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MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL
OPERATORS

CEZAR LUPU, TUDOREL LUPU

Abstract. In this article we study some mean value results involving linear
integral operators on the space of continuous real-valued functions defined on

the compact interval [0, 1]. The existence of such points will rely on some

classical theorems in real analysis like Rolle, Flett and others. Our approach
is rather elementary and does not use advanced techniques from functional

analysis or nonlinear analysis.

1. Introduction and Preliminaries

Mean value theorems play a key role in analysis. The simplest form of the mean
value theorem is the next basic result due to Rolle, namely

Theorem 1.1. Let f : [a, b] → R be a continuous function on [a, b], differentiable
on (a, b) and f(a) = f(b). Then there exists a point c ∈ (a, b) such that f ′(c) = 0.

Rolle’s theorem has also a geometric interpretation which states that if f(a) =
f(b) then there exists a point in the interval (a, b) such that the tangent line to the
graph of f is parallel to the x-axis. There is another geometric interpretation as
pointed out in [8], namely the polar form of Rolle’s theorem. As been noticed in [8],
if we take into account the geometric interpretation of Rolle’s theorem, one expects
that it is possible to relate the slope of the chord connecting (a, f(a)) and (b, f(b))
with the value of the derivative at some interior point. There are also other mean
value theorems like Lagrange, Cauchy, Darboux which are well-known and can be
found in any undergraduate Real Analysis course. In 1958, Flett gave a variation
of Lagrange’s mean value theorem with a Rolle type condition, namely

Theorem 1.2 ([8, 5]). Let f : [a, b] → R be a continuous function on [a, b], dif-
ferentiable on (a, b) and f ′(a) = f ′(b). Then there exists a point c ∈ (a, b) such
that

f ′(c) =
f(c)− f(a)

c− a
.

A detailed proof can be found in [5] and some applications are provided too.
The same proof appears also in [8]. A slightly different proof which uses Rolle’s
theorem instead of Fermat’s, can be found in [3] and [11]. There is a nice geometric
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interpretation for Theorem 1.2, namely: If the curve y = f(x) has a tangent at
each point in [a, b], and if the tangents at (a, f(a)) and (b, f(b)) are parallel, then
there is an intermediate point c ∈ (a, b) such that the tangent at (c, f(c)) passes
through the point (a, f(a)). Later, Riedel and Sahoo [11] removed the boundary
assumption on the derivatives and prove the following

Theorem 1.3 ([11]). Let f : [a, b] → R be a differentiable function on [a, b]. Then
there exists a point c ∈ (a, b) such that

f(c)− f(a) = (c− a)f ′(c)− 1
2
f ′(b)− f ′(a)

b− a
(c− a)2.

The proof relies on Theorem 1.2 applied to the auxiliary function α : [a, b] → R
defined by

α(x) = f(x)− 1
2
f ′(b)− f ′(a)

b− a
(x− a)2.

We leave the details to the reader. We also point out that this theorem is used to
extend Flett’s mean value theorem for holomorphic functions. In this sense, one
can consult [9]. On the other hand, there exists another result due to Flett as it is
pointed out in [8] for the second derivative of a function.

Theorem 1.4. If f : [a, b] → R is a twice differentiable function such that f ′′(a) =
f ′′(b) then there exists c ∈ (a, b) such that

f(c)− f(a) = (c− a)f ′(c)− (c− a)2

2
f ′′(c).

There exists another version of Flett’s theorem for the antiderivative:

Theorem 1.5. Let f : [0, 1] → R be a continuous function such that f(a) = f(b).
Then there exists c ∈ (a, b) such that∫ c

a

f(x)dx = (c− a)f(c).

Similar to Theorem 1.1 there exists another mean value theorem due to Penner
(problem 987 from the Mathematics Magazine, [8]) that we shall apply in the next
section.

Theorem 1.6. Let f : [a, b] → R be a differentiable function with f ′ be continuous
on [a, b] such that there exists λ ∈ (a, b) with f ′(λ) = 0. Then there exists c ∈ (a, b)
such that

f ′(c) =
f(c)− f(a)

b− a
.

The proof of the above theorem can be found in [8, page 233].
The version of Theorem 1.6 for antiderivative is the following theorem.

Theorem 1.7. Let f : [a, b] → R be a continuous function such that there is
λ ∈ (a, b) such that f(λ) = 0. Then there is c ∈ (a, b) such that∫ c

a

f(x)dx = (b− a)f(c).

In 1966, Trahan [15] extended Theorem 1.2 by removing the condition f ′(a) =
f ′(b) to the following theorem.
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Theorem 1.8. Let f : [a, b] → R be a continuous function on [a, b], differentiable
on (a, b) such that

(f ′(a)−m)(f ′(b)−m) > 0,

where m = f(b)−f(a)
b−a . Then there exists a point c ∈ (a, b) such that

f ′(c) =
f(c)− f(a)

c− a
.

A proof for the above theorem can be found in [11]. At the 35-th International
Symposium on Functional Equations held in Graz in 1997, Zsolt Pales raised a
question regarding a generalization of Flett’s theorem. An answer to his question
was given by Pawlikowska in [6], namely:

Theorem 1.9. If f possesses a derivative of order n on the interval [a, b], then
there exists a point c ∈ (a, b) such that

f(c)− f(a) =
n∑

k=1

(−1)k−1

k!
f (k)(c)(c− a)k +

(−1)n

(n+ 1)!
· f

(n)(b)− f (n)(a)
b− a

(c− a)n+1.

Other generalizations and several new mean value theorems in terms of divided
differences are given in [4]. For further reading concerning mean value theorems we
recommend [11].

2. Main results

In this section, we shall prove mean value value problems for some function
mapping. Our main results are for continuous, real-valued functions defined on the
interval the [0, 1]. We also mention that the results can be easily extended to the
interval [a, b]. Before proceeding into the main results of the paper, we state and
prove a lemmata. We give more proofs to some lemmas, which we consider very
instructive. We start with the first two lemmas involving the integrant factor e−t.

Lemma 2.1. Let h1 : [0, 1] → R be a continuous function with
∫ 1

0
h1(x) = 0. Then

there exists c1 ∈ (0, 1) such that

h1(c1) =
∫ c1

0

h1(x)dx.

First proof. We assume by the way of contradiction, that

h1(t) >
∫ t

0

h1(x)dx, ∀t ∈ [0, 1].

Now, we consider the auxiliary function ζ1 : [0, 1] → R, given by

ζ1(t) = e−t

∫ t

0

h1(x)dx.

A simple calculation gives

ζ ′1(t) = e−t
(
h1(t)−

∫ t

0

h1(t)dt
)
> 0,

and from our assumption we deduce that ζ1 is strictly increasing. This means that
ζ1(0) < ζ1(1) which is equivalent to 0 < 1

e

∫ 1

0
h1(x)dx = 0, a contradiction.
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Second proof. Like in the previous proof, let us consider the differentiable func-
tion γ1 = ζ1 : [0, 1] → R, defined by

γ1(t) = e−t

∫ t

0

h1(x)dx.

A simple calculation yelds

γ′1(t) = e−t
(
h1(t)−

∫ t

0

h1(t)dt
)
.

More than that we have γ1(0) = γ1(1) = 0, so by applying Theorem 1.1, there
exists c1 ∈ (0, 1) such that γ′1(c1) = 0, i.e.

h1(c1) =
∫ c1

0

h1(x)dx.

Third proof. We shall use Theorem 1.7. Indeed from the hypothesis
∫ 1

0
h1(x)dx =

0, by applying the first mean value theorem for integrals we obtain the existence of
λ ∈ (0, 1) such that

0 =
∫ 1

0

h1(x)dx = h1(λ).

Now, by Theorem 1.7 there exists c1 ∈ (0, 1) such that

h1(c1) =
∫ c1

0

h1(x)dx.

�

Similarly with Lemma 2.1, we prove the following result.

Lemma 2.2. Let h2 : [0, 1] → R be a continuous function with h2(1) = 0. Then
there exists c2 ∈ (0, 1) such that

h2(c2) =
∫ c2

0

h2(x)dx.

First proof. Let us consider the following auxiliary function ζ2 : [0, 1] → R, given
by

ζ2(t) = e−t

∫ t

0

h2(x)dx.

Suppose by the way of contradiction that h2(t) 6=
∫ t

0
h2(x)dx,∀t ∈ [0, 1]. This

means that, without loss of generality, we can assume that

h2(t) >
∫ t

0

h2(x)dx,∀t ∈ [0, 1]. (2.1)

A simple calculation of derivatives of the function ζ2 combined with the inequality
above, gives us the following inequality

ζ ′2(t) = e−t
(
h2(t)−

∫ t

0

h2(t)dt
)
> 0,

so our function ζ2 is strictly increasing for every t ∈ (0, 1). This means that
ζ2(1) > ζ2(0). It follows immediately that 1

e

∫ 1

0
h2(x)dx > 0. On the other hand,

taking into account our assumption, namely (2.1), we deduce in particular, that
h2(1) >

∫ 1

0
h2(x)dx > 0 which contradicts the hypothesis h2(1) = 0.
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Second proof. Let us consider the differentiable function γ2 : [0, 1] → R, defined
by

γ2(t) = te−t

∫ t

0

h2(x)dx.

A simple calculation yields

γ′2(t) = e−t
( ∫ t

0

h2(x)dx− t
(
h2(t)−

∫ t

0

h2(x)dx
))
.

Taking into account that h2(1) = 0, it is clearly that γ′2(0) = γ′2(1), so by Flett’s
mean value theorem (Theorem 1.2) (see [3]), we deduce the existence of c2 ∈ (0, 1)
such that

γ′2(c2) =
γ2(c2)− γ2(0)

c2
which is equivalent to

c2e
−c2

( ∫ c2

0

h2(x)dx− c2

(
h2(c2)−

∫ c2

0

h2(x)dx
))

= c2e
−c2

∫ c2

0

h2(x)dx,

or

h2(c2) =
∫ c2

0

h2(x)dx.

�

Following the same idea from lemma 2.1 we state and prove the following result.

Lemma 2.3. Let h3 : [0, 1] → R be a differentiable function with continuous deriv-
ative such that

∫ 1

0
h3(x)dx = 0. Then there exists c3 ∈ (0, 1) such that

h3(c3) = h′3(c3)
∫ c3

0

h3(x)dx.

Proof. As in the proof of Lemma 2.1, let us consider the differentiable function
γ3 = ζ3 : [0, 1] → R, defined by

γ1(t) = e−h3(t)

∫ t

0

h3(x)dx.

A simple calculation yields

γ′3(t) = e−h3(t)
(
h3(t)− h′3(t)

∫ t

0

h3(t)dt
)
.

More than that we have γ3(0) = γ3(1) = 0, so by applying Theorem 1.1, there
exists c3 ∈ (0, 1) such that γ′3(c3) = 0, i.e.

h3(c3) = h′3(c3)
∫ c3

0

h3(x)dx.

�

In what will follow we prove other technical lemmas without the integrant factor
e−t.

Lemma 2.4. Let h4 : [0, 1] → R be a continuous function with
∫ 1

0
h4(x)dx = 0.

Then there exists c4 ∈ (0, 1) such that∫ c4

0

xh4(x)dx = 0.
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First proof. We assume by contradiction that
∫ t

0
xh4(x)dx 6= 0, for all t ∈ (0, 1).

Without loss of generality, let
∫ t

0
xh4(x)dx > 0, for all t ∈ (0, 1) and let H4(t) =∫ t

0
h4(x)dx. Integrating by parts, we obtain

0 <
∫ t

0

xh4(x)dx = tH4(t)−
∫ t

0

H4(x)dx, ∀t ∈ (0, 1).

Now, by passing to the limit when t→ 1, and taking into account that H4(1) = 0,
we deduce that ∫ 1

0

H4(x)dx ≤ 0. (2.2)

Now, we consider the differentiable function, µ : [0, 1] → R defined by

µ(t) =

{
1
t

∫ t

0
H4(x)dx, if t 6= 0

0, if t = 0.

It is easy to see µ′(t) =
(
tH4(t) −

∫ t

0
H4(x)dx

)
/t2 > 0, so µ is increasing on the

interval (0, 1), so it is increasing on the interval [0, 1] (by continuity argument).
Because µ(0) = 0, it follows that∫ 1

0

H4(x)dx > 0,

which is in contradiction to (2.2). So, there exists c4 ∈ (0, 1) such that∫ c4

0

xh4(x)dx = 0.

Second proof. We consider the differentiable function H : [0, 1] → R, defined by

H(t) = t

∫ t

0

h4(x)dx−
∫ t

0

xh4(x)dx

with H′(t) =
∫ t

0
h4(x)dx. It is clear that H′(0) = H′(1) =

∫ 1

0
h4(x)dx = 0. Apply-

ing Flett’s mean value theorem (see [3]), there exists c4 ∈ (0, 1) such that

H′(c4) =
H(c4)−H(0)

c4
or

c4

∫ c4

0

h4(x)dx = c4

∫ c4

0

h4(x)dx−
∫ c4

0

xh4(x)dx

which is equivalent to
∫ c4

0
xh4(x)dx = 0.

Third proof. Let H̃4(t) =
∫ t

0
xh4(x)dx which is continuous on [0, 1]. By L’Hopital

rule we derive that limt→0+ H̃4(t)/t = 0. Integrating by parts, we obtain∫ 1

0

h4(x)dx =
∫ 1

0

xh4(x)
x

dx =
H̃4(x)
x

|10 +
∫ 1

0

H̃4(x)
x2

dx = H̃4(1) +
∫ 1

0

H̃4(x)x2dx.

Now, since
∫ 1

0
h4(x)dx = 0, by the equality above H̃4(x) cannot be positive or

negative for all x ∈ (0, 1). So, by the intermediate value property there exists
c4 ∈ (0, 1) such that H̃4(c4) = 0 and thus the conclusion follows. �
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Remark 2.5. Using the same idea as in Lemmas 2.1 and 2.2, we define the auxiliary
function like in the first solution, we define the auxiliary function γ4 = ζ4 : [0, 1] →
R, given by

γ4(t) = e−t

∫ t

0

xh4(x)dx,

whose derivative is

γ′4(t) = e−t
(
th4(t)−

∫ t

0

xh4(x)dx
)
.

Since γ4(0) = γ4(c3) (by Lemma 2.4), by applying Rolle’s theorem on the interval
[0, c4], there exists c̃4 ∈ (0, c4) such that γ′(c̃4) = 0, i.e.

c̃4h4(c̃4) =
∫ c̃4

0

xh4(x)dx.

Remark 2.6. As we have seen in the first remark, if we consider the differentiable
function γ̃4 : [0, 1] → R defined by

γ̃4(t) = e−h4(t)

∫ t

0

xh4(x)dx,

whose derivative is

γ̃4
′(t) = e−h4(t)

(
th4(t)− h′4(t)

∫ t

0

xh4(x)dx
)
.

Now, it is clear that γ̃4(0) = γ̃4(c4) = 0 by Lemma 2.4. So, by applying Rolle’s
theorem there exists c̄4 ∈ (0, 1) such that γ̃4

′(c̄4) = 0 which is equivalent to

c̄4h4(c̄4) = h′4(c̄4)
∫ c̄4

0

xh4(x)dx.

In what follows we prove two lemmas starting from the same hypothesis.

Lemma 2.7. Let h5 : [0, 1] → R be a continuous function such that∫ 1

0

h5(x)dx =
∫ 1

0

xh5(x)dx.

Then, there exists c5 ∈ (0, 1) such that
∫ c5

0
h5(x)dx = 0.

First proof. Consider the differentiable function I : [0, 1] → R defined by

I(t) = t

∫ t

0

h5(x)dx−
∫ t

0

xh5(x)dx.

We have

I ′(t) =
∫ t

0

h5(x)dx.

Moreover I(0) = I(1), so by Rolle’s theorem, there exists c5 ∈ (0, 1) such that

I ′(c5) = 0 ⇔
∫ c5

0

h5(x)dx = 0.

Second proof. Let H5 : [0, 1] → R defined by

H5(t) =
∫ t

0

h5(x)dx.
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Integrating by part and using the hypothesis, we have

H5(1) =
∫ 1

0

h5(x)dx =
∫ 1

0

xh5(x)dx =
∫ 1

0

xH ′
5(x)dx = H5(1)−

∫ 1

0

H5(x)dx,

and we get
∫ 1

0
H5(x)dx = 0. By the first mean value theorem for integrals we have

the existence of c5 ∈ (0, 1) such that

0 =
∫ 1

0

H5(x)dx = H5(c5)

which is equivalent to
∫ c5

0
h5(x)dx = 0.

Third proof. Let us rewrite the hypothesis in the following∫ 1

0

(x− 1)h5(x)dx = 0.

The answer is given by the following mean value theorem for integrals (see [1], page
193)

Proposition. If Ω1,Ω2 : [a, b] → R are two integrable functions and Ω2 is
monotone, then there exists c5 ∈ (a, b) such that∫ b

a

Ω1(x)Ω2(x) = Ω2(a)
∫ c5

a

Ω1(x) + Ω1(b)
∫ b

c5

Ω2(x)dx.

Now, we consider a = 0, b = 1 and Ω1(x) = h5(x) and Ω2(x) = x − 1 which is
increasing. By the mean value theorem in Lemma 2.7, there is c5 ∈ (0, 1) such that

0 =
∫ 1

0

(x− 1)f(x)dx = −
∫ c5

0

f(x)dx

equivalent to
∫ c5

0
f(x)dx = 0. �

Lemma 2.8. Let h6 : [0, 1] → R be a continuous function such that∫ 1

0

h6(x)dx =
∫ 1

0

xh6(x)dx.

Then, there exists c6 ∈ (0, 1) such that
∫ c6

0
xh6(x)dx = 0.

First proof. Let us consider the function ϕ : [0, 1] → R given by
H6(t) =

∫ t

0
h̃6(s)ds, where

h̃6(s) =

{
1
s2

∫ s

0
xh6(x)dx, if s ∈ (0, 1]

h6(0)/2, if s = 0

Clearly the function h̃6 is continuous and H6(0) = 0. Next, we compute

H6(1) = lim
ε→0,ε>0

∫ 1

ε

(
− 1
s

)( ∫ s

0

xh6(x)dx
)
ds

= − lim
ε→0,ε>0

1
s

∫ s

0

xh6(x)dx|1ε + lim
ε→0

∫ 1

ε

(1
s
sh6(s)

)
ds

= −
∫ 1

0

xh6(x)dx+
∫ 1

0

h6(x)dx = 0.
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By Rolle’s theorem there exists c6 ∈ (0, 1) such thatH ′
6(c6) = 0; i.e.

∫ c6

0
xh6(x)dx =

0.
Second proof. Consider the differentiable function H̃6; [0, 1] → R defined by

H̃6(t) = t

∫ t

0

h6(x)dx−
∫ t

0

xh6(x)dx.

It is obvious that H̃ ′
6(t) =

∫ t

0
h6(x)dx. By Lemma 2.4 there exists c6 ∈ (0, 1) such

that H̃ ′
6(c6) =

∫ c5

0
h6(x)dx = 0. On the other hand, since H̃ ′

6(0) = H̃ ′
6(c5) = 0, by

Theorem 1.2 there exists c6 ∈ (0, c5) such that

H̃ ′
6(c6) =

H̃6(c6)− H̃5(0)
c6

which is equivalent to
∫ c6

0
xh6(x)dx = 0. �

Combining Lemmas 2.4 and 2.8, one can easily derive the following result.

Theorem 2.9. Assume h7 : [0, 1] → R is continuous such that∫ 1

0

h7(x)dx =
∫ 1

0

xh7(x)dx.

Then there are c7, c̃7 ∈ (0, 1) such that

h7(c7) =
∫ c7

0

h7(x)dx,

c̃7h7(c̃7) =
∫ c̃7

0

xh7(x)dx.

Proof. Let us define the auxiliary functions ζ7, ζ̃7 : [0, 1] → R given by

ζ7(t) = e−t

∫ t

0

h7(x)dx,

ζ̃7(t) = e−t

∫ t

0

xh7(x)dx.

It is clear that

ζ ′7(t) = e−t
(
h7(t)−

∫ t

0

h7(x)dx
)
,

ζ̃ ′7(t) = e−t
(
th7(t)−

∫ t

0

xh7(x)dx
)
.

By Lemmas 2.7 and 2.8, we have ζ7(0) = ζ7(c4) and ζ̃7(0) = ζ̃7(c5). By Rolle’s
theorem applied on the intervals (0, c4) and (0, c5) to ζ7 and ζ̃7 we obtain the
conclusion. �

Following the proof of Theorem 2.9, instead of e−t in the construction of the
auxiliary functions we can put e−f(t) where f is differentiable with continuous
derivative. This gives the following result.

Theorem 2.10. Assume h8 : [0, 1] → R is a differentiable function with continuous
derivative such that ∫ 1

0

h8(x)dx =
∫ 1

0

xh8(x)dx.
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Then there are c8, c̃8 ∈ (0, 1) such that

h8(c8) = h′8(c8)
∫ c8

0

h8(x)dx,

c̃8h8(c̃8) = h̃′8(c̃8)
∫ c̃8

0

xh8(x)dx.

Proof. Let us define the auxiliary functions ζ8, ζ̃8 : [0, 1] → R given by

ζ8(t) = e−h8(t)

∫ t

0

h8(x)dx,

ζ̃8(t) = e−h8(t)

∫ t

0

xh8(x)dx.

It is clear that

ζ ′8(t) = e−h8(t)
(
h8(t)− h′8(t)

∫ t

0

h8(x)dx
)
,

ζ̃ ′8(t) = e−h8(t)
(
th8(t)− h′8(t)

∫ t

0

xh8(x)dx
)
.

By Lemmas 2.7 and 2.8, we have ζ8(0) = ζ8(c4) and ζ̃8(0) = ζ̃8(c5). By Rolle’s
theorem applied on the intervals (0, c4) and (0, c5) to ζ8 and ζ̃8 we obtain the
conclusion. �

Now, we are ready to state and prove the first main result of the paper.

Theorem 2.11. For two continuous functions ϕ,ψ : [0, 1] → R, we define the
operators T, S ∈ (C([0, 1])), as follows:

(Tϕ)(t) = ϕ(t)−
∫ t

0

ϕ(x)dx,

(Sψ)(t) = tψ(t)−
∫ t

0

xψ(x)dx.

Let f, g : [0, 1] → R be two continuous functions. Then there exist c1, c2, c̃4 ∈ (0, 1)
such that ∫ 1

0

f(x)dx · (Tg)(c1) =
∫ 1

0

g(x)dx · (Tf)(c1),

(Tf)(c2) = (Sf)(c2),∫ 1

0

f(x)dx · (Sg)(c̃4) =
∫ 1

0

g(x)dx · (Sf)(c̃4).

Proof. We put

h1(t) = f(t)
∫ 1

0

g(x)dx− g(t)
∫ 1

0

f(x)dx,

where f, g : [0, 1] → R are continuous functions and if we apply lemma 2.1, we get

f(c1)
∫ 1

0

g(x)dx− g(c1)
∫ 1

0

f(x)dx

=
∫ c1

0

f(x)dx
∫ 1

0

g(x)dx−
∫ c1

0

g(x)dx
∫ 1

0

f(x)dx,
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which is equivalent to∫ 1

0

f(x)dx
(
g(c1)−

∫ c1

0

g(x)dx
)

=
∫ 1

0

g(x)dx
(
f(c1)−

∫ c1

0

f(x)dx
)

and equivalent to ∫ 1

0

f(x)dx · (Tg)(c1) =
∫ 1

0

g(x)dx · (Tf)(c1).

For h2(t) = (t − 1)f(t), with f : [0, 1] → R is a continuous function, we apply
lemma 2.2 and we obtain

(c2 − 1)f(c2) =
∫ c2

0

(t− 1)f(x)dx

which is equivalent to

c2f(c2)−
∫ c2

0

xf(x)dx = f(c2)−
∫ c2

0

f(x)dx;

that is (Tf)(c2) = (Sf)(c2).
For the last assertion we do the same thing. We put h3(t) = f(t)

∫ 1

0
g(x)dx −

g(t)
∫ 1

0
f(x)dx, where f, g : [0, 1] → R are continuous functions. So, applying the

remark 2.5 from Lemma 2.4, we conclude that

c̃3f(c̃3)
∫ 1

0

g(x)dx− c̃3g(c̃3)
∫ 1

0

f(x)dx

=
∫ c̃3

0

xf(x)dx
∫ 1

0

g(x)dx−
∫ c̃3

0

xg(x)dx
∫ 1

0

f(x)dx

which is equivalent to∫ 1

0

f(x)dx
(
c̃3g(c̃3)−

∫ c̃3

0

xg(x)dx
)

=
∫ 1

0

g(x)dx
(
c̃3f(c̃3)−

∫ c̃3

0

xf(x)dx
)

or ∫ 1

0

f(x)dx · (Sg)(c̃3) =
∫ 1

0

g(x)dx · (Sf)(c̃3).

�

In connection with the operators T and S defined in Theorem 2.9, we shall also
prove the following result.

Theorem 2.12. Let T, S ∈ (C[0, 1]) be the operators defined as in Theorem 2.9;
namely for two continuous functions ϕ,ψ : [0, 1] → R, define

(Tϕ)(t) = ϕ(t)−
∫ t

0

ϕ(x)dx,

(Sψ)(t) = tψ(t)−
∫ t

0

xψ(x)dx.
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Let f, g : [0, 1] → R be two continuous functions. Then there exist c7, c̃7 ∈ (0, 1)
such that ∫ 1

0

(1− x)f(x)dx · (Tg)(c7) =
∫ 1

0

(1− x)g(x)dx · (Tf)(c7),∫ 1

0

(1− x)f(x)dx · (Sg)(c̃7) =
∫ 1

0

(1− x)g(x)dx · (Sf)(c̃7).

Proof. We put

h7(t) = f(t)
∫ 1

0

(1− x)g(x)dx− g(t)
∫ 1

0

(1− x)f(x)dx,

where f, g : [0, 1] → R are continuous functions and if we apply Theorem 2.9, we
get

f(c7)
∫ 1

0

(1− x)g(x)dx− g(c7)
∫ 1

0

(1− x)f(x)dx

=
∫ c7

0

f(x)
∫ 1

0

(1− x)g(x)dx−
∫ c7

0

g(x)dx
∫ 1

0

(1− x)f(x)dx

which is equivalent to∫ 1

0

(1− x)f(x)dx
(
g(c7)−

∫ c7

0

g(x)dx
)

=
∫ 1

0

(1− x)g(x)dx
(
f(c7)−

∫ c7

0

f(x)dx
)

or ∫ 1

0

(1− x)f(x)dx · (Tg)(c7) =
∫ 1

0

(1− x)g(x)dx · (Tf)(c7).

For the second part, let us define the function h̃7 : [0, 1] → R given by

h̃7(t) = tf(t)
∫ 1

0

(1− x)g(x)dx− tg(t)
∫ 1

0

(1− x)f(x)dx.

Again, by Theorem 2.9 there exists c̃7 ∈ (0, 1) such that

c̃7f(c̃7)
∫ 1

0

(1− x)g(x)dx− c̃7g(c̃7)
∫ 1

0

(1− x)f(x)dx

=
∫ c̃7

0

xf(x)
∫ 1

0

(1− x)g(x)dx−
∫ c̃7

0

xg(x)dx
∫ 1

0

(1− x)f(x)dx

which is equivalent to∫ 1

0

(1− x)f(x)dx
(
c̃7g(c̃7)−

∫ c̃7

0

xg(x)dx
)

=
∫ 1

0

(1− x)g(x)dx
(
c̃7f(c̃7)−

∫ c̃7

0

xf(x)dx
)

or ∫ 1

0

(1− x)f(x)dx · (Sg)(c̃7) =
∫ 1

0

(1− x)g(x)dx · (Sf)(c̃7).

�

Next, we prove two theorems of the same type for other two operators. Mainly,
we concentrate on the following two theorems.
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Theorem 2.13. For two differentiable functions ξ, ρ : [0, 1] → R, with continuous
derivatives, we define the operators R, V ∈ (C1([0, 1])):

(Rξ)(t) = ξ(t)− ξ′(t)
∫ t

0

ξ(x)dx,

(V ρ)(t) = tρ(t)− ρ′(t)
∫ t

0

xρ(x)dx.

Let f, g : [0, 1] → R be two differentiable functions with their derivatives being
continuous. Then there exist c3, c̄4 ∈ (0, 1) such that∫ 1

0

f(x)dx · (Rg)(c3) =
∫ 1

0

g(x)dx · (Rf)(c3),∫ 1

0

f(x)dx · (V g)(c̄4) =
∫ 1

0

g(x)dx · (V f)(c̄4).

Proof. We put h3(t) = f(t)
∫ 1

0
g(x)dx − g(t)

∫ 1

0
f(x)dx, where f, g : [0, 1] → R are

continuous functions and if we apply Lemma 2.3, we get

f(c3)
∫ 1

0

g(x)dx− g(c3)
∫ 1

0

f(x)dx

= f ′(c3)
∫ c3

0

f(x)dx
∫ 1

0

g(x)dx− g′(c3)
∫ c3

0

g(x)dx
∫ 1

0

f(x)dx,

which is equivalent to∫ 1

0

f(x)dx
(
g(c3)− g′(c3)

∫ c3

0

g(x)dx
)

=
∫ 1

0

g(x)dx
(
f(c3)− f ′(c3)

∫ c3

0

f(x)dx
)

or ∫ 1

0

f(x)dx · (Rg)(c3) =
∫ 1

0

g(x)dx · (Rf)(c3).

Now, for the second part we consider h4(t) = f(t)
∫ 1

0
g(x)dx − g(t)

∫ 1

0
f(x)dx and

we apply Remark 2.6 from Lemma 2.4. In this case, there exists c̄4 ∈ (0, 1) such
that

c̄4f(c̄4)
∫ 1

0

g(x)dx− c̄4g(c̄4)
∫ 1

0

f(x)dx

= f ′(c̄4)
∫ c̄4

0

f(x)dx
∫ 1

0

g(x)dx− g′(c̄4)
∫ c̄4

0

g(x)dx
∫ 1

0

f(x)dx,

which is equivalent to∫ 1

0

f(x)dx
(
g(c3)− g′(c̄4)

∫ c̄4

0

g(x)dx
)

=
∫ 1

0

g(x)dx
(
f(c̄4)− f ′(c̄4)

∫ c̄4

0

f(x)dx
)

or ∫ 1

0

f(x)dx · (V g)(c̄4) =
∫ 1

0

g(x)dx · (V f)(c̄4).

�

Finally, based on the some ideas we used so far, we prove the following theorem.
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Theorem 2.14. For two differentiable functions, ξ, ρ : [0, 1] → R, with continuous
derivatives we define the operators R, V ∈ (C1([0, 1])):

(Rξ)(t) = ξ(t)− ξ′(t)
∫ t

0

ξ(x)dx,

(V ρ)(t) = tρ(t)− ρ′(t)
∫ t

0

xρ(x)dx.

Let f, g : [0, 1] → R be two differentiable functions with continuous derivatives.
Then there exist c8, c̃8 ∈ (0, 1) such that∫ 1

0

(1− x)f(x)dx · (Rg)(c8) =
∫ 1

0

(1− x)g(x)dx · (Rf)(c8),∫ 1

0

(1− x)f(x)dx · (V g)(c̃8) =
∫ 1

0

(1− x)g(x)dx · (V f)(c̃8).

Proof. We put h8(t) = f(t)
∫ 1

0
(1 − x)g(x)dx − g(t)

∫ 1

0
(1 − x)f(x)dx, where f, g :

[0, 1] → R are continuous functions and if we apply the first part of Theorem 2.10,
there exists c8 ∈ (0, 1) such that

f(c8)
∫ 1

0

(1− x)g(x)dx− g(c8)
∫ 1

0

(1− x)f(x)dx

= f ′(c8)
∫ c8

0

f(x)dx
∫ 1

0

(1− x)g(x)dx− g′(c8)
∫ c8

0

g(x)dx
∫ 1

0

(1− x)f(x)dx,

which is equivalent to∫ 1

0

(1− x)f(x)dx
(
g(c8)− g′(c8)

∫ c8

0

g(x)dx
)

=
∫ 1

0

(1− x)g(x)dx
(
f(c8)− f ′(c8)

∫ c8

0

f(x)dx
)

and equivalent to∫ 1

0

(1− x)f(x)dx · (Tg)(c8) =
∫ 1

0

(1− x)g(x)dx · (Tf)(c8).

For the second part, again we consider the function

h8(t) = f(t)
∫ 1

0

(1− x)g(x)dx− g(t)
∫ 1

0

(1− x)f(x)dx,

where f, g : [0, 1] → R are continuous functions. So, applying the second part of
the Theorem 2.10, we conclude that there exists c̃8 ∈ (0, 1) such that

c̃8f(c̃8)
∫ 1

0

(1− x)g(x)dx− c̃8g(c̃8)
∫ 1

0

(1− x)f(x)dx

= f ′(c̃8)
∫ c̃8

0

xf(x)dx
∫ 1

0

(1− x)g(x)dx− g′(c̃8)
∫ c̃8

0

xg(x)dx
∫ 1

0

(1− x)f(x)dx
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which is equivalent to∫ 1

0

(1− x)f(x)dx
(
c̃8g(c̃8)− g′(c̃8)

∫ c̃8

0

xg(x)dx
)

=
∫ 1

0

(1− x)g(x)dx
(
c̃8f(c̃8)− f ′(c̃8)

∫ c̃8

0

xf(x)dx
)
.

Therefore, ∫ 1

0

(1− x)f(x)dx · (Sg)(c̃8) =
∫ 1

0

(1− x)g(x)dx · (Sf)(c̃8).

�
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