding ultra-pseudo-seminorms {Pi}i∈I , where Pi(u) = e−vpi
(u).

For the sake of brevity we omit to report definitions and properties of valuations and
ultra-pseudo-seminorms in the abstract context of C̃-modules. Such a theoretical
presentation can be found in [4, Subsections 1.1, 1.2]. More in general a theory
of topological and locally convex topological C̃-modules has been developed in [5].
The Colombeau algebra G(Ω) has the structure of a Fréchet C̃-modules and Gc(Ω)
is the inductive limit of a family of Fréchet C̃-modules. We recall that on C̃ the
valuation and the ultra-pseudo-norm obtained through the absolute value in C are
denoted by veC and | · |e respectively.
The dual L(Gc(Ω), C̃) and its basic functionals. L(Gc(Ω), C̃) is the set of all con-
tinuous C̃-linear functionals on Gc(Ω). As proven in [4] it contains (via contin-
uous embedding) both the algebras G∞(Ω) and G(Ω); i.e., G∞(Ω) ⊆ G(Ω) ⊆
L(Gc(Ω), C̃). The inclusion G(Ω) ⊆ L(Gc(Ω), C̃) is given via integration (u →(
v →

∫
Ω
u(x)v(x)dx

)
, for definitions and properties of the integral of a Colombeau

generalized functions see [13]). A special subset of L(Gc(Ω), C̃) is obtained by re-
quiring the so-called “basic” structure. In detail, we say that T ∈ L(Gc(Ω), C̃) is
basic (or equivalently T ∈ Lb(Gc(Ω), C̃)) if there exists a net (Tε)ε ∈ D′(Ω)(0,1]

fulfilling the following condition: for all K b Ω there exist j ∈ N, c > 0, N ∈ N
and η ∈ (0, 1] such that

∀f ∈ DK(Ω)∀ε ∈ (0, η] |Tε(f)| ≤ cε−N sup
x∈K,|α|≤j

|∂αf(x)|

and Tu = [(Tεuε)ε] for all u ∈ Gc(Ω).
Analogously one can introduce the dual L(G(Ω), C̃) and the corresponding set

Lb(G(Ω), C̃) of basic functionals. As in distribution theory, Theorem 1.2 in [4]
proves that L(G(Ω), C̃) can be identified with the set of functionals in L(Gc(Ω), C̃)
having compact support.
Generalized differential operators. G(Ω) is a differential algebra, in the sense that
derivatives of any order can be defined extending the corresponding distributional
ones. We can therefore talk of differential operators in the Colombeau context
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or, for simplicity, of generalized differential operators. Clearly, a differential opera-
tor with singular distributional coefficients generates a differential operator in the
Colombeau context by embedding its coefficients in the Colombeau algebra. Let

P (x,D) =
∑
|α|≤m

cα(x)Dα,

with cα ∈ G(Ω) for all α. Its symbol

P (x, ξ) =
∑
|α|≤m

cα(x)Dα

is a polynomial of order m with coefficients in G(Ω) and representatives

Pε(x, ξ) =
∑
|α|≤m

cα,ε(x)Dα.

The operator P (x,D) maps Gc(Ω), G(Ω) and L(Gc(Ω), C̃) into themselves respec-
tively and G∞(Ω) into G∞(Ω) if the coefficients are G∞-regular. When the coeffi-
cients are constant (cα ∈ C̃ for all α) we use the notation P (D).

2.2. Fundamental solutions in Lb(Gc(Rn), C̃). Let P (D) be a partial differential
operator of order m with coefficients in C̃. Any net of polynomials (Pε)ε determined
by a choice of representatives of the coefficients of P (D) is called a representative
of the polynomial P . Consider the weight function P̃ : Rn → R̃ defined by

P̃ 2(ξ) =
∑
|α|≤m

|∂αP (ξ)|2.

The arguments in [14, (2.1.10)] yield the following assertion: there exists C > 0
depending only on m and n such that for all (Pε)ε the inequality

P̃ε(ξ + η) ≤ (1 + C|ξ|)mP̃ε(η) (2.1)

is valid for all ξ, η ∈ Rn and all ε ∈ (0, 1]. When the function P̃ : Rn → R̃ is
invertible in some point ξ0 of Rn Lemma 7.5 in [20] proves that for all representative
(Pε)ε of P there exist N ∈ N and η ∈ (0, 1] such that

P̃ε(ξ) ≥ εN (1 + C|ξ0 − ξ|)−m, (2.2)

for all ξ ∈ Rn and ε ∈ (0, η]. This means that P̃ is invertible in any ξ once it is
invertible in some ξ0. Note that the constant C > 0 is the same appearing in (2.1)
and εN comes from the invertibility in R̃ of P̃ (ξ0). It is not restrictive to assume
for some strictly non-zero net (λε)ε that

P̃ε(ξ) ≥ λε(1 + C|ξ0 − ξ|)−m,
for all ε ∈ (0, 1].

In the sequel K is the set of tempered weight functions introduced by Hörmander
in [14, Definition 2.1.1]; i.e., the set of all positive functions k on Rn such that for
some constants C > 0 and N ∈ N the inequality

k(ξ + η) ≤ (1 + C|ξ|)Nk(η)
holds for all ξ, η ∈ Rn. Concerning the Hörmander spaces Bp,k which follow, main
references are [14, 15]. Typical example of a weight function is k(ξ) = 〈ξ〉s =
(1 + |ξ|2)s/2, s ∈ R.
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Definition 2.1. If k ∈ K and p ∈ [1,+∞] we denote by Bp,k(Rn) the set of all
distributions w ∈ S ′(Rn) such that ŵ is a function and

‖w‖p,k = (2π)−n‖kŵ‖p <∞.

Bp,k(Rn) is a Banach space with the norm introduced in Definition 2.1. We have
S (Rn) ⊂ Bp,k(Rn) ⊂ S ′(Rn) (in a topological sense) and that C∞c (Rn) is dense in
Bp,k(Rn) for p <∞.

The inequality (2.1) says that P̃ε is a tempered weight function for each ε so it
is meaningful to consider the sets B∞,fPε

(Rn) of distributions as we will see in the
next theorem, proven in [7].

Theorem 2.2. To every differential operator P (D) with coefficients in C̃ such
that P̃ (ξ) is invertible in some ξ0 ∈ Rn there exists a fundamental solution E ∈
Lb(Gc(Rn), C̃). More precisely, to every c > 0 and (Pε)ε representative of P there
exists a fundamental solution E given by a net of distributions (Eε)ε such that
Eε/ cosh(c|x|) ∈ B∞,fPε

(Rn) and for all ε∥∥∥ Eε
cosh(c|x|)

∥∥∥
∞,fPε

≤ C0,

where the constant C0 depends only on n,m and c.

One sees in the proof of Theorem 2.2 (Proposition 3.5 and Theorem 3.3 in [9])
that for each ε the distribution Eε is a fundamental solution of the operator Pε(D).
Theorem 2.2 entails the following solvability result.

Theorem 2.3. Let P (D) be a partial differential operator with coefficients in C̃
such that P̃ is invertible in some ξ0 ∈ Rn. Then the equation

P (D)u = v (2.3)

(i) has a solution u ∈ G(Rn) if v ∈ Gc(Rn),
(ii) has a solution u ∈ G∞(Rn) if v ∈ G∞c (Rn),
(iii) has a solution u ∈ L(Gc(Rn), C̃) if v ∈ L(G(Rn), C̃),
(iv) has a solution u ∈ Lb(Gc(Rn), C̃) if v ∈ Lb(G(Rn), C̃).

Theorem 2.3 extends to the dual the solvability result obtained in G by Hörmann
and Oberguggenberger in [20]. A more detailed investigation of the properties of u,
which heavily makes use of the theory of Bp,k-spaces, can be found in [7, Appendix].

Remark 2.4. The condition of invertibility of P̃ in a point ξ0 of Rn turns out
to be equivalent to the solvability statement (i) of Theorem 2.3. More precisely,
Theorem 7.8 in [20] shows that if v is invertible in some point of Ω and the equation
P (D)u = v is solvable in G(Ω) then P̃ is invertible in some point of Rn. In the same
paper the authors prove that the invertibility of the principal symbol Pm in some
ξ0 implies the invertibility of P̃ (ξ0). The converse does not hold as one can see from
Pε(ξ) = aεξ + i, with a = [(aε)ε] 6= 0 real valued and not invertible. The principal
symbol P1 is not invertible (in any point of Rn) but P̃ 2(0) = 1 + a2 is invertible
in R̃. In the same way we have that the existence of an invertible coefficient in the
principal part of P (D) is a sufficient but not necessary condition for the invertibility
of the weight function P̃ . Note that there exist differential operators where all the
coefficients are not invertible which still have an invertible weight function. An
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example is given by Pε(ξ1, ξ2) = aεξ1 + ibεξ2, where aε = 1 if ε = n−1, n ∈ N, and 0
otherwise, and bε = 0 if ε = n−1, n ∈ N, and 1 otherwise. The coefficients generated
by (aε)ε and (bε)ε are clearly not invertible but P̃ε

2
(1, 1) = 2(a2

ε + b2ε) = 2.

2.3. Comparison of differential operators with constant Colombeau co-
efficients. Inspired by [15, Section 10.4] we introduce an order relation between
operators with constant Colombeau coefficients by comparing the corresponding
weight functions.

Definition 2.5. Let P (D) and Q(D) be partial differential operators with coeffi-
cients in C̃. We say that P (D) is stronger than Q(D) (Q(D) ≺ P (D)) if there exist
representatives (Pε)ε and (Qε)ε and a moderate net (λε)ε such that

Q̃ε(ξ) ≤ λεP̃ε(ξ)

for all ξ ∈ Rn and ε ∈ (0, 1]

In the sequel we collect some estimates valid for polynomials with coefficients in
C proven in [15, Theorem 10.4.1, Lemma 10.4.2]. We recall that Q̃(ξ, t) denotes
the function (

∑
α |Q(α)(ξ)|2t2|α|)1/2 for Q polynomial of degree less than or equal

to m in Rn and t positive real number. Clearly Q̃(ξ, 1) = Q̃(ξ).

Proposition 2.6.
(i) There exists a constant C > 0 such that for every polynomial Q of degree

less than or equal to m in Rn,

Q̃(ξ, t)
C

≤ sup
|η|<t

|Q(ξ + η)| ≤ CQ̃(ξ, t) (2.4)

for all ξ ∈ Rn and t > 0.
(ii) There exist constants C ′ and C ′′ such that for all polynomials P and Q of

degree less than or equal to m,

C ′P̃ (ξ)Q̃(ξ) ≤ P̃Q(ξ) ≤ C ′′P̃ (ξ)Q̃(ξ) (2.5)

for all ξ ∈ Rn.
Proof. The first assertion is Lemma 10.4.2 in [15]. Concerning (ii) the second
inequality is clear from Leibniz’rule. From (2.4) for any polynomial Q we find η
with |η| ≤ 1 such that

Q̃(ξ) ≤ C|Q(ξ + η)| ≤ CQ̃(ξ + η) (2.6)

for all ξ. Since from [14, (2.1.10)] there exists a constant C0 depending only on m
and n such that Q̃(ξ + θ) ≤ (1 + C0|θ|)mQ̃(ξ) for all ξ, θ ∈ Rn, we get

CQ̃(ξ + η) ≤ C(1 + C0|η|)mQ̃(ξ) ≤ C1Q̃(ξ),

where the constant C1 does not depend on Q. Hence

|Q(ξ + η)| ≥ Q̃(ξ)
C

≥ Q̃(ξ + η)
C1

.

Taylor’s formula gives Q(ξ + η + θ) = Q(ξ + η) +
∑
α6=0

Q(α)(ξ+η)
α! θα and then, for

η chosen as above,

|Q(ξ + η + θ)| ≥ |Q(ξ + η)| −
∑
α6=0

|Q(α)(ξ + η)|
α!

|θα|
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≥ Q̃(ξ + η)
C1

− Q̃(ξ + η)
∑
α6=0

1
α!
|θα|

≥ Q̃(ξ + η)
C1

− Q̃(ξ + η)C2|θ|

= Q̃(ξ + η)(
1
C1

− C2|θ|)

for all |θ| ≤ 1, with C2 independent of Q. It follows that

|Q(ξ + η + θ)| ≥ 1
2C1

Q̃(ξ + η)

for all ξ ∈ Rn, for |η| ≤ 1 depending on Q and for all θ with |θ| ≤ (2C1C2)−1.
Writing P as PQ/Q we obtain |P (ξ + η + θ)| ≤ 2C1|PQ(ξ + η + θ)|/Q̃(ξ + η).
Concluding, from the first assertion, the property (2.1) of the polynomial weight
functions and the bound from below (2.6), we have, for some θ suitably smaller
than min(1, (2C1C2)−1) and η depending on Q, the inequality

P̃ (ξ) ≤ (1 +C0|η|)mP̃ (ξ+ η) ≤ C3|P (ξ+ η+ θ)| ≤ C4
|PQ(ξ + η + θ)|

Q̃(ξ + η)
≤ C5

P̃Q(ξ)

Q̃(ξ)

where the constants involved depend only on the order of the polynomials P and
Q and the dimension n. �

Proposition 2.6 clearly holds for representatives (Pε)ε and (Qε)ε of generalized
polynomials with the constants C, C ′ and C ′′ independent of ε.

Proposition 2.7. Let P (D), P1(D), P2(D), Q(D), Q1(D) and Q2(D) be differential
operators with constant Colombeau coefficients.

(i) If Q1(D) ≺ P (D) and Q2(D) ≺ P (D) then a1Q1(D) + a2Q2(D) ≺ P (D)
for all a1, a2 ∈ C̃.

(ii) If Q1(D) ≺ P1(D) and Q2(D) ≺ P2(D) then Q1Q2(D) ≺ P1P2(D).
(iii) P (D) + aQ(D) ≺ P (D) for all a ∈ C̃ if and only if Q(D) ≺ P (D).

Proof. (i) The first assertion is trivial. (ii) Working at the level of representatives
from Proposition 2.6(ii) we can write ˜Q1,εQ2,ε ≤ C ′′Q̃1,εQ̃2,ε. It follows

˜Q1,εQ2,ε ≤ C ′′λ1,ελ2,εP̃1,εP̃2,ε ≤
C ′′

C ′
λ1,ελ2,εP̃1,εP2,ε,

with (C
′′

C′ λ1,ελ2,ε)ε moderate net.
(iii) One direction is clear. Indeed, since P ≺ P from the first assertion of this

proposition we have that if Q ≺ P then P + aQ ≺ P for all a ∈ C̃. Conversely, let
P + aQ ≺ P . From −P ≺ P and (i) we have that aQ ≺ P . Finally, choosing a = 1
we obtain Q ≺ P . �

The following necessary and sufficient conditions for Q ≺ P are directly obtained
from the first assertion of Proposition 2.6.

Proposition 2.8. Let Q(D) and P (D) be differential operators with constant Co-
lombeau coefficients. The following statements are equivalent:

(i) Q(D) ≺ P (D);
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(ii) there exist representatives (Qε)ε and (Pε)ε and a moderate net (λε)ε such
that

|Qε(ξ)| ≤ λεP̃ε(ξ)

for all ξ ∈ Rn and ε ∈ (0, 1];
(iii) there exist representatives (Qε)ε and (Pε)ε and a moderate net (λ′ε)ε such

that
Q̃ε(ξ, t) ≤ λ′εP̃ε(ξ, t)

for all ξ ∈ Rn, for all ε ∈ (0, 1] and for all t ≥ 1.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (i) are trivial. We only have to
prove that (ii) implies (iii). Proposition 2.6(i) yields, for t ≥ 1,

Q̃ε(ξ, t) ≤ C sup
|η|<t

|Qε(ξ + η)|

≤ Cλε sup
|η|<t

P̃ε(ξ + η)

= Cλε sup
|η|<t

P̃ε(ξ + η, 1)

≤ C2λε sup
|η|<t+1

P̃ε(ξ + η)

≤ C3λεP̃ε(ξ, t+ 1)

≤ C3λε(1 + t−1)mP̃ε(ξ, t).

Hence, Q̃ε(ξ, t) ≤ λ′εP̃ε(ξ, t) for all ξ ∈ Rn, t ≥ 1 and ε ∈ (0, 1] with λ′ε = C3λε2m.
�

The G-elliptic polynomials (see [9, Section 6]) and their corresponding differential
operators can be characterized by means of the order relation ≺. We recall that
a polynomial P (ξ) with coefficients in C̃ is G-elliptic (or equivalently the operator
P (D) is G-elliptic) if there exists a representative (Pm,ε)ε of Pm, a constant c > 0
and a ∈ R such that

|Pm,ε(ξ)| ≥ cεa|ξ|m (2.7)

for all ε ∈ (0, 1] and for ξ ∈ Rn. Estimate (2.7) is valid for any representative of
P with some other constant c > 0 and on a smaller interval (0, ε0]. Due to the
homogeneity of Pm,ε it is not restrictive to assume (2.7) valid only for all ξ with
|ξ| = 1.

Proposition 2.9. Let P (D) be a differential operator of order m with coefficients
in C̃. P (D) is stronger than any differential operator with coefficients in C̃ of order
less than or equal to m if and only if it is G-elliptic.

Proof. We assume that P (D) is G-elliptic and we prove that the G-ellipticity is a
sufficient condition. Let (Pm,ε)ε be a representative of Pm such that |Pm,ε(ξ)| ≥
cεa|ξ|m for some constants c > 0 and a ∈ R, for all ξ ∈ Rn and for all ε ∈ (0, 1]. It
follows that Pm(ξ) is invertible in any ξ = ξ0 of Rn and therefore from Remark 2.4
(and more precisely from [20, Proposition 7.6]) we have that P̃ is invertible in ξ0.
The estimate |Pm,ε(ξ)| ≥ cεa|ξ|m yields

cεa|ξ|m ≤ |Pm,ε(ξ)| ≤ |Pε(ξ)|+ |Pε(ξ)− Pm,ε(ξ)| ≤ |Pε(ξ)|+ Cε(1 + |ξ|m−1),
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where (cε)ε is a strictly nonzero net. Assuming |ξ| ≥ 2Cεc−1ε−a we obtain the
inequality

cεa|ξ|m ≤ 2|Pε(ξ)|+ 2Cε ≤ 2P̃ε(ξ) + 2Cε.

For |ξ| ≥ Rε, where Rε = max{(4Cεc−1ε−a+1)
1
m , 2Cεc−1ε−a}, the following bound

from below
c

4
εa(1 + |ξ|m) ≤ P̃ε(ξ) (2.8)

holds. Since, from the invertibility of P̃ in ξ0 there exists a strictly nonzero net
(λε)ε such that

P̃ε(ξ) ≥ λε(1 + C|ξ0 − ξ|)−m,
for all ε ∈ (0, 1], we can extend (2.8) to all ξ ∈ Rn. More precisely,

λε(1 + C|ξ0|+ CRε)−m(1 +Rε)−m(1 + |ξ|)m

≤ λε(1 + C|ξ0 − ξ|)−m(1 + |ξ|)−m(1 + |ξ|)m ≤ P̃ε(ξ)

holds for |ξ| ≤ Rε. The net (Rε)ε is strictly nonzero. Hence there exists a moderate
net ωε such that

(1 + |ξ|m) ≤ ωεP̃ε(ξ)

for all ε ∈ (0, 1] and ξ ∈ Rn. Now if Q(D) is a differential operator with coefficients
in C̃ of order m′ ≤ m, (2.1) yields

Q̃ε(ξ) ≤ Q̃ε(0)(1 + C|ξ|)m
′
.

Hence,
Q̃ε(ξ) ≤ Q̃ε(0)c′(1 + |ξ|m) ≤ c′Q̃ε(0)ωε P̃ε(ξ),

where (c′Q̃ε(0)ωε)ε is moderate. This means that Q(D) ≺ P (D).
We now prove that the G-ellipticity of P (D) is necessary in order to have Q(D) ≺

P (D) for all Q of order less than or equal to m. If P (D) is not G-elliptic then we
can find a representative (Pε)ε, a decreasing sequence εq → 0 and a sequence ξεq

with |ξεq | = 1 such that
|Pm,εq (ξεq )| < εqq

for all q ∈ N. We set ξε = ξεq for ε = εq and 0 otherwise. By construction
(|ξε|)ε 6∈ N and

(Pm,ε(ξε))ε ∈ N .
Since there exists a moderate net (cε)ε such that

P̃ε
2
(tξ) ≤ 2t2m|Pm,ε(ξ)|2 + cεt

2m−2〈ξ〉2m−2

for all ξ ∈ Rn and t ≥ 1, we obtain

P̃ε(tξε) ≤ tmnε + c′εt
m−1,

where (nε)ε ∈ N and (c′ε)ε ∈ EM . Since (|ξε|)ε ∈ EM \ N there exists a component
ξi,ε such that (|ξi,ε|)ε ∈ EM \N . We take the homogeneous polynomial of degree m
Q(ξ) = ξmi and we prove that Q(D) 6≺ P (D). By Proposition 2.8 assume that there
exists representatives (Qε)ε and (P ′ε)ε of Q and P respectively and a moderate net
(λε)ε such that

|Qε(ξ)| ≤ λεP̃ ′ε(ξ)
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for all ξ and ε. Qε(ξ) is of the form (1+n1,ε)ξmi where (n1,ε)ε ∈ N and concerning

P̃ ′ε(ξ) we have P̃ ′ε
2
(ξ) ≤ 2P̃ε

2
(ξ) + n2,ε〈ξ〉2m with (n2,ε)ε ∈ N . This entails the

estimate
|(1 + n1,ε)ξmi | ≤ λ′εP̃ε(ξ) + n3,ε〈ξ〉m

and for ξ = tξε, t ≥ 1,

|1 + n1,ε|tm|ξmi,ε| ≤ λ′εP̃ε(tξε) + n3,ε〈tξε〉m ≤ n4,εt
m + c′′ε t

m−1,

where (c′′ε )ε is moderate and strictly nonzero. The inequality

|1 + n1,ε||ξmi,ε| − n4,ε

c′′ε
≤ t−1

is valid for all t ≥ 1. Hence |1 + n1,ε||ξmi,ε| − n4,ε ≤ 0 and from the invertibility of
(|1 + n1,ε|)ε we get

|ξi,ε|m ≤ n4,ε

|1 + n1,ε|
,

with ( n4,ε

|1+n1,ε| )ε ∈ N . Concluding the net (|ξi,ε|)ε is negligible in contradiction with
our assumptions. �

We introduce another order relation which is closely connected with Q(D) ≺
P (D).

Definition 2.10. Let P (D) and Q(D) be differential operators with coefficients in
C̃. We say that P (D) dominates Q(D) (and we write P (D) �� Q(D) or Q(D) ≺≺
P (D)) if there exist

• representatives (Pε)ε and (Qε)ε of P and Q respectively,
• a moderate net (λε)ε,
• a function C(t) > 0 with limt→+∞ C(t) = 0 and the property

∀a ∈ R ∃b ∈ R ∀t ≥ εb C(t) ≤ εa,

such that
Q̃ε(ξ, t) ≤ λεC(t)P̃ε(ξ, t)

for all ξ ∈ Rn, ε ∈ (0, 1] and t ≥ 1.

Clearly Q(D) ≺≺ P (D) implies Q(D) ≺ P (D) and P (D) dominates P (α)(D)

for all α 6= 0. Indeed, P̃ (α)
ε (ξ, t) ≤ t−|α|P̃ε(ξ, t).

Proposition 2.11. Let P (D), P1(D), P2(D), Q1(D) and Q2(D) be differential op-
erators with constant Colombeau coefficients.

(i) If Q1(D) ≺≺ P (D) and Q2(D) ≺≺ P (D) then a1Q1(D) + a2Q2(D) ≺≺
P (D) for all a1, a2 ∈ C̃.

(ii) If Q1(D) ≺≺ P1(D) and Q2(D) ≺ P2(D) then Q1Q2(D) ≺≺ P1P2(D).

Proof. The first statement is trivial. By applying Proposition 2.6(ii) to P (tξ) and
Q(tξ) we obtain for any polynomials P and Q the estimate

C ′P̃ (ξ, t)Q̃(ξ, t) ≤ P̃Q(ξ, t) ≤ C ′′P̃ (ξ, t)Q̃(ξ, t) (2.9)

where C ′ and C ′′ depend only on the order of P and Q. Hence, for all t ≥ 1 we
have

˜Q1,εQ2,ε(ξ, t) ≤ C ′′Q̃1,ε(ξ, t)Q̃2,ε(ξ, t) ≤ C ′′λ1,εC(t)P̃1,ε(ξ, t)Q̃2,ε(ξ, t).
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Proposition 2.8(iii) combined with the estimate (2.9) yields

˜Q1,εQ2,ε(ξ, t) ≤ C ′′λ1,εC(t)P̃1,ε(ξ, t)λ2,εP̃2,ε(ξ, t) ≤ λεC(t)P̃1,εP2,ε(ξ, t),

valid for all t ≥ 1, for all ε ∈ (0, 1] and for all ξ ∈ Rn. �

The order relation ≺≺ is used in comparing an operator of principal type with
a differential operator of order strictly smaller.

Definition 2.12. A partial differential operator P (D) with constant Colombeau
coefficients is said to be of principal type if there exists a representative (Pm,ε)ε of
the principal symbol Pm, a ∈ R and c > 0 such that

|∇ξPm,ε(ξ)| ≥ cεa|ξ|m−1

for all ε ∈ (0, 1] and all ξ ∈ Rn.

As for G-elliptic operators the previous estimate holds for any representative
(Pε)ε of P , for some constant c and in an enough small interval (0, ε0].

Proposition 2.13. Let P (D) be a differential operator with coefficients in C̃ of
principal type and degree m and let one of the coefficients of Pm(D) be invertible.
Then,

(i) P (D) dominates any differential operator with coefficients in C̃ of order
less than or equal to m− 1;

(ii) if Q(D) has order m and there exists a moderate net (λε)ε and representa-
tives (Qm,ε)ε and (Pm,ε)ε such that

|Qm,ε(ξ)| ≤ λε|Pm,ε(ξ)|
for all ξ ∈ Rn and ε ∈ (0, 1], then Q(D) ≺ P (D).

Proof. (i) Let (Pm,ε)ε be a representative of Pm such that |∇Pm,ε(ξ)| ≥ cεa|ξ|m−1

for some constants c > 0 and a ∈ R, for all ξ ∈ Rn and for all ε ∈ (0, 1]. We have,
for some strictly nonzero net (Cε)ε the inequality

|∇ξPε(ξ)| ≥ |∇ξPm,ε(ξ)| − |∇ξ(Pε − Pm,ε)|

≥ c′εa〈ξ〉m−1 − Cε〈ξ〉m−2 ≥ 1
2
c′εa(1 + |ξ|m−1),

valid for |ξ| ≥ Rε with (Rε)ε moderate and big enough. Hence,(∑
α6=0

|P (α)
ε (ξ)|2

)1/2

≥ |∇ξPε(ξ)| ≥
1
2
c′εa(1 + |ξ|m−1)

for |ξ| ≥ Rε. ¿From the invertibility of one of the coefficients of the principal part
we get the bound from below

ωε ≤
∑
α6=0

|P (α)
ε (ξ)|2,

where (ωε)ε is moderate. It follows, for |ξ| ≤ Rε,∑
α6=0

|P (α)
ε (ξ)|2 ≥ ωε(1+ |ξ|m−1)−2(1+ |ξ|m−1)2 ≥ ωε((1+(Rε)m−1)−2(1+ |ξ|m−1)2.

Summarizing, we find a moderate and strictly nonzero net (λε)ε such that

λ2
ε(1 + |ξ|2m−2) ≤

∑
α6=0

|P (α)
ε (ξ)|2
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for all ξ ∈ Rn and ε ∈ (0, 1]. This implies

λ2
εt

2(1 + |ξ|2m−2) ≤
∑
α6=0

t2|α||P (α)
ε (ξ)|2 ≤ P̃ε(ξ, t), (2.10)

for all t ≥ 1, ξ ∈ Rn and ε ∈ (0, 1].
Let Q(D) be a differential operator with coefficients in C̃ and order m′ ≤ m− 1.

We have, for some moderate net (cε)ε the inequality

|Qε(ξ)| ≤ cε(1 + |ξ|)m−1

and therefore from (2.10),

|Qε(ξ)| ≤ (cελ−1
ε t−1)t1λε(1 + |ξ|m−1) ≤ (c′ελ

−1
ε t−1)P̃ε(ξ, t).

Arguing as in proof of Proposition 2.8 and making use of Proposition 2.6 we obtain
that there exists a moderate net (c′′ε )ε such that

Q̃ε(ξ, t) ≤ c′′ε t
−1P̃ε(ξ, t).

Indeed

Q̃ε(ξ, t) ≤ C sup
|η|<t

|Qε(ξ + η)|

≤ Cc′ελ
−1
ε t−1 sup

|η|<t
P̃ε(ξ + η, t)

≤ C2c′ελ
−1
ε t−1 sup

|η|<t
sup
|θ|<t

|Pε(ξ + η + θ)|

≤ C2c′ελ
−1
ε t−1 sup

|η|<2t

|Pε(ξ + η)|

≤ C3c′ελ
−1
ε t−1P̃ε(ξ, 2t) ≤ C32mc′ελ

−1
ε t−1P̃ε(ξ, t).

This means that Q(D) ≺≺ P (D).
(ii) Let Q(D) be a differential operator of order m satisfying the condition (ii).

From the first statement we already know that Q(D)−Qm(D) ≺≺ P (D) and thus
Q(D) −Qm(D) ≺ P (D). It remains to prove that P (D) is stronger than Qm(D).

Writing Q̃m,ε
2

as |Qm,ε|2 +
∑
β 6=0 |Q

(β)
m,ε|2, and since the second term has order less

than or equal to m− 1, we have

Q̃m,ε
2
(ξ) ≤ λ2

ε|Pm,ε(ξ)|2 + λ1,εP̃ε
2
(ξ)

≤ 2λ2
ε|Pε(ξ)|2 + 2λ2

ε|(Pε − Pm,ε)(ξ)|2 + λ1,εP̃ε
2
(ξ)

≤ (2λ2
ε + λ2,ε + λ1,ε)P̃ε

2
(ξ).

Hence Qm(D) ≺ P (D). �

The following proposition determines a family of equally strong operators.

Proposition 2.14. Let P (D) and Q(D) be differential operators with coefficients
in C̃. If Q(D) ≺≺ P (D) then P (D) ≺ P (D) + aQ(D) ≺ P (D) for all a ∈ C̃.

Proof. Since Q(D) ≺≺ P (D) implies Q(D) ≺ P (D), from the third assertion of
Proposition 2.7 we have that P (D) + aQ(D) ≺ P (D) for all a ∈ C̃. We now fix
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a ∈ C̃ and take R(D) = P (D) + aQ(D). Arguing at the level of representatives we
obtain

P̃ε
2
(ξ, t) =

∑
α

|R(α)
ε − aεQ

(α)
ε |2(ξ)t2|α|

≤ 2R̃ε
2
(ξ, t) + 2|aε|2Q̃ε

2
(ξ, t)

≤ 2R̃ε
2
(ξ, t) + 2|aε|2λ2

εC
2(t)P̃ε

2
(ξ, t).

By the moderateness assumption we have that |aε|2λ2
ε ≤ ε2a for all ε small enough.

Choosing b ∈ R such that C(t) ≤ ε−a+1 for t ≥ εb we can write the inequality

P̃ε
2
(ξ, t) ≤ 2R̃ε

2
(ξ, t) + 2ε2aε−2a+2P̃ε

2
(ξ, t)

for t ≥ εb, for ε small enough and for all ξ. It follows that

P̃ε
2
(ξ, t) ≤ 2R̃ε

2
(ξ, t) +

1
2
P̃ε

2
(ξ, t)

for t ≥ max(1, εb) and ε ∈ (0, ε0] with ε0 ≤ 2−1. Hence,

P̃ε(ξ, t) ≤ 2R̃ε(ξ, t),

under the same conditions on ε and t. Let (tε)ε ∈ EM with tε ≥ max(1, εb). We
can write

P̃ε(ξ) ≤ P̃ε(ξ, tε) ≤ 2R̃ε(ξ, tε) ≤ 2tmε R̃ε(ξ) ≤ λεR̃ε(ξ),
valid for some moderate net (λε)ε and for ε ∈ (0, ε0]. This means that P (D) ≺
R(D) = P (D) + aQ(D). �

The next corollary is straightforward from P (α)(D) ≺≺ P (D).

Corollary 2.15. For all α ∈ Nn,

P (D) ≺ P (D) + P (α)(D) ≺ P (D).

3. Parametrices and local solvability

We begin our investigation of locally solvable differential operators in the Colom-
beau framework, by showing that differential operators which admits a generalized
pseudodifferential parametrix (at least a right generalized parametrix) are locally
solvable. Some needed notions of generalized pseudodifferential operator theory are
collected in the following subsection.

3.1. Preliminary notions of generalized pseudodifferential operator the-
ory.
Symbols. Throughout this paper Sm(R2n) denotes the space of Hörmander symbols
fulfilling global estimates on R2n. In detail |a|(m)

α,β is the seminorm

sup
(x,ξ)∈R2n

〈ξ〉−m+|α||∂αξ ∂βxa(x, ξ)|.

In a local context, that is on an open subset Ω of Rn, we work with symbols that
satisfy uniform estimates on compact subsets of Ω. In this case we use the notation
Sm(Ω× Rn) and the seminorms

|a|(m)
K,α,β := sup

x∈KbΩ,ξ∈Rn

〈ξ〉−m+|α||∂αξ ∂βxa(x, ξ)|.



16 C. GARETTO EJDE-2009/116

The corresponding sets of generalized symbols are introduced by means of the
abstract models GE and Gsc

E introduced in Section 2 where E = Sm(R2n) or E =
Sm(Ω× Rn).
Mapping properties. A theory of generalized pseudodifferential operators has been
developed in [3, 10] for symbols in GSm(R2n) and Gsc

Sm(R2n) and for more elaborated
notions of generalized symbols and amplitudes. We address the reader to the basic
notions section of [8] for an elementary introduction to the subject. In the sequel
GS (Rn) is the Colombeau space based on E = S (Rn) and G∞S (Rn) is the subspace
of GS (Rn) of those generalized functions u having a representative (uε)ε fulfilling
the following condition:

∃N ∈ N ∀α, β ∈ Nn sup
x∈Rn

|xα∂βuε(x)| = O(ε−N ).

Finally L(GS (Rn), C̃) is the topological dual of GS (Rn).
Let now p ∈ GSm(R2n). The pseudodifferential operator

p(x,D)u =
∫

Rn

eixξp(x, ξ)û(ξ) dξ

(i) maps GS (Rn) into GS (Rn),
(ii) can be continuously extended to a C̃-linear map on L(GS (Rn), C̃),
(iii) maps basic functionals into basic functionals,
(iv) maps G∞S (Rn) into itself if p is of slow scale type.

Generalized symbols and asymptotic expansions. The notion of asymptotic expan-
sion for generalized symbols in GSm(R2n) is based on the following definition at the
level of representatives.

Definition 3.1. Let {mj}j∈N be sequences of real numbers with mj ↘ −∞, m0 =
m. Let {(aj,ε)ε}j∈N be a sequence of elements (aj,ε)ε ∈ MSmj (R2n). We say that
the formal series

∑∞
j=0(aj,ε)ε is the asymptotic expansion of (aε)ε ∈ E [R2n], (aε)ε ∼∑

j(aj,ε)ε for short, if and only if for all r ≥ 1(
aε −

r−1∑
j=0

aj,ε

)
ε
∈MSmr (R2n).

By arguing as in [8, Theorem 2.2] one proves that there exists a net of symbols
with a given asymptotic expansion according to Definition 3.1.

Theorem 3.2. Let {(aj,ε)ε}j∈N be a sequence of elements (aj,ε)ε ∈ MSmj (R2n

with mj ↘ −∞ and m0 = m. Then, there exists (aε)ε ∈ MSm(R2n) such that
(aε)ε ∼

∑
j(aj,ε)ε. Moreover, if (a′ε)ε ∼

∑
j(aj,ε)ε then (aε − a′ε)ε ∈MS−∞(R2n).

We now take in consideration regular nets of symbols. Inspired by the notations
of [3] we say that (aε)ε belongs to MSm(R2n),b if and only if |aε|(m)

α,β = O(εb) for all
α and β. In other words we require the same kind of moderateness for all orders
of derivatives. A closer look to the proof of Theorem 2.2 in [8] yields the following
corollary.

Corollary 3.3. Let {(aj,ε)ε}j∈N as in Theorem 3.2. If (aj,ε)ε ∈ MSmj (R2n),b for
each j then there exists (aε)ε ∈MSm(R2n),b such that(

aε −
r−1∑
j=0

aj,ε

)
ε
∈MSmr (R2n),b.
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for every r ≥ 1. This result is unique modulo MS−∞(R2n),b.

Note that this statement recalls the first concept of asymptotic expansion for
nets of symbols studied in [3] but avoids global estimates on the ε-interval (0, 1].

It is clear that when p ∈ GSm(R2n) has a representative in ∪b∈RMSm(R2n),b then
p(x,D) maps G∞S (Rn) into G∞S (Rn).
Kernels and regularizing operators. Any generalized pseudodifferential operator has
a kernel in L(GS (R2n), C̃) but when p ∈ GS−∞(R2n) then kp ∈ Gτ (R2n) with a
representative (kp,ε)ε fulfilling the following property:

∀α, β ∈ Nn ∀d ∈ N∃(λε)ε ∈ EM ∀ε ∈ (0, 1]

sup
(x,y)∈R2n

〈x〉−d〈y〉d|∂αx ∂βy kp,ε(x, y)| ≤ λε,

sup
(x,y)∈R2n

〈x〉d〈y〉−d|∂αx ∂βy kp,ε(x, y)| ≤ λε.

(3.1)

If p ∈ Gsc
S−∞(R2n) then (λε)ε in (3.1) is a slow scale net. With a symbol of order

−∞ the pseudodifferential operator p(x,D) can be written in the form

p(x,D)u =
∫

Rn

kp(x, y)u(y) dy.

It maps L(GS (Rn), C̃) into Gτ (Rn) and L(G(Rn), C̃) into GS (Rn). If p is of slow
scale type then the previous mappings have image in G∞τ (Rn) and G∞S (Rn) respec-
tively.
L2-continuity. We finally discuss some L2-continuity. From the well-known estimate
(see [22, Chapter2, Theorem 4.1])

‖a(x,D)u‖2 ≤ C0 max
|α+β|≤l0

|a|(0)α,β‖u‖2, for u ∈ S (Rn)

valid for a ∈ S0(Rn), for some l0 > 0 and for a constant C0 depending on the
space dimension n, one easily has that a generalized pseudodifferential operator
p(x,D) with symbol p ∈ GS0(R2n) maps GL2(Rn) continuously into itself. If we now
consider a basic functional T of L(GS (Rn), C̃) given by a net (Tε)ε ∈ ML2(Rn),
we have that p(x,D)T is a basic functional in L(GS (Rn), C̃) with the same L2-
structure. We introduce the notation L2(GS (Rn), C̃) for the set of basic functionals
in L(GS (Rn), C̃) with a representative in ML2(Rn). Hence, a pseudodifferential
operator with symbol in p ∈ GS0(R2n) has the mapping property

p(x,D) : L2(GS (Rn), C̃) → L2(GS (Rn), C̃). (3.2)

Analogously, in the dual L(Gc(Rn), C̃) one can define the subset L2,loc(Gc(Rn), C̃) of
those basic functionals T defined by a net (Tε)ε ∈ML2

loc(Rn), i.e. (φTε)ε ∈ML2(Rn)

for all φ ∈ C∞c (Rn).
If P (x,D) is a differential operator with Colombeau coefficients and P (x, ξ) ∈

GSm(R2n) then in addition to the mapping properties as a pseudodifferential operator
we have that the restriction to any open subset Ω maps Gc(Ω), G(Ω), L(G(Ω), C̃) and
L(Gc(Ω), C̃) into themselves respectively. Typical example is obtained by taking
the coefficients cα of P (x,D) =

∑
|α|≤m cα(x)Dα in the algebra GE with E =

∩sW s,∞(Rn). In this case one can use the notation G∞(Rn) for simplicity.
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3.2. A first sufficient condition of local solvability.

Theorem 3.4. Let P (x,D) =
∑

|α|≤m cα(x)Dα be a differential operator with
coefficients cα ∈ G∞(Rn). Let (Pε)ε a representative of P . If

(i) there exist (qε)ε ∈MSm′ (R2n) with m′ ≤ 0 and (r)ε ∈MS−∞(R2n) such that

Pε(x,D)qε(x,D) = I + rε(x,D)

on S (Rn) for all ε ∈ (0, 1],
(ii) there exists l < −n such that |rε|(l)0,0 = O(1),

then for all x0 ∈ Rn there exists a neighborhood Ω of x0 and a cut-off function φ,
identically 1 near x0, such that the following solvability result holds:

∀F ∈ L2,loc(Gc(Rn), C̃) ∃T ∈ L(Gc(Ω), C̃) P (x,D)T = φF on Ω. (3.3)

Proof. We begin by dealing with the regularizing operator rε. From (ii) it follows
that

rε(x,D)u =
∫

Rn

krε
(x, y)u(y) dy =

∫
Rn

∫
Rn

ei(x−y)ξrε(x, ξ) dξ u(y) dy,

with u ∈ S (Rn),

krε(x, y) =
∫

Rn

ei(x−y)ξrε(x, ξ) dξ

and
sup

x∈Rn,y∈Rn

|krε(x, y)| = O(1). (3.4)

We now take a neighborhood Ω of x0 and a cut-off φ ∈ C∞c (Ω) and investigate the
properties of the net of operators rε(x,D)φ on Ω. For all g ∈ L2(Ω) we have that
φg ∈ L2(Rn) and therefore

rε(x,D)(φg)|Ω =
(∫

Ω

krε
(x, y)φ(y)g(y) dy

)∣∣∣
Ω
.

This net of distributions actually belongs to L2(Ω). Indeed,

‖rε(x,D)(φg)|Ω‖2 ≤
∫

Ω

(∫
Ω

|krε(x, y)|2 dx
)1/2

|φ(y)g(y)| dy

≤ |Ω| sup
Ω×Ω

|krε
(x, y)|‖φ‖2‖g‖2.

From (3.4) by choosing Ω small enough and a suitable φ ∈ C∞c (Ω), we obtain that

‖rε(x,D)(φg)|Ω‖2 ≤
1
2
‖g‖2

for all g ∈ L2(Ω) uniformly on an interval (0, ε0]. In other words the net of operators

r̃ε : L2(Ω) → L2(Ω), r̃ε(g) = rε(x,D)(φg)|Ω
has operator norm less than or equal to 1

2 for all ε ∈ (0, ε0]. In the same way we
define

Ĩ : L2(Ω) → L2(Ω), Ĩ(g) = φg,

q̃ε : L2(Ω) → L2(Ω), q̃ε(g) = qε(x,D)(φg)|Ω.

This last mapping property follows from qε(x,D) : L2(Rn) → L2(Rn) valid because
m′ ≤ 0. One can choose φ such that ‖Ĩ − I‖ is very small and in particular
‖Ĩ − I + r̃ε‖ < 1 uniformly on (0, ε0]. The series

∑∞
n=0 ‖Ĩ − I + r̃ε‖n is convergent.
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Hence, from Theorem 2 in [29, Chapter 2] we have that Ĩ + r̃ε has a continuous
linear inverse on L2(Ω) for all ε ∈ (0, ε0] with operator norm uniformly bounded in
ε.

Let now (Fε)ε be a net in ML2
loc(Rn) representing F ∈ L2,loc(Gc(Rn), C̃). We

have that (φFε)ε ∈ML2(Ω) and we can define for ε ∈ (0, ε0] the net

Tε := q̃ε(Ĩ + r̃ε)−1(φFε). (3.5)

Tε belongs to L2(Ω) for all ε ∈ (0, ε0] and the properties of the operators involved
in (3.5) yield

‖Tε‖2 = ‖q̃ε(Ĩ + r̃ε)−1(φFε)‖2
= ‖qε(x,D)(φ(Ĩ + r̃ε)−1(φFε))|Ω‖2
≤ c|qε|(0)l0 ‖φ(Ĩ + r̃ε)−1(φFε)‖2 ≤ c′|qε|(0)l0 ‖(Ĩ + r̃ε)−1‖ ‖φFε‖2.

This means that, restricting ε on the interval (0, ε0], the net (Tε)ε is L2(Ω)-moderate
and therefore generates a basic functional T in L(Gc(Ω), C̃). T solves the equation
P (x,D)T = φF on Ω. Indeed, working at the level of the representatives we have

Pε(x,D)|Ω(q̃ε(Ĩ + r̃ε)−1(φFε)) = Pε(x,D)|Ω(qε(x,D)φ(Ĩ + r̃ε)−1(φFε))

= Pε(x,D)qε(x,D)|Ω(φ(Ĩ + r̃ε)−1(φFε))

= (Ĩ + r̃ε)(Ĩ + r̃ε)−1(φFε) = φFε.

�

Remark 3.5. It is not restrictive to consider differential operators with coefficients
in G∞(Rn) when one wants to investigate local solvability in the Colombeau con-
text. Indeed, if we assume to work on an open subset Ω′ and we take P (x,D) =∑

|α|≤m cα(x)Dα with cα ∈ G(Ω′), by choosing the neighborhood Ω of x0 small
enough the equation P (x,D)T = φF on Ω is equivalent to P1(x,D)T = φF with

P1(x,D) =
∑
|α|≤m

ϕ(x)cα(x)Dα

and ϕ ∈ C∞c (Ω′) identically 1 on Ω. It follows that ϕcα ∈ Gc(Ω′) ⊆ G∞(Rn) and
therefore we are in the mathematical set-up of Theorem 3.4.

In the next proposition we find a family of differential operators which satisfy the
hypotheses of Theorem 3.4, in other words a condition on the symbol which assures
the existence of a parametrix q with regularizing term r as above. We go back to
some definition of generalized hypoelliptic symbol introduced for pseudodifferential
operators in [3]. Here the attention is focused not so much on the parametrix q
but on the required boundedness in ε of the regularizing operator r. This makes
us to avoid some more general definitions of hypoelliptic symbol already employed
in Colombeau theory, see [8, 10, 11], which have less restrictive assumptions on the
scales in ε, guarantee the existence of a parametrix but not the desired behaviour
of r.

Proposition 3.6. Let P (x,D) =
∑

|α|≤m cα(x)Dα be a differential operator with
coefficients cα ∈ G∞(Rn). We assume that there exists a, a′ ∈ R, a ≤ a′, 0 ≤ m′ ≤
m, R > 0 and a representative (Pε)ε of P fulfilling the following conditions:

(i) |Pε|(m)
α,β = O(εa) for all α, β ∈ Nn;
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(ii) there exists c > 0 such that |Pε(x, ξ)| ≥ c εa
′〈ξ〉m′

for all x ∈ Rn, for |ξ| ≥ R
and for all ε ∈ (0, 1];

(iii) for all α, β ∈ Nn there exists (cα,β,ε)ε with cα,β,ε = O(1) such that

|∂αξ ∂βxPε(x, ξ)| ≤ cα,β,ε|Pε(x, ξ)|〈ξ〉−|α|

for all x ∈ Rn, for |ξ| ≥ R and for all ε ∈ (0, 1].
Then there exists (qε)ε ∈MS−m′ (R2n),−a′ and (rε)ε ∈MS−∞(R2n),a−a′ such that

Pε(x,D)qε(x,D) = I + rε(x,D)

for all ε ∈ (0, 1]. Moreover there exists sε(x,D) with (sε)ε ∈ MS−∞(R2n),2a−2a′

such that
qε(x,D)Pε(x,D) = I + sε(x,D)

for all ε ∈ (0, 1].

Proof. Let ψ be a smooth function in the variable ξ such that ψ(ξ) = 0 for |ξ| ≤ R
and ψ(ξ) = 1 for |ξ| ≥ 2. By adapting the proof of [3, Proposition 8.1 and Theorem
8.1] to our situation one easily obtains from the hypotheses (i) and (ii) that

• q0,ε := ψ(ξ)P−1
ε (x, ξ) defines a net in MS−m′ (R2n),−a′ ,

• (q0,ε∂αξ ∂
β
xPε)ε ∈MS−|α|(R2n),0 for all α, β ∈ Nn,

• for each j ≥ 1, the net

qj,ε := −
{ ∑
|γ|+l=j, l<j

(−i)|γ|

γ!
∂γξ Pε∂

γ
xql,ε

}
q0,ε

belongs to MS−m′−j(R2n),−a′ .

Corollary 3.3 implies that there exists (qε)ε ∈ MS−m′ (R2n),−a′ having {(qj,ε)ε}j
as asymptotic expansion with fixed moderateness ε−a

′
. Let us now consider the

composition Pε(x,D)qε(x,D) = λε(x,D). Basic properties of symbolic calculus
show that (

λε −
∑
|γ|<r

(−i)|γ|

γ!
∂γξ Pε∂

γ
xqε

)
ε
∈MSm−m′−r(R2n),a−a′

for all r ≥ 1. Making use of (qε −
∑r−1
l=0 ql,ε)ε ∈MS−m′−r(R2n),−a′ we can write

∑
|γ|<r

(−i)|γ|

γ!
∂γξ Pε∂

γ
xqε =

∑
|γ|<r

r−1∑
l=0

(−i)|γ|

γ!
∂γξ Pε∂

γ
xql,ε + sε

= Pεq0,ε +
r−1∑
j=1

Pεqj,ε +
r−1∑
j=1

∑
|γ|+l=j, l<j

(−i)|γ|

γ!
∂γξ Pε∂

γ
xql,ε

+
∑

|γ|+l≥r, |γ|<r, l<r

(−i)|γ|

γ!
∂γξ Pε∂

γ
xql,ε + sε,

where (sε)ε ∈ MSm−m′−r(R2n),a−a′ . By definition of q0,ε and qj,ε we have that the
right-hand side of the previous formula equals

1 +
∑

|γ|+l≥r, |γ|<r, l<r

(−i)|γ|

γ!
∂γξ Pε∂

γ
xql,ε + sε
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when |ξ| ≥ 2R. Hence the net (λε−1)ε belongs to MSm−m′−r(R2n),a−a′ for |ξ| ≥ 2R.
Since q0,εPε(x, ξ)− 1 = ψ(ξ)− 1 ∈ C∞c (Rn) the domain restriction can be dropped.
Concluding, (λε − 1)ε := (rε)ε is an element of MS−∞(R2n),a−a′ . Analogously one
can construct a net of symbols (q′ε)ε ∈MS−m′ (R2n),−a′ such that q′ε(x,D)Pε(x,D) =
I+r′ε(x,D) with (r′ε)ε ∈MS−∞(R2n),a−a′ . By applying q′ε(x,D)Pε(x,D) to qε(x,D)
we get

(I + r′ε(x,D))qε(x,D) = q′ε(x,D)Pε(x,D)qε(x,D) = q′ε(x,D)(I + rε(x,D))

which at the level of symbols means

qε + r′ε]qε = q′ε + q′ε]rε.

Thus, (qε − q′ε) ∈ MS−∞(R2n),a−2a′ and since a − a′ ≥ 2a − 2a′ the equality
qε(x,D)Pε(x,D) = I + sε(x,D) holds with (sε)ε ∈MS−∞(R2n),2a−2a′ . �

A straightforward combination of Proposition 3.6 with Theorem 3.4 entails the
following result of local solvability.

Proposition 3.7. Let P (x,D) =
∑

|α|≤m cα(x)Dα be a differential operator with
coefficients cα ∈ G∞(Rn). Let (Pε)ε be a representative of P fulfilling the hypotheses
of Proposition 3.6 with a = a′. Then for all x0 ∈ Rn there exists a neighborhood Ω
of x0 and a cut-off function φ, identically 1 near x0, such that

∀F ∈ L2,loc(Gc(Rn), C̃) ∃T ∈ L(Gc(Ω), C̃) P (x,D)T = φFon Ω.

Proof. If a = a′ from Proposition 3.6 we have that there exists a parametrix qε(x,D)
with (qε)ε ∈ MS−m′ (R2n),−a, −m′ ≤ 0, and a regularizing operator rε(x,D) with

(rε)ε ∈ MS−∞(R2n),0. This means that |rε|(l)0,0 = O(1) for all l ∈ R. The conditions
under which Theorem 3.4 holds are therefore fulfilled. �

Example 3.8. As an explanatory example we consider the operator generated by

Pε(x,D) = −εa∆ +
∑
|α|≤1

cα,ε(x)Dα,

where

∆ =
n∑
i=1

∂2

∂x2
i

, cα,ε = cα ∗ ϕω(ε), cα ∈ L∞(Rn),

ϕ is a mollifier in S (Rn) and (ω−1(ε))ε a slow scale net. It follows that [(cα,ε)ε]
belongs to G∞(Rn) with

‖∂βcα,ε‖∞ ≤ ‖cα‖∞ ω(ε)−|β|‖∂βϕ‖1 ≤ cε−b

for all b > 0. For any a < 0 this operator is locally solvable in the sense of Theorem
3.4 because it fulfills the conditions (i), (ii), (iii) of Proposition 3.6 with a = a′.

Due to the existence of a generalized parametrix for the operator P (x,D) of
Proposition 3.7, the local solution inherits the regularity properties of the right
hand-side.

Proposition 3.9. Let P (x,D) =
∑

|α|≤m cα(x)Dα be a differential operator with
coefficients cα ∈ G∞(Rn). Let (Pε)ε be a representative of P fulfilling the hypotheses
of Proposition 3.6 with a = a′. Then for all x0 ∈ Rn there exists a neighborhood Ω
of x0 and a cut-off function φ, identically 1 near x0, such that

∀f ∈ G(Rn) ∃u ∈ G(Ω) P (x,D)u = φf on Ω,
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∀f ∈ G∞(Rn) ∃u ∈ G∞(Ω) P (x,D)u = φf on Ω.

Proof. First f ∈ G(Rn) can be regarded as an element of L2,loc(Gc(Rn), C̃). Let
(fε)ε be a representative of f . From Theorem 3.4 we can construct a local solution
u ∈ L(Gc(Ω), C̃) having a representative

uε = q̃ε(Ĩ + r̃ε)−1(φfε)

in ML2(Ω). The equality

qε(x,D)Pε(x,D) = I + sε(x,D)

holds on S ′(Rn). Taking the restrictions of the previous operators to the open set
Ω, since they all map L2(Ω) into L2(Ω) we have that

qε(x,D)Pε(x,D)v = v + sε(x,D)v (3.6)

holds on Ω for all v ∈ L2(Ω). Here and in the sequel we omit the restriction notation
|Ω for the sake of simplicity. From (3.6) follows

uε + sε(x,D)uε = qε(x,D)(φfε).

Since sε(x,D) is a regularizing operator and (fε)ε is a net of smooth functions we
already see that (uε)ε is a net of smooth functions as well. In particular, from
the mapping properties of generalized pseudodifferential operators we know that
(qε(x,D)(φfε))ε ∈MC∞(Ω) = EM (Ω). Finally we write sε(x,D)uε as∫

Ω

ksε
(x, y)uε(y) dy.

Combining the boundedness of the open set Ω with the following kernel property

∀α ∈ Nn ∀d ∈ N sup
(x,y)∈R2n

〈x〉−d〈y〉d|∂αx ∂βy ksε
(x, y)| = O(1)

we obtain

sup
x∈Ω

|∂αsε(x,D)uε| ≤ sup
x∈Ω

‖∂αx ksε(x, ·)‖L2(Ω) ‖uε‖L2(Ω) ≤ c‖uε‖L2(Ω) (3.7)

for ε small enough. Hence (sε(x,D)uε)ε ∈ EM (Ω). Concluding the net (uε)ε belongs
to EM (Ω) and generates a solution u in G(Ω) to P (x,D)u = φf .

When f ∈ G∞(Rn) since the net of symbols (qε)ε is regular we have that
(qε(x,D)(φfε))ε generates an element of G∞(Ω). Clearly as one sees in (3.7) also
s(x,D)u belongs to G∞(Ω). Hence u ∈ G∞(Ω). �

4. Local solvability of partial differential operators G-elliptic in a
neighborhood of a point

In this section we concentrate on a special type of partial differential operators
with coefficients in G(Rn). Their properties will inspire the more general model
introduced in Section 4. In the sequel we often refer to the work on generalized
hypoelliptic and elliptic symbols in [8, 9, 10].

Definition 4.1. Let P (x,D) =
∑

|α|≤m cα(x)Dα be a partial differential operator
with coefficients in G(Rn). We say that P (x,D) is G-elliptic in a neighborhood of x0

if there exists a representative (Pm,ε)ε of the principal symbol Pm, a neighborhood
Ω of x0, a ∈ R and c > 0 such that

|Pm,ε(x, ξ)| ≥ cεa (4.1)
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for all x ∈ Ω, for |ξ| = 1 and for all ε ∈ (0, 1].

Remark 4.2. It is clear that (4.1) holds for an arbitrary representative (Pε)ε of
P on a smaller interval (0, η] and with some smaller constant c > 0. In addition
if P (x,D) is G-elliptic in a neighborhood of x0 then P (x0, D) is G-elliptic. The
converse does not hold. Indeed, let ϕ ∈ C∞c (R) with ϕ(0) = 1 and ϕ(x) = 0 for
|x| ≥ 2. The differential operator P (x,D) with representative Pε(x,D) = ϕ(x/ε)D2

is G-elliptic in 0 but not in a neighborhood {|x| < r} of 0. This is due to the fact
that Pε(x, ξ) = 0 for x 6= 0 and ε < 2−1|x|.

As for G-elliptic operators with constant Colombeau coefficients (see [9, Sec-
tion6]) the following estimates hold in a neighborhood of x0.

Proposition 4.3. Let P (x,D) be G-elliptic in a neighborhood of x0. Then there
exists a representative (Pε)ε of P , a neighborhood Ω of x0, moderate strictly nonzero
nets (Rε)ε and (cα,β,ε)ε and a constant c0 > 0 such that

|Pε(x, ξ)| ≥ c0ε
a〈ξ〉m,

|∂αξ ∂βxPε(x, ξ)| ≤ cα,β,ε|Pε(x, ξ)|〈ξ〉−|α|

for x ∈ Ω, |ξ| ≥ Rε and for all ε ∈ (0, 1].

Proof. ¿From Definition 4.1 we have

|Pε(x, ξ)| ≥ |Pm,ε(x, ξ)| − |Pε(x, ξ)− Pm,ε(x, ξ)| ≥ cεa|ξ|m − cm−1,ε〈ξ〉m−1

for all ξ ∈ Rn, x ∈ Ω, ε ∈ (0, 1] and with (cm−1,ε)ε a moderate and strictly nonzero
net. Defining the radius Rε = max{1, 2mcm−1,εc

−1ε−a} we get for x ∈ Ω, |ξ| ≥ Rε
and for all ε, the inequality

|Pε(x, ξ)| ≥ |ξ|m(cεa − cm−1,ε2m−1|ξ|−1) ≥ c

2
εa|ξ|m ≥ c0ε

a〈ξ〉m.

Concerning the derivatives we have, always for |ξ| ≥ Rε,

|∂αξ ∂βxPε(x, ξ)| ≤ λα,β,ε〈ξ〉m−|α|

≤ λα,β,εc
−1
0 ε−a|Pε(x, ξ)|〈ξ〉−|α|

= cα,β,ε|Pε(x, ξ)|〈ξ〉−|α|.

�

By adapting the arguments of Proposition 3.6 to this kind of nets of symbols,
and in analogy with [10, Theorem 6.8], [8, Propositions 2.7, 2.8], we obtain that a
differential operator G-elliptic in a neighborhood of x0 admits a local parametrix.

Proposition 4.4. Let P (x,D) be G-elliptic in a neighborhood of x0. Then there
exists a neighborhood Ω of x0 and generalized symbols q ∈ GS−m(Ω×Rn) and r, s ∈
GS−∞(Ω×Rn) such that

P (x,D)q(x,D) = I + r(x,D),

q(x,D)P (x,D) = I + s(x,D)
(4.2)

as operators acting on Gc(Ω) with values in G(Ω).
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Note that if we take Ω bounded we can assume that the estimates involving the
symbols in (4.2) are global in ξ and x as well. The equalities between generalized
operators followed from the corresponding equalities at the level of representatives.
More precisely,

Pε(x,D)qε(x,D) = I + rε(x,D),

qε(x,D)Pε(x,D) = I + sε(x,D)

for all ε ∈ (0, 1]. Since P (x,D) is properly supported q(x,D)P (x,D) = I + s(x,D)
holds on G(Ω) and L(Gc(Ω), C̃) as well. It follows that if P (x,D) is G-elliptic in a
neighborhood of x0 and locally solvable then it inherits the regularity of the right-
hand side, in the sense that if P (x,D)T = v on Ω with T ∈ L(Gc(Ω), C̃ and v ∈ G(Ω)
then T ∈ G(Ω). The problem is that Definition 4.1 in general does not guarantee
the assumption on the parametrix (qε)ε and the regularizing term (rε)ε which allow
to apply Theorem 3.4 and obtain local solvability. In the following particular case
an operator which is G-elliptic in a neighborhood of x0 is also locally solvable at
x0.

Proposition 4.5. Let P (x,D) =
∑

|α|≤m cα(x)Dα be G-elliptic in a neighborhood
of x0 with

|Pm,ε(x, ξ)| ≥ cεa

in a neighborhood Ω1 of x0, for all ξ ∈ Rn with |ξ| = 1 and for all ε ∈ (0, 1]. If the
coefficients cα are G∞-regular in x0 of order a; i.e. on a neighborhood Ω2 of x0 the
following

∀β ∈ Nn, sup
x∈Ω2

|∂βcα,ε(x)| = O(εa)

holds, then there exist a neighborhood Ω of x0 and a cut-off function φ ∈ C∞c (Ω)
identically 1 near x0 such that:

(i) for all F ∈ L2,loc(Gc(Rn), C̃) there exist T ∈ L(Gc(Ω), C̃), which is a solu-
tion of P (x,D)T = φF on Ω;

(ii) for all f ∈ G(Rn) there exists u ∈ G(Ω) solving P (x,D)u = φf on Ω;
(iii) for all f ∈ G∞(Rn) there exists u ∈ G∞(Ω) solving P (x,D)u = φf on Ω;

Proof. We can choose a representative (Pε)ε such that the inequalities |Pm,ε(x, ξ)| ≤
cεa and |Pε(x, ξ) − Pm,ε(x, ξ)| ≤ cm−1ε

a〈ξ〉m−1 hold on the interval (0, 1], for all
x in a neighborhood of x0 and all ξ ∈ Rn. By following the proof of Proposition
4.3 we see that the radius does not depend on ε and that the nets (cα,β,ε) are O(1)
as ε tends to 0. We are under the hypotheses of Proposition 3.7. This yields the
first assertion. Proposition 4.4 and the considerations above on the regularity of
P (x,D) prove assertion (ii). Finally, assertion (iii) is clear for Proposition 3.9. �

We have found a class of partial differential operators with coefficients in G(Rn),
that under the hypothesis of G-ellipticity in a neighborhood x0 and under suitable
assumptions on the moderateness of the coefficients, are locally solvable at x0.
These locally solvable operators belong to the wider family of operators which can
be written in the form

P0(D) +
r∑
j=1

cj(x)Pj(D), (4.3)

in a neighborhood of x0. Here the operators P0(D), Pj(D), j = 1, . . . , r have
constant Colombeau coefficients and each cj is a Colombeau generalized function.
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We conclude this section by proving that a differential operator P (x,D) with
coefficients in G which is G-elliptic in x0, i.e. P (x0, D) is G-elliptic, can be written
in the form (4.3).

Proposition 4.6. Let P (x,D) =
∑

|α|≤m cα(x)Dα be a differential operator with
coefficients in G(Rn) which is G-elliptic in x0. Then P (x,D) can be written in the
form (4.3) with

• cj ∈ G(Rn), cj(x0) = 0, P0(D) and Pj(D) operators with constant Colom-
beau coefficients,

• P̃0 invertible in some point of Rn,
• P0(D) stronger than any Pj(D).

Proof. We set P0(D) = P (x0, D) and we have

P (x,D) = P0(D) +
∑
|α|≤m

(cα(x)− cα(x0))Dα.

Clearly the coefficients cα(x) − cα(x0) belong to G(Rn) and vanish for x = x0.
For each α ∈ Nn we find an operator Pj(α)(D) = Dα. By hypothesis P0(D) is
G-elliptic in x0. Hence from Proposition 2.9 we have that P0(D) is stronger than
any Pj(α)(D) with |α| ≤ m and the weight function P̃0 is invertible in any point of
Rn. �

A differential operator which is G-elliptic in a neighborhood Ω of x0 is in par-
ticular G-elliptic in x0 and therefore it can be written in the form (4.3) on the
whole of Rn. The special structure (4.3) of the G-elliptic operators motivates the
investigations of Section 5.

5. Bounded perturbations of differential operators with constant
Colombeau coefficients: definition and examples

In this section we concentrate on operators with coefficients in G(Rn) which are
locally a bounded perturbation of a differential operator with constant Colombeau
coefficients as in (4.3). More precisely, we say that P (x,D) =

∑
|α|≤m cα(x)Dα is

of bounded perturbation type, or of BP-type, in a neighborhood Ω of x0 if it has the
form

P0(D) +
r∑
j=1

cj(x)Pj(D),

when restricted to Ω, with
(H1) cj ∈ G(Ω), cj(x0) = 0, P0(D) = P (x0, D) and Pj(D), j = 1, . . . , r, opera-

tors with constant Colombeau coefficients
(H2) P̃0 invertible in some point of Rn,
(H3) P0(D) stronger than any Pj(D).

Remark 5.1. Our definition of BP-type is clearly inspired by the classical theory
of operators of constant strength (see [14, 15]). The direct generalization of this
concept to the Colombeau setting would mean to require P (x0, D) ≺ P (x,D) ≺
P (x0, D) for all x in neighborhood Ω of x0 with ≺ the order relation introduced
in Section 1. However, due to some some structural and technical constraints of
our framework, it is not clear at the moment if one can obtain from this general
definition a local bounded perturbation property as above. This is related to the



26 C. GARETTO EJDE-2009/116

fact that one can not use the properties of a linear space on the set of differential
operators with coefficients in C̃ weaker than P0(D). Indeed this set has the algebraic
structure of a module over C̃ and C̃ is only a ring and not a field.

As for the operators with constant Colombeau coefficients in [20, Theorem 7.8],
the local solvability of P (x,D) in the Colombeau algebra G(Ω), where Ω is an open
neighborhood of x0, implies the invertibility of the weight function P̃0 in some point
of Rn.

Proposition 5.2. Let P (x,D) be a differential operator with coefficients in G(Rn)
such that has the form

P0(D) +
r∑
j=1

cj(x)Pj(D),

in a neighborhood Ω of x0 and fulfills the hypothesis (H1). Let v ∈ G(Ω) with
v(x0) invertible in C̃. If the equation P (x,D)u = v is solvable in G(Ω) then P̃0 is
invertible in some point of Rn.

Proof. We begin by observing that

v(x0) = P (x0, D)u(x0) = P0(D)u(x0).

From (2.2) we see that P̃0 is invertible in some point of Rn if and only if it is
invertible in any point of Rn and then in particular in ξ = 0. We assume that P̃0(0)
is not invertible. It follows that for all q there exists εq ∈ (0, q−1] such that

P̃εq

2
(0) =

∑
|α|≤m

|cα,εq
(x0)|2(α!)2 < εqq.

Choosing εq ↘ 0 we have

|cα,εν (x0)|2 ≤ (α!)−2ενν ≤ (α!)−2εqν

for all ν ≥ q. Hence, for cε = 1 for ε = εq, q ∈ N, and cε = 0 otherwise, all the
nets (cε · cα,ε(x0))ε are negligible. Concluding, for c = [(cε)ε] ∈ R̃ the equality
v(x0) = P0(D)u(x0) implies

c · v(x0) = c · P0(D)u(x0) =
∑
|α|≤m

(c · cα(x0))Dαu(x0) = 0,

in contradiction with c · v(x0) 6= 0. �

We now collect some examples of operators of BP-type. It is clear by Proposition
4.6 that the differential operators which are G-elliptic in x0 are of BP-type in any
neighborhood of x0. For the advantage of the reader we write two explicit examples.

Example 5.3. (i) Let ci ∈ G(R), i = 0, . . . , 3, with c2(0) invertible in C̃, supp c3 ⊆
(−3/2,−1/2) and supp c2 ⊆ (−1, 1). The operator

P (x,D) = c3(x)D3 + c2(x)D2 + c1(x)D + c0(x)

is a bounded perturbation of P (0, D) in the neighborhood Ω := (−1/4, 1/4). In-
deed, P (x,D)|Ω = c2|ΩD2 + c1|ΩD + c0|Ω and P (x,D)|Ω is G-elliptic in 0.
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(ii) For i = 1, 2 let ϕi ∈ C∞c (R), ϕi(0) = 1 and ϕi,ε(x) = ϕi(x/ε). Let cα ∈ G(R)
for |α| ≤ 1. The operator P (x,D) with representative

Pε(x,D) = ϕ1,ε(x)D2
x1

+ ϕ2,ε(x)D2
x2

+
∑
|α|≤1

cα,ε(x)Dα

is a bounded perturbation of P (0, D). More precisely we can write

Pε(x,D) = D2
x1

+D2
x2

+ (ϕ1,ε(x)− 1)D2
x1

+ (ϕ2,ε(x)− 1)D2
x2

+
∑
|α|≤1

(cα,ε(x)− cα,ε(0))Dα.

A statement analogous to Proposition 4.6 holds for operators of principal type.

Proposition 5.4. Let P (x,D) =
∑

|α|≤m cα(x)Dα be a differential operator with
coefficients in G(Rn). Let the coefficients of the principal part be constant with at
least one of them invertible in C̃. If P (x,D) is of principal type then it is of BP-type
in any neighborhood Ω of any point x0 ∈ Rn.

Proof. We take P0(D) = P (x0, D) = Pm(D)+
∑

|α|≤m−1 cα(x0)Dα. By hypothesis
we have that P0(D) is of principal type. Moreover, the invertibility of one of the
coefficients of Pm(D) entails the invertibility of P̃0(ξ). Now we write

P (x,D) = P0(D) +
∑

|α|≤m−1

(cα(x)− cα(x0))Dα.

The operators Pj(α)(D) = Dα are all of order less than or equal to m − 1 and
therefore by Proposition 2.13(i) P0(D) dominates any Pj(α). �

In the next proposition we see an example of operator of BP-type where the
decomposition is obtained by deriving with respect to ξ.

Proposition 5.5. Let P (x, ξ) = c2,0ξ
2
1 + c1,1ξ1ξ2 + c0,2ξ

2
2 + c1,0(x)ξ1 + c0,1(x)ξ2 +

c0,0(x) be a polynomial in the R2-variable (ξ1, ξ2) with coefficients in G(R2). Let the
coefficients of the principal part be constant with at least one invertible. Let x0 ∈ R2

and P0(D) = P (x0, D). If 4c2,0c0,2 − c21,1 and 2c2,0 + 2c0,2 + c1,1 are invertible in
C̃ then for j = 1, 2, 3 there exists cj ∈ G(R2) with cj(x0) = 0 such that

P (x,D) = P0(D) + c1(x)P1(D) + c2(x)P2(D) + c3(x)P3(D),

where

P1(D) = P
(1,0)
0 (D), P2(D) = P

(0,1)
0 (D),

P3(D) = P
(2,0)
0 (D) + P

(1,1)
0 (D) + P

(0,2)
0 (D).

Hence, P (x,D) is of BP-type in any neighborhood of x0.

Proof. We argue at the level of symbols. By fixing x = x0 we have

P0(ξ) = P (x0, ξ) = c2,0ξ
2
1 + c1,1ξ1ξ2 + c0,2ξ

2
2 + c1,0(x0)ξ1 + c0,1(x0)ξ2 + c0,0(x0)

P
(1,0)
0 (ξ) = 2c2,0ξ1 + c1,1ξ2 + c1,0(x0),

P
(0,1)
0 (ξ) = c1,1ξ1 + 2c0,2ξ2 + c0,1(x0),

P
(1,1)
0 (ξ) = c1,1,

P
(2,0)
0 (ξ) = 2c2,0,
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P
(0,2)
0 (ξ) = 2c0,2.

From the invertibility of one of the principal part’s coefficients we have that P̃0 is
invertible in any point ξ0 of Rn. Moreover, P1 := P

(0,1)
0 ≺≺ P0, P2 := P

(0,1)
0 ≺≺ P0

and P3 := P
(2,0)
0 + P

(1,1)
0 + P

(0,2)
0 ≺≺ P0. The operator

P (x,D) = P0(D) + (c1,0(x)− c1,0(x0))Dx1 + (c0,1(x)− c0,1(x0))Dx2

+ (c0,0(x)− c0,0(x0))

can be written as

P0(D) + c1(x)P1(D) + c2(x)P2(D) + c3(x)P3(D),

where the generalized functions c1(x), c2(x) and c3(x) are solutions of the system:

2c2,0 c1(x) + c1,1 c2(x) = c1,0(x)− c1,0(x0),

c1,1 c1(x) + 2c0,2 c2(x) = c0,1(x)− c0,1(x0),

c1,0(x0) c1(x) + c0,1(x0) c2(x) + (2c2,0 + 2c0,2 + c1,1)c3(x) = c0,0(x)− c0,0(x0).

In detail,

c1(x) =
2c0,2(c1,0(x)− c1,0(x0))− c1,1(c0,1(x)− c0,1(x0))

4c2,0c0,2 − c21,1
,

c2(x) =
2c2,0(c0,1(x)− c0,1(x0))− c1,1(c1,0(x)− c1,0(x0))

4c2,0c0,2 − c21,1
,

c3(x) =
(c0,0(x)− c0,0(x0))− c1,0(x0)c1(x)− c0,1(x0)c2(x)

2c2,0 + 2c0,2 + c1,1
.

It is clear that c1(x), c2(x) and c3(x) vanish at x = x0. �

6. Conditions of local solvability for operators of bounded
perturbation type in the Colombeau context

Purpose of this section is to provide sufficient conditions of local solvability for an
operator P (x,D) =

∑
|α|≤m cα(x)Dα with coefficients in G(Rn) which is of bounded

perturbation type in a neighborhood Ω of x0, that is

P (x,D) = P0(D) +
r∑
j=1

cj(x)Pj(D)

on Ω with,

(H1) for all j = 1, . . . , n, cj ∈ G(Ω), cj(x0) = 0, P0(D) and Pj(D) operators with
constant Colombeau coefficients

(H2) P̃0 invertible in some point of Rn,
(H3) P0(D) stronger than any Pj(D).

This requires some specific properties of the spaces Bp,k which are proven in [15,
Chapters X, XIII] and collected in the sequel.



EJDE-2009/116 SUFFICIENT CONDITIONS OF LOCAL SOLVABILITY 29

6.1. The spaces Bp,k: properties and calculus. Given k ∈ K we define for any
ν > 0 the functions

kν(ξ) = sup
η

e−ν|η|k(ξ − η), Mk(ξ) = sup
η
k(ξ + η)/k(η). (6.1)

One easily proves that kν and Mk are both tempered weight functions. More
precisely there exists a constant Cν > 0 such that for all ξ ∈ Rn,

1 ≤ kν(ξ)/k(ξ) ≤ Cν .

If k(ξ + η) ≤ (1 + C|ξ|)Nk(η) then

Mkν
(ξ) ≤ (1 + C|ξ|)N ,

for all ν > 0. In particular Mkν
→ 1 uniformly on compact subsets of Rn when

ν → 0. The following theorem collects some important properties of the spaces
Bp,k which are proven in [15, Chapters X, XIII].

Theorem 6.1. (i) If u1 ∈ Bp,k1 ∩ E ′ and u2 ∈ B∞,k2 then u1 ∗ u2 ∈ Bp,k1k2
and

‖u1 ∗ u2‖p,k1k2 ≤ ‖u1‖p,k1 ‖u2‖∞,k2 .

(ii) If u ∈ Bp,k and φ ∈ S (Rn) then φu ∈ Bp,k and

‖φu‖p,k ≤ ‖φ‖1,Mk
‖u‖p,k.

(iii) For every φ ∈ S (Rn) there exists ν0 > 0 such that

‖φu‖p,kν ≤ 2‖φ‖1,1‖u‖p,kν

for all ν ∈ (0, ν0).
(iv) If ψ ∈ C∞c (Rn), x0 ∈ Rn and h is a C∞-function with h(x0) = 0 then for

ψδ,x0(x) = ψ((x− x0)/δ) one has

‖ψδ,x0h‖1,1 = O(δ)

as δ → 0.

Note that the number ν0 in (iii) depends on φ and the weight function k while
the norm of the operator u→ φu does not depend on k.

The next proposition concerns nets of distributions and nets of Bp,k-elements.

Proposition 6.2.

(i) If (gε)ε ∈ E ′(Rn)(0,1] generates a basic functional L(G(Rn), C̃) then for all
p ∈ [1,+∞] there exists k ∈ K such that (gε)ε ∈MBp,k(Rn); in particular if
(gε)ε is the representative of a generalized function in Gc(Rn) then (gε)ε ∈
MBp,k(Rn) for all k.

(ii) If (gε)ε ∈ E ′(Rn)(0,1] with supp gε ⊆ K b Rn for all ε and (gε)ε ∈
MBp,k(Rn) then (gε)ε generates a basic functional in L(G(Rn), C̃).

(iii) If (gε)ε ∈ MBp,k(Rn) and 〈ξ〉jk−1(ξ) ∈ Lq(Rn) with 1/p + 1/q = 1 then
(gε)ε ∈MCj(Rn).

(iv) If (Sε)ε and (Tε)ε generate basic functionals in L(G(Rn), C̃) then (Sε ∗Tε)ε
defines a basic functional too.
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Proof. (i) The definition of a basic functional implies that there exists a moderate
net (cε)ε, a compact set K b Rn and a number m ∈ N such that the estimate

|ĝε(ξ)| = |gε(e−i·ξ)| ≤ cε sup
x∈K,|α|≤m

|∂αx e−ixξ| ≤ cε〈ξ〉m

holds for all ε ∈ (0, 1] and ξ ∈ Rn. For k(ξ) := 〈ξ〉
−mp−n−1

p we obtain

‖gε‖pp,k =
∫

Rn

〈ξ〉−mp−n−1|ĝε(ξ)|p dξ ≤ c′ε

∫
Rn

〈ξ〉−mp−n−1〈ξ〉mp dξ.

Thus (gε)ε ∈ MBp,k(Rn). The second assertion of (i) is clear since if (gε)ε is the
representative of a generalized function in Gc(Rn) then (ĝε)ε is a moderate net of
functions in S (Rn) and clearly a moderate net of Bp,k-functions for all k.

(ii) Let f ∈ C∞(Rn) and ψ be a cut-off function identically 1 in a neighborhood
of K. We can write gε(f) as ĝε((ψf )̌ ) = kĝε(k−1(ψf )̌ ). Hence,

|gε(f)| ≤ ‖kĝε‖p‖k−1(ψf )̌ ‖q,

with 1/p + 1/q = 1. By choosing h large enough, using the bound from below
k(ξ) ≥ k(0)(1 + C|ξ|)−N and the continuity of the inverse Fourier transform on
S (Rn) we are led to

|gε(f)| ≤ c‖kĝε‖p sup
ξ∈Rn,|α|≤h

〈ξ〉h|∂α((ψf )̌ )|

and, for some h′ ∈ N and c′ > 0, to

|gε(f)| ≤ c′‖kĝε‖p sup
x∈suppψ,|β|≤h′

|∂βf(x)|.

Since (gε)ε is Bp,k-moderate it follows that (gε)ε defines a basic functional in
L(G(Rn), C̃).

(iii) From the hypothesis 〈ξ〉jk−1(ξ) ∈ Lq(Rn) and (gε)ε ∈ MBp,k(Rn) it follows
that (ξαĝε)ε ∈ ML1(Rn) for all α with |α| ≤ j. Therefore, gε(x) =

∫
Rn eixξ ĝε(ξ) dξ

is a moderate net of Cj-functions.
(iv) Combining the property of basic functionals with the definition of convolu-

tion we get

|Sε ∗ Tε(f)| = |Sε,xTε,y(f(x+ y))|
≤ cε sup

x∈K,|α|≤m
|∂αx (Tε,y(f(x+ y)))|

= cε sup
x∈K,|α|≤m

|Tε,y(∂αf(x+ y))|

≤ cε sup
x∈K,|α|≤m

c′ε sup
y∈K′,|β|≤m′

|∂α+βf(x+ y)|

≤ cεc
′
ε sup
z∈K+K′,|γ|≤m+m′

|∂γf(z)|,

valid for all f ∈ C∞(Rn) and for all ε ∈ (0, 1] with (cε)ε and (c′ε)ε moderate nets. �

In the course of the paper we will use the expression basic functional T ∈
L(G(Rn), C̃) of order N for a functional T defined by a net of distributions (Tε)ε ∈
E ′(Rn)(0,1] such that

|Tε(f)| ≤ λε sup
x∈KbRn,|α|≤N

|∂αf(x)|
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holds for all f ∈ C∞(Rn), for all ε ∈ (0, 1] and for some moderate net (λε)ε. It
follows from Proposition 6.2(i) that (Tε)ε is a moderate net in Bp,k(Rn)(0,1] with
k(ξ) = 〈ξ〉

−Np−n−1
p .

In our investigation of the local solvability of P (x,D) we distinguish between

(1) the coefficients cj are standard smooth functions,
(2) the coefficients cj are Colombeau generalized functions.

In both these cases we will adapt the proof of [15, Theorem 13.3.3] (or [14, Theorem
7.3.1]) to our generalized context. ¿From the assumption of BP-type in Ω it is not
restrictive in the following statements to take P (x,D) = P0(D)+

∑r
j=1 cj(x)Pj(D)

with coefficients cj ∈ G(Ω).

6.2. Local solvability: case cj ∈ C∞.

Theorem 6.3. Let Ω be a neighborhood of x0 and let

P (x,D) = P0(D) +
r∑
j=1

cj(x)Pj(D)

with cj ∈ C∞(Ω) for all j. If the hypotheses (H1), (H2), (H3) are fulfilled and in
addition

(H4) P̃j,ε(ξ) ≤ λj,εP̃0,ε(ξ), where λj,ε = O(1)

holds for all j and for a certain choice of representatives, then there exists a suffi-
ciently small neighborhood Ωδ := {x : |x− x0| < δ} of x0 such that

(i) for all F ∈ Lb(G(Rn), C̃) there exists T ∈ Lb(G(Rn), C̃) solving P (x,D)T =
F on Ωδ,

(ii) for all v ∈ Gc(Rn) there exists u ∈ Gc(Rn) solving P (x,D)u = v on Ωδ.

Proof. We organize the proof in a few steps.
Step 1: the operator P0(D). Since P̃0 is invertible in some point of Rn from

Theorem 2.2 we know that there exists a fundamental solution E0 ∈ Lb(Gc(Rn), C̃)
having a representative (E0,ε)ε such that∥∥∥ E0,ε

cosh(c|x|)

∥∥∥
∞,gP0,ε

≤ C0,

for all ε ∈ (0, 1]. Note that the constant C0 does not depend on ε. It follows from
Theorem 6.1(ii), the inequality (2.1) and the definition of MgP0,ε

the estimate

‖ϕE0,ε‖∞,gP0,ε
≤ ‖ϕ cosh(c|x|)‖1,M gP0,ε

∥∥∥ E0,ε

cosh(c|x|)

∥∥∥
∞,gP0,ε

≤ ‖(1 + C|ξ|)mF(ϕ cosh(c| · |))(ξ)‖1 · C0 ≤ C1

valid for all ϕ ∈ C∞c (Rn) and ε ∈ (0, 1] with m order of the polynomial P0.
Step 2: the equation P0,ε(D)u = f when f ∈ E ′(Rn) with supp f ⊆ Ωδ0 .

Let δ0 > 0 and let χ be a function in C∞c (Rn) identically 1 in a neighborhood of {x :
|x| ≤ 2δ0}. ¿From the previous considerations we have that F0,ε := χE0,ε ∈ B∞,gP0,ε

with ‖F0,ε‖∞,gP0,ε
≤ C1 for all ε. Moreover, for all f ∈ E ′(Rn) with supp f ⊆ Ωδ0

we have that
E0,ε ∗ f = F0,ε ∗ f
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on Ωδ0 . Hence, by definition of a fundamental solution of P0(D), we can write on
Ωδ0 ,

P0,ε(D)(F0,ε ∗ f) = f. (6.2)

Step 3: the operator
∑r
j=1 cj(x)Pj(D) on Ωδ ⊆ Ωδ0 . We now study the

operator
r∑
j=1

cj(x)Pj(D).

Let ψ ∈ C∞c (Rn) such that ψ(x) = 1 when |x| ≤ 1 and ψ(x) = 0 when |x| ≥ 2.
We set ψδ,x0(x) = ψ((x− x0)/δ). We fixed the representatives (P̃0,ε)ε, (P̃j,ε)ε and
(λj,ε)ε fulfilling (H4) and we study the net of operators

Aδ,ε(g) =
r∑
j=1

ψδ,x0cjPj,ε(D)(F0,ε ∗ g)

defined for g ∈ D′(Rn). More precisely for k ∈ K, 1 ≤ p ≤ ∞ and kν as in (6.1)
we want to estimate Aδ,ε on Bp,kν

. Since ψδ,x0cj belongs to S (Rn) by Theorem
6.1(iii) we find a sufficiently small νδ, depending on the coefficients cj and on ψδ,x0 ,
such that

‖ψδ,x0cjPj,ε(D)(F0,ε ∗ g)‖p,kν
≤ 2‖ψδ,x0cj‖1,1 ‖Pj,ε(D)(F0,ε ∗ g)‖p,kν

holds for all ν < νδ. Hence, from Theorem 6.1(i), the properties of the net (F0,ε)ε
and (H4) we have

‖Aδ,ε(g)‖p,kν

≤
r∑
j=1

2‖ψδ,x0cj‖1,1 ‖Pj,ε(D)(F0,ε ∗ g)‖p,kν

≤
r∑
j=1

2‖ψδ,x0cj‖1,1‖Pj,ε(D)F0,ε‖∞,1‖g‖p,kν

=
r∑
j=1

2‖ψδ,x0cj‖1,1‖Pj,εF̂0,ε‖∞‖g‖p,kν
≤

r∑
j=1

2‖ψδ,x0cj‖1,1‖P̃j,εF̂0,ε‖∞‖g‖p,kν

≤ 2
r∑
j=1

‖ψδ,x0cj‖1,1 λj,ε ‖F0,ε‖∞,gP0,ε
‖g‖p,kν

≤ 2C1

r∑
j=1

‖ψδ,x0cj‖1,1 λj,ε ‖g‖p,kν

Since cj(x0) = 0 the assumptions of Theorem 6.1(iv) are satisfied. Hence, we have
‖ψδ,x0cj‖1,1 = O(δ). Combining this fact with |λj,ε| = O(1) we conclude that there
exist δ1 and ε1 small enough such that

‖Aδ,ε(g)‖p,kν
≤ 2−1‖g‖p,kν

is valid for all δ < δ1, for all ν < νδ, for all g ∈ Bp,kν
(Rn) and for all ε ∈ (0, ε1).

Since Bp,k = Bp,kν it follows that for all f ∈ Bp,k(Rn) there exists a unique solution
(gε)ε∈(0,ε1) with gε ∈ Bp,k(Rn) of the equation

g +Aδ,ε(g) = ψδ,x0f

for ε ∈ (0, ε1). Note that both δ1 and ε1 do not depend on the weight function k
and that this is possible thanks to the equivalent norm ‖ · ‖p,kν

.
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Step 4: the equation P (x,D)T = F on Ωδ with F ∈ Lb(G(Rn), C̃). Let
(Fε)ε be a net in E ′(Rn)(0,1] which defines F . By Proposition 6.2(i) we know that
(Fε)ε ∈ MBp,k(Rn) for some k. Let us take Ωδ with δ < δ1 < δ0 such that the
previous arguments are valid for Bp,kν

= Bp,k with ν < νδ. We study the equation
at the level of representatives on Ωδ which can be written as

P0,ε(D)(Tε) +
r∑
j=1

ψδ,x0cjPj,ε(D)Tε = ψδ,x0Fε.

Let (gε)ε be the unique solution of the equation

gε +Aδ,ε(gε) = ψδ,x0Fε

on the interval (0, ε1). We have that (gε)ε is Bp,k-moderate (for simplicity we can
set gε = 0 for ε ∈ [ε1, 1]). Indeed,

‖gε‖p,kν ≤ ‖Aδ,ε(gε)‖p,kν + ‖ψδ,x0Fε‖p,kν ≤ 2−1‖gε‖p,kν + ‖ψδ,x0Fε‖p,kν

and
‖gε‖p,k ≤ c‖ψδ,x0Fε‖p,k ≤ c‖ψδ,x0‖1,Mk

‖Fε‖p,k ≤ λε, (6.3)

with (λε)ε ∈ EM . Since suppAδ,ε(g) ⊆ suppψδ,x0 ⊆ Ω2δ for all g ∈ D′(Rn) we
conclude that supp gε is contained in a compact set uniformly with respect to ε
(and therefore supp gε ⊆ Ωδ0 for some δ0). From Proposition 6.2(ii) it follows that
(gε)ε generates a basic functional in L(G(Rn), C̃). Let now

Tε = F0,ε ∗ gε.

The fourth assertion of Proposition 6.2 yields that the net (Tε)ε defines T ∈
Lb(G(Rn), C̃). By construction (steps 2 and 3) and for ε small enough, we have

P0,ε(D)(Tε)|Ωδ
+

r∑
j=1

(ψδ,x0cjPj,ε(D)Tε)|Ωδ
= P0,ε(D)(F0,ε ∗ gε)|Ωδ

+Aδ,ε(gε)|Ωδ

= gε|Ωδ
+Aδ,ε(gε)|Ωδ

= ψδ,x0Fε|Ωδ
= Fε|Ωδ

.

Hence P (x,D)T |Ωδ
= F |Ωδ

.
Step 5: the equation P (x,D)u = v on Ωδ with v ∈ Gc(Rn). Let (vε)ε be a

representative of v. By Proposition 6.2(i) we know that we can work in the space
Bp,k(Rn) with k arbitrary. Moreover, the interval (0, ε1) and the neighborhood Ωδ
do not depend on k. This means that we can write

gε +Aδ,ε(gε) = ψδ,x0vε,

where, combining the moderateness of ‖gε‖p,k in (6.3) for any k with Proposition
6.2(iii), we have that (gε)ε ∈ MC∞(Rn) = EM (Rn). The convolution between a
basic functional in Lb(G(Rn), C̃) and a Colombeau generalized function in Gc(Rn)
gives a generalized function in Gc(Rn) (see [6, Propositions 1.12, 1.14 and Remark
1.16]). Hence, u with representative

uε := F0,ε ∗ gε

belongs to Gc(Rn) and Pε(x,D)uε = ψδ,x0vε = vε on Ωδ by construction. �
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Example 6.4. On R2 we define the operator

εaD2
x − εbD2

y + c1(x, y)εaDx + c2(x, y)εbDy + c3(x, y)εc,

where c1, c2 and c3 are smooth functions and a, b, c ∈ R with c ≥ min{a, b}. We
set P0,ε(D) = εaD2

x − εbD2
y, P1,ε(D) = εaDx, P2,ε(D) = εbDy and P3,ε(D) = εc.

Assume that all the coefficients cj vanish in a point (x0, y0). The hypotheses of
Theorem 6.3 are fulfilled. Indeed,

P̃0,ε

2
(ξ1, ξ2) = (εaξ21 − εbξ22)2 + (2εaξ1)2 + (2εbξ2)2 + 4ε2a + 4ε2b

is invertible in (1, 0) and concerning the functions

P̃1,ε

2
(ξ1) = ε2aξ21 + ε2a, P̃2,ε

2
(ξ2) = ε2bξ22 + ε2b, P̃3,ε

2
= ε2c

the following inequalities hold:

P̃1,ε

2
(ξ1) = ε2aξ21 + ε2a ≤ 4ε2aξ21 + 4ε2a ≤ P̃0,ε

2
(ξ1, ξ2),

P̃2,ε

2
(ξ2) = ε2bξ22 + ε2b ≤ 4ε2bξ22 + 4ε2b ≤ P̃0,ε

2
(ξ1, ξ2),

P̃3,ε

2
= ε2c ≤ 4ε2a + 4ε2b ≤ P̃0,ε

2
(ξ1, ξ2).

6.3. Local solvability: case cj ∈ G.

Theorem 6.5. Let Ω be a neighborhood of x0 and let

P (x,D) = P0(D) +
r∑
j=1

cj(x)Pj(D)

with cj ∈ G(Ω) for all j.
If, for a certain choice of representatives, the hypotheses (H1)–(H3) are fulfilled

and in addition,
(H5) P̃j,ε(ξ) ≤ λj,εP̃0,ε(ξ) with

sup
|α|≤n+1+ n+1

p +N

sup
x∈Ω

|∂αcj,ε(x)|λj,ε = O(1)

for some p ∈ [1,∞), for some N ∈ N and for all j = 1, . . . , r,
then there exists a sufficiently small neighborhood Ωδ := {x : |x − x0| < δ} of x0

such that
(i) for all F ∈ Lb(G(Rn), C̃) of order N there exists T ∈ Lb(G(Rn), C̃) solving

P (x,D)T = F on Ωδ.
If, for a certain choice of representatives, the hypotheses (H1)–(H3) are fulfilled

and in addition,
(H6) P̃j,ε(ξ) ≤ λj,εP̃0,ε(ξ) with

∀N ∈ N ∃a > 0 sup
|α|≤n+1+N

sup
x∈Ω

|∂αcj,ε(x)|λj,ε = O(εa)

for all j = 1, . . . , r,
then there exists a sufficiently small neighborhood Ωδ := {x : |x − x0| < δ} of x0

such that
(ii) for all F ∈ Lb(G(Rn), C̃) there exists T ∈ Lb(G(Rn), C̃) solving P (x,D)T =

F on Ωδ.
(iii) for all v ∈ Gc(Rn) there exists u ∈ Gc(Rn) solving P (x,D)u = v on Ωδ.
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Proof. As for Theorem 6.3 we organize the proof in few steps. Clearly the steps 1
and 2 are as in the proof of Theorem 6.3 since P0(D) is an operator with constant
Colombeau coefficients. New methods have to be applied to

∑r
j=1 cj(x)Pj(D) since

the coefficients cj are Colombeau generalized functions. We work on a neighborhood
Ω = Ω2δ0 of x0 and we use the notation introduced in proving Theorem 6.3.

First set of hypotheses. We begin with the assumptions (H1), (H2), (H3)
and (H5).

Step 3: the operator
∑r
j=1 cj(x)Pj(D) on Ωδ ⊆ Ωδ0 . We fix a choice of

representatives (cj,ε) and the representatives Pj,ε and P0,ε of the hypothesis. Let
k ∈ K and p ∈ [1,∞) as in (H5). We define the operator

Aδ,ε(g) =
r∑
j=1

ψδ,x0ψ
2
δ0,x0

cj,εPj,ε(D)(F0,ε ∗ g).

It maps D′(Rn) into E ′(Rn). We want to estimate the Bp,kν -norm of Aδ,ε(g). We
begin by observing that by Theorem 6.1(iv) there exists δ1 < δ0 such that

‖ψδ,x0ψδ0,x0‖1,1 ≤ cδ

for all δ < δ1. Choosing δ < δ1 and φ = ψδ,x0ψδ0,x0 ∈ S (Rn) from Theorem 6.1(iii)
we obtain a certain νδ such that for all ν ∈ (0, νδ) and for all ε ∈ (0, 1] the following
estimate holds:

‖Aδ,ε(g)‖p,kν ≤ 2
r∑
j=1

‖ψδ,x0ψδ0,x0‖1,1 ‖ψδ0,x0cj,εPj,ε(D)(F0,ε ∗ g)‖p,kν

≤ 2cδ
r∑
j=1

‖ψδ0,x0cj,εPj,ε(D)(F0,ε ∗ g)‖p,kν
.

We assume k(ξ + η) ≤ (1 + |ξ|)N+ n+1
p k(η) for all ξ. It follows that Mkν

(ξ) ≤
(1 + |ξ|)N+ n+1

p for all ν. An application of the first two assertions of Theorem 6.1
combined with (H5) and the properties of F0,ε entails, on a certain interval (0, εk)
depending on k, the inequality

‖Aδ,ε(g)‖p,kν

≤ 2cδ
r∑
j=1

‖ψδ0,x0cj,ε‖1,Mkν
‖Pj,ε(D)(F0,ε ∗ g)‖p,kν

≤ 2cδ
r∑
j=1

‖(1 + C|ξ|)N+ n+1
p F(ψδ0,x0cj,ε)(ξ)‖1‖Pj,ε(D)(F0,ε)‖∞,1‖g‖p,kν

≤ 2cδ
r∑
j=1

c(ψδ0,x0) sup
|α|≤n+1+ n+1

p +N

sup
x∈Ω

|∂αcj,ε(x)|λj,ε‖F0,ε‖∞,gP0,ε
‖g‖p,kν

≤ 2c1(k, δ0, ψ)δ‖g‖p,kν .

This means that for any k there exist δ = δk small enough and εk small enough
such that

‖Aδ,ε(g)‖p,kδ
≤ 2−1‖g‖p,kδ

holds for all ε ∈ (0, εk) and for all g ∈ Bp,kδ
(Rn) = Bp,k(Rn). It follows that for all

f ∈ Bp,k(Rn) there exists a unique solution (gε)ε∈(0,εk) with gε ∈ Bp,k(Rn) of the
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equation
g +Aδ,ε(g) = ψδ,x0f

for ε ∈ (0, εk).
Step 4: the equation P (x,D)T = F on Ωδ with F ∈ Lb(G(Rn), C̃). Let

(Fε)ε be a net in E ′(Rn)(0,1] which defines F of order N . By Proposition 6.2(i) we
know that (Fε)ε ∈ MBp,k(Rn) for k(ξ) = 〈ξ〉−N−

n+1
p . Hence, for all ν > 0 we have

Mkν (ξ) ≤ (1+ |ξ|)N+ n+1
p and we are under the hypothesis of the previous step. Let

us take Ωδ with δ = δk such that the previous arguments are valid for Bp,kδ
= Bp,k.

At the level of representatives we can write

P0,ε(D)(Tε) +
r∑
j=1

ψδ,x0ψ
2
δ0,x0

cj,εPj,ε(D)Tε = ψδ,x0Fε

on Ωδ. Let (gε)ε be the unique solution of the equation

gε +Aδ,ε(gε) = ψδ,x0Fε

on the interval (0, εk). As in Theorem 6.3 one easily sees that (gε)ε isBp,k-moderate.
Since suppAδ,ε(g) ⊆ suppψδ,x0 ⊆ Ω2δ for all g ∈ D′(Rn) we conclude that supp gε
is contained in a compact set uniformly with respect to ε (and therefore supp gε ⊆
Ωδ0 for some δ0). From Proposition 6.2(ii) it follows that (gε)ε generates a basic
functional in L(G(Rn), C̃). Let now

Tε = F0,ε ∗ gε.

The fourth assertion of Proposition 6.2 yields that the net (Tε)ε defines T ∈
Lb(G(Rn), C̃). By construction, for all ε ∈ (0, εk) we have

P0,ε(D)(Tε)|Ωδ
+

r∑
j=1

(ψδ,x0ψ
2
δ0,x0

cj,εPj,ε(D)Tε)|Ωδ

= P0,ε(D)(F0,ε ∗ gε)|Ωδ
+Aδ,ε(gε)|Ωδ

= gε|Ωδ
+Aδ,ε(gε)|Ωδ

= ψδ,x0Fε|Ωδ
= Fε|Ωδ

.

We have solved the equation P (x,D)T = F on a neighborhood of x0 which depends
on the weight function k or in other words on the order of the functional F .

Second set of hypotheses. We now assume that (H1), (H2), (H3) and (H6)
hold and we prove that in this case one can find a neighborhood Ωδ which does not
depend on the weight function k.

Step 3: the operator
∑r
j=1 cj(x)Pj(D) on Ωδ ⊆ Ωδ0 . Let k be an arbitrary

weight function. Choosing δ < δ1 and any ν ∈ (0, νδ) our set of hypotheses com-
bined with the properties of F0,ε yields on an interval (0, εk) depending on k the
estimates

‖Aδ,ε(g)‖p,kν
≤ 2cδ

r∑
j=1

‖ψδ0,x0cj,ε‖1,Mkν
‖Pj,ε(D)(F0,ε ∗ g)‖p,kν

≤ 2cδ
r∑
j=1

‖(1 + C|ξ|)NkF(ψδ0,x0cj,ε)(ξ)‖1‖Pj,ε(D)(F0,ε)‖∞,1‖g‖p,kν
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≤ 2cδ
r∑
j=1

c(ψδ0 , x0) sup
|α|≤n+1+Nk

sup
x∈Ω

|∂αcj,ε(x)|λj,ε‖F0,ε‖∞,gP0,ε
‖g‖p,kν

≤ 2δc1(k, δ0, ψ)εak‖g‖p,kν
.

At this point taking εk so small that c1(k, δ0, ψ)εak

k < 1 and by requiring δ < 1/4
we have that for all δ < min(δ1, 1/4) there exist νδ such that for all ν < νδ the
inequality

‖Aε,δ(g)‖p,kν ≤ 2−1‖g‖p,kν

holds in a sufficiently small interval ε ∈ (0, εk). Note that δ does not depend on
k while εk does. Clearly for all for all f ∈ Bp,k(Rn) there exists a unique solution
(gε)ε∈(0,εk) with gε ∈ Bp,k(Rn) of the equation g +Aδ,ε(g) = ψδ,x0f for ε ∈ (0, εk).

Step 4: the equation P (x,D)T = F on Ωδ with F ∈ Lb(G(Rn), C̃). Let
(Fε)ε be a net in E ′(Rn)(0,1] which defines F . By Proposition 6.2(i) we know that
(Fε)ε ∈MBp,k(Rn) for some weight function k. The previous arguments are valid in
a neighborhood Ωδ of x0, with δ independent of k and (gε)ε is the unique solution
of the equation

gε +Aδ,ε(gε) = ψδ,x0Fε

on the interval (0, εk). The functional generated by

Tε = F0,ε ∗ gε
is the solution T of the equation P (x,D)T = F on Ωδ.

Step 5: the equation
∑r
j=1 cj(x)Pj(D) = v ∈ Gc(Rn) on Ωδ. Let (vε)ε ∈

EM (Rn) be a representative of v ∈ Gc(Rn). For ε ∈ (0, εk) the equation

Aε,δg + g = ψδ,x0vε (6.4)

has a unique solution gε in Bp,k. Moreover,

‖gε‖p,k ≤ C‖ψδ0,x0vε‖p,k (6.5)

for all ε ∈ (0, εk). Since ψδ,x0vε belongs to any Bp,k space we can conclude that
there exists a net of distributions (gε)ε which solve the equation (6.4) in D′ and such
that for all k ∈ K the estimate (6.5) holds on a sufficiently small interval (0, εk).
From the embedding Bp,k ⊂ Cj when (1 + |ξ|)j/k(ξ) ∈ Lq, 1/p + 1/q = 1 the
inequality (6.5) and the fact that (‖ψδ,x0vε‖p,k)ε is moderate we have the following:

∀j ∈ N∃εj ∈ (0, 1], εj ↘ 0, (gε)ε∈(0,εj) ∈MCj(Rn).

In other words the net of distributions (gε)ε solves the equation (6.4) in D′ and has
more and more moderate derivatives as ε goes to 0. (gε)ε is the representative of a
basic functional g in L(G(Rn), C̃). We already know that u = F0∗g ∈ Lb(G(Rn), C̃)
solves the equation P (x,D)u = v in L(Gc(Ωδ), C̃).

Step 6: g belongs to Gc(Rn) then u ∈ Gc(Rn). We finally prove that g is an
element of Gc(Rn). Since we already know that g has compact support we just have
to prove that g belongs to G(Rn). This will imply that u ∈ Gc(Rn). We generate a
representative of g which belongs to EM (Rn). Let (nε)ε ∈ N with nε 6= 0 for all ε
and ρ ∈ C∞c (Rn) with

∫
ρ = 1. For ρnε

(x) = ρ(x/nε)n−nε , the net gε ∗ ρnε
belongs

to EM (Rn). Indeed, gε ∗ ρnε
∈ C∞ for each ε and taking ε small enough

sup
x∈K

|∂α(gε∗ρnε
)(x)| = sup

x∈K
|∂α(gε)∗ρnε

(x)| = sup
x∈K

∣∣∣∫ ∂αgε(x−nεz)ρ(z) dz
∣∣∣ ≤ ε−N .



38 C. GARETTO EJDE-2009/116

Now, since

gε − gε ∗ ρnε(x) =
∫

(gε(x)− gε(x− nεz))ρ(z) dz

and for all q ∈ N,

sup
x∈K

|gε − gε ∗ ρnε
(x)| = O(εq),

we conclude that for all u ∈ Gc(Rn), g(u) = [(gε ∗ ρnε
)ε](u) where [(gε ∗ ρnε

)ε] ∈
G(Rn). This means that g is an element of G(Rn). �

Remark 6.6. Note that in the proof we do not make use of the assertion (iii)
of Theorem 6.1 with φ = ψδ,x0cj,ε and u = Pj,ε(D)(F0,ε ∗ g) because this would
generate some ν0 depending on φ and therefore on ε. This would also lead to a
neighborhood Ωδ of x0 whose radius depends on the parameter ε. Finally, note
that the condition (H6) is an assumption of G∞-regularity for the coefficients cj .

Example 6.7. On R2 we define the operator

D2
x − ε−1D2

y + c1,ε(x, y)Dx + c2,ε(x, y)Dy + c3,ε(x, y),

where (c1,ε)ε, (c2,ε)ε and (c3,ε)ε are moderate nets of smooth functions. We set
P0,ε(D) = D2

x − ε−1D2
y, P1(D) = Dx, P2(D) = Dy and P3(D) = I. Assume that

the coefficients cj,ε vanish in a point (x0, y0) for all ε. The weight function

P̃0,ε

2
(ξ1, ξ2) = (ξ21 − ε−1ξ22)2 + (2ξ1)2 + (2ε−1ξ2)2 + 4 + 4ε−2

is invertible in (1, 0) and concerning the functions P̃1

2
(ξ1) = ξ21 +1, P̃2

2
(ξ2) = ξ22 +1

and P̃3

2
= 1 the following inequalities hold:

P̃1

2
(ξ1) = ξ21 + 1 ≤ 4ξ21 + 4 ≤ P̃0,ε

2
(ξ1, ξ2),

P̃2

2
(ξ2) = ξ22 + 1 =

1
4
ε2(4ε−2(ξ22 + 1)) ≤ 1

4
ε2P̃0,ε

2
(ξ1, ξ2),

P̃3

2
= 1 ≤ 4 ≤ P̃0,ε

2
(ξ1, ξ2).

One easily sees that for λ1 = 1, λ2,ε = 1
2ε and λ3 = 1 the assumptions (H1)–(H3)

and (H6) of Theorem 6.5 are fulfilled if, on a certain neighborhood Ω of (x0, y0)
and for all N ∈ N, the following holds:

sup
|α|≤N

sup
x∈Ω

|∂αc1,ε(x)| = O(ε), sup
|α|≤N

sup
x∈Ω

|∂αc2,ε(x)| = O(1),

sup
|α|≤N

sup
x∈Ω

|∂αc3,ε(x)| = O(ε).

Hence the operator

D2
x − [(ε−1)ε]D2

y + c1(x, y)Dx + c2(x, y)Dy + c3(x, y),

with G∞-coefficients c1 = [(c1,ε)ε], c2 = [(c2,ε)ε] and c3 = [(c3,ε)ε] is locally solvable
at (x0, y0) in both the Colombeau algebra G(R2) and the dual L(Gc(R2), C̃).
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7. A sufficient condition of local solvability for generalized
pseudodifferential operators

We conclude this article by providing a sufficient condition of local solvability
for generalized pseudodifferential operators. The generalization from differential to
pseudodifferential operators obliges us to find suitable functional analytic methods
able to generate a local solution which are not a simple convolution between the
right-hand side term and a fundamental solution. In particular, we will make
use of the Sobolev mapping properties of a generalized pseudodifferential operator
a(x,D). In the sequel we use the notation H0(Rn) = L2(Rn) and ‖ · ‖s for the
Sobolev Hs-norm.

Proposition 7.1. Let a ∈ GSm(R2n). There exist l0 ∈ N and a constant C0 > 0
such that the inequality

‖aε(x,D)u‖s−m ≤ C0 max
|α+β|≤l0

|〈ξ〉s−m]aε]〈ξ〉−s|(0)α,β ‖u‖s (7.1)

holds for all s ∈ R, for all u ∈ Hs(Rn), for all representatives (aε)ε of a and for
all ε ∈ (0, 1].

It is clear from (7.1) that the moderateness properties of (aε)ε are the same of
(aε(x,D)u)ε as a net in Hs−m(Rn)(0,1].

Remark 7.2. The Colombeau space GL2(Rn) based on L2(Rn) is not contained in
the dual L(Gc(Rn), C̃). Indeed, for f ∈ L2(R) ∩ L1(R), f 6= 0, and (nε)ε ∈ N we
have that f = [(n−1/2

ε f(·/nε))ε] is not 0 in GL2(R) but∫
R
u(x)f(x) dx = 0

for all u ∈ Gc(R). Analogously, the embedding Hs1(Rn) ⊆ Hs2(Rn) cannot be
reproduced at the level of the corresponding Colombeau spaces for s1 ≥ s2. This is
due to the fact that there exist nets in NHs2 (Rn) ∩MHs1 (Rn) which do not belong
to NHs1 (Rn). For example, for f ∈ H1(Rn) with ‖f ′‖0 6= 0 and (nε)ε ∈ N we
have that (n1/2

ε f(·/nε))ε ∈ MH1(R) ∩ NH0(R) but (n−1/2
ε f ′(·/nε))ε 6∈ NH0(R) and

therefore (n1/2
ε f(·/nε))ε 6∈ NH1(R).

The embedding issues of Remark 7.2 lead us to study the equation a(x,D)T = F

in the dual L(Gc(Rn), C̃ even when F belongs to a Colombeau space based on a
Sobolev space.

Theorem 7.3. Let a ∈ GSm(R2n). Assume that there exist a representative (a∗ε)ε
of a∗, a strictly non-zero net (λε)ε, a positive number δ > 0 and 0 ≤ s ≤ m such
that

‖ϕ‖s ≤ λε‖a∗ε(x,D)|Ωδ
ϕ‖0 (7.2)

for all ϕ ∈ C∞c (Ωδ), Ωδ := {|x| < δ}, and for all ε ∈ (0, 1].
Then, for all F ∈ Lb(Gc(Rn), C̃) generated by a net in MH−s(Rn) there exists
T ∈ Lb(Gc(Ωδ), C̃) generated by a net in ML2(Ωδ) such that

a(x,D)|Ωδ
T = F |Ωδ

in L(Gc(Ωδ), C̃).
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The proof of Theorem 7.3 uses the theory of Hilbert C̃-modules (see [12]) and
in particular of the projection operators defined on the Hilbert C̃-module GL2(Ωδ).
¿From [12, Proposition 2.21] we have that if E is a nonempty subset in GL2(Ωδ)

generated by a net (Eε)ε of nonempty convex subsets of L2(Ωδ) (E = [(Eε)ε] :=
{u ∈ GL2(Ωδ) : ∃ repr.(uε)ε ∀ε ∈ (0, 1] uε ∈ Eε}) then there exists a map PE :
GL2(Ωδ) → E called projection on E such that ‖u − PE(u)‖ = infw∈E ‖u − w‖ for
all u ∈ GL2(Ωδ). In this particular case we have in addition that the net (PEε

(uε))ε
is moderate in L2(Ωδ) and the property PE(u) = [(PEε

(uε))ε]. If Eε is a subspace
of L2(Ωδ) we easily have for all v ∈ L2(Ωδ) the following inequality in the norm of
L2(Ωδ): ‖PEε

v‖ ≤ ‖v − PEε
v‖+ ‖v‖ ≤ infw∈Eε

‖v − w‖+ ‖v‖ ≤ 2‖v‖.

Proof of Theorem 7.3. Let a∗ε be the representative of a∗ fulfilling the hypotheses
of Theorem 7.3. Let Eε := {ψ ∈ L2(Ωδ) : ∃ϕ ∈ C∞c (Ωδ) ψ = a∗ε(x,D)|Ωδ

(ϕ)}.
Eε is a nonempty subspace of L2(Ωδ) and therefore we can define the projection
operator PE : GL2(Ωδ) → E on E := [(Eε)ε] C̃-submodule of GL2(Ωδ). We use for the
operator C∞c (Ωδ) → L2(Ωδ) : ϕ → a∗ε(x,D)|Ωδ

(ϕ) the notation A∗ε. The condition
(7.2) means that A∗ε : C∞c (Ωδ) → Eε is invertible. Combining (7.2) with the Sobolev
embedding properties we have that

‖(A∗ε)−1v‖L2(Ωδ) ≤ ‖(A∗ε)−1v‖s ≤ λε‖v‖L2(Ωδ) (7.3)

holds for all v ∈ Eε. Taking the closure Eε of Eε in L2(Ωδ) the inequality (7.3)
allows us to extend (A∗ε)

−1 to a continuous operator from Eε to Hs(Rn) ⊆ L2(Ωδ),
with (7.3) valid for all v ∈ Eε.

Let u be an element of E defined by the net (uε)ε, uε ∈ Eε. Clearly (A∗ε)
−1uε ∈

C∞c (Ωδ) with ‖(A∗ε)−1uε‖s ≤ λε‖uε‖L2(Ωδ) and if u′ε ∈ Eε is another net generating
u we obtain

‖(A∗ε)−1(uε − u′ε)‖s ≤ λε‖uε − u′ε‖L2(Ωδ).

This means that we can define the C̃-linear functional

S : E → C̃ : u = [(uε)ε] → [(((A∗ε)
−1uε|Fε)L2(Rn))ε]

where

|((A∗ε)−1uε|Fε)L2(Rn)| = (2π)−n|(〈ξ〉s ̂(A∗ε)−1uε|〈ξ〉−sF̂ε)L2(Rn)|
≤ ‖(A∗ε)−1uε‖s‖Fε‖−s
≤ λε‖uε‖L2(Ωδ)‖Fε‖−s.

From the previous inequality we also have that the functional S is continuous. Since
E is a C̃-submodule the projection PE is continuous and C̃-linear. It follows that

S ◦ PE : GL2(Ωδ) → C̃ : u→ S(PE(u))

is a continuous C̃-linear functional on GL2(Ωδ) with basic structure. Indeed, it is
defined by the net L2(Ωδ) → C : v → ((A∗ε)

−1PEε
v|Fε)L2(Rn) such that

|((A∗ε)−1PEε
v|Fε)L2(Rn)| ≤ λε‖PEε

v‖L2(Ωδ)‖Fε‖−s ≤ 2λε‖Fε‖−s‖v‖L2(Ωδ),

where the nets (λε)ε and (‖Fε‖−s)ε are moderate. By the Riesz representation the-
orem for Hilbert C̃-modules and C̃-linear functionals [12, Theorem 4.1 and Propo-
sition 4.4]) we have that there exists a unique t ∈ GL2(Ωδ) such that

(S ◦ PE)(u) = (u|t)L2(Ωδ)
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for all u ∈ GL2(Ωδ). More precisely there exists a representative (tε)ε of t such that
the equality

((A∗ε)
−1PEε

v|Fε)L2(Rn) = (v|tε)L2(Ωδ)

holds for all v ∈ L2(Ωδ). Let T be the basic functional in L(Gc(Ωδ), C̃) generated by
the net (tε)ε. T solves the equation a(x,D)|Ωδ

T = F |Ωδ
. Indeed, since A∗ε(x,D)ϕ ∈

Eε ⊆ L2(Ωδ) for all ϕ ∈ C∞c (Ωδ) we can write

((A∗ε)
−1PEε

A∗ε(x,D)ϕ|Fε)L2(Rn) = ((A∗ε)
−1A∗ε(x,D)ϕ|Fε)L2(Rn) = (ϕ|Fε)L2(Rn)

= (A∗ε(x,D)ϕ|tε)L2(Ωδ).

Thus,
(ϕ|Fε)L2(Rn) = (ϕ|aε(x,D)|Ωδ

tε)L2(Ωδ)

for all ϕ ∈ C∞c (Ωδ) or in other words, aε(x,D)|Ωδ
tε = Fε|Ωδ

in D′(Ωδ). �

Theorem 7.3 tells us that classical operators which satisfy the condition (7.2)
are locally solvable in the Colombeau context, in the sense that under suitable
moderateness conditions on the right hand side we will find a local generalized
solution. An example is given by differential operators which are at the same time
principally normal and of principal type at 0. More precisely, Proposition 4.3 in
[28] proves that a differential operator a(x,D) which is both principally normal
and of principal type at 0 fulfills the inequality ‖ϕ‖m−1 ≤ ‖a∗(x,D)ϕ‖0 for all
ϕ ∈ C∞c (Ωδ) with δ small enough.

We now go back to the case of differential operators with generalized Colombeau
coefficients. In other words we assume that the symbol a is of the type a = [(aε)ε] =∑

|α|≤m cα(x)ξα with cα ∈ G∞(Rn). The next proposition shows that the local
solvability condition (7.2) holds under an ellipticity assumption on the real part of
the symbol aε. We recall that for all m ∈ N and for all δ > 0 the inequality

‖ϕ‖m ≤ 2δ‖ϕ‖m+1 (7.4)

is true for all ϕ ∈ C∞c (Ωδ) (see [28, Lemma 4.2]).

Proposition 7.4. Let a(x,D) be a generalized differential operator with symbol
a ∈ GSm(R2n). If there exists b ∈ R, a representative (aε)ε ∈MSm(R2n),b, a constant
c0 > 0 and a net (cε)ε ∈MSm−1(R2n),b such that

< aε(x, ξ) = c0ε
b〈ξ〉m + cε(x, ξ)

for all (x, ξ) and all ε ∈ (0, 1], then there exist a sufficiently small δ > 0 and a
constant C > 0 such that

‖ϕ‖m
2
≤ Cε−b‖a∗ε(x,D)ϕ‖0

for all ϕ ∈ C∞c (Ωδ) and for all ε ∈ (0, 1].

Proof. We begin by writing 2< (ϕ|a∗ε(x,D)ϕ) as (ϕ|(aε + a∗ε)(x,D)ϕ). Recalling
that a∗ε = aε modulo MSm−1(Rn),b we have

2< (ϕ|a∗ε(x,D)ϕ) = (ϕ|2c0εbλm(D)ϕ) + (ϕ|c1,ε(x,D)ϕ),

where λm(D) has symbol 〈ξ〉m and (c1,ε)ε ∈MSm−1(R2n),b. Hence,

2< (ϕ|a∗ε(x,D)ϕ) ≥ c1ε
b‖ϕ‖2m

2
− (ϕ|c1,ε(x,D)ϕ)

≥ c1ε
b‖ϕ‖2m

2
− ‖ϕ‖m

2 −1‖c1,ε(x,D)ϕ‖−m
2
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Combining Proposition 7.1 with (7.4) we obtain

2< (ϕ|a∗ε(x,D)ϕ) ≥ c1ε
b‖ϕ‖2m

2
− ‖ϕ‖m

2 −1c2ε
b‖ϕ‖2−m

2
≥ c1ε

b‖ϕ‖2m
2
− 2δc2εb‖ϕ‖2m

2
.

Concluding for δ small enough there exists a constant C > 0 such that

‖ϕ‖2m
2
≤ Cε−b‖ϕ‖m

2
‖a∗ε(x,D)ϕ‖−m

2
≤ Cε−b‖ϕ‖m

2
‖a∗ε(x,D)ϕ‖0

holds for all ϕ ∈ C∞c (Ωδ). �

Example 7.5. Note that the condition (7.2) can be fulfilled by differential opera-
tors which are not a bounded perturbation of a differential operator with constant
Colombeau coefficients. This means that the results of this section enlarge the
family of generalized differential operators whose local solvability we are able to
investigate in the Colombeau context. As an explanatory example in R2 consider

aε(x,D) = D1 + bε(x)D2,

where (bε)ε is the representative of a generalized function. The generalized differ-
ential operator a(x,D) generated by (aε)ε is not a bounded perturbation of the
operator at 0 if we take bε(0) = 0. However if (bε)ε is real valued and suitable mod-
erateness conditions are satisfied (for instance (bε)ε bounded in ε together with all
its derivatives), the arguments of [28, Proposition 4.3] lead us to an estimate from
below of the type considered by Theorem 7.3.
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