\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 120, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/120\hfil the Linking method ] {Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials} \author[C. Li, C. Shi \hfil EJDE-2009/120\hfilneg] {Chengyue Li, Changhua Shi} % in alphabetical order \address{Chengyue Li \newline Department of Mathematics, Minzu University of China, Beijing 100081, China} \email{cunlcy@163.com} \address{Changhua Shi \newline Department of Mathematics, Minzu University of China, Beijing 100081, China} \email{shichanghua88888@163.com} \thanks{Submitted June 18, 2009. Published September 27, 2009.} \thanks{Supported by SRF for ROCS, SEM (2007-2008), and ``211 Engineer'' Project from \hfill\break\indent the Ministry of Education in China} \subjclass[2000]{58E05, 34C37, 70H05} \keywords{Periodic solutions; fourth-order differential equations; \hfill\break\indent linking theorem; critical points} \begin{abstract} By means of the Schechter's Linking method, we study the existence of $2T$-periodic solutions of the non-autonomous fourth-order ordinary differential equation $$ u''''-Au''-Bu-V_u(t,u)=0 $$ where $A>0$, $B>0$, $V(t,u)\in \mathbb{C}^1(\mathbb{R}\times\mathbb{R}, \mathbb{R})$ is $2T$-periodic in $t$ and satisfies either $0<\theta V(t,u) \leq u V_u(t,u)$ with $\theta>2$, or $u V_u(t,u)-2V(t,u)\geq d_3|u|^r$ with $r\geq1$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{Sec:Intro} Pulse propagation through optical fibers involving a fourth-order negative dispersion term leads to a generalized nonlinear Schrodinger equation \cite{a1,b3}. After an appropriate scaling of the variables this equation takes the form \begin{equation}\label{1} i\frac{\partial w}{\partial x}+\frac{\partial^2 w}{\partial t^2}-\frac{\partial^4 w}{\partial t^4}+|w|^2w=0. \end{equation} Considering harmonic spatial dependence $w(t,x)=u(t)e^{ikx}$ with $k<0$, one obtains \begin{equation}\label{2} u^{(4)}-u''+ku-u^3=0. \end{equation} Motivated by \eqref{2}, we shall discuss the more general equation \begin{equation}\label{3} u^{(4)}-Au''-Bu-V_u(t,u)=0, \end{equation} where $A>0$, $B>0$, the potential $V(t,u)\in\mathbb{C}^1(\mathbb{R}\times\mathbb{R},\mathbb{R})$, $V_u(t,u)=\partial V(t,u)/\partial u$. Indeed, many other types of fourth-order differential equation models in physical, chemical or biological systems have been studied for recent years. We give some examples as follows: (i) The equation $u^{(4)}-\gamma u''-u+u^3=0$ serves as a model in studies of pattern formation and phase transitions near Lifshitz points. If $\gamma >0$, it is the Extended Fisher-Kolmogorov equation proposed by Dee and Saarloos van in \cite{d1}. If $\gamma <0$, it is the Swift-Hohenberg equation which has been proposed by Swift and Hohenberg \cite{s4}. For the existence of its periodic solutions, we refer the readers to \cite{p1}. (ii) In the theory of shallow water waves driven by gravity and capillarity, the equation $u^{(4)}+p u''+u-u^2=0$ has been studied with $p<0$ \cite{b1}, which was extensively considered by Buffoni \cite{b2}. (iii) Chen and McKenna \cite{c1} studied the equation $u^{(4)}+c^2 u''+V'(u)=0$ under the assumptions that $V\in \mathbb{C}^2(\mathbb{R})$ is a potential such that $V'(u)=(u+1)_+-1+g(u)$ with $|g''(u)|\leq K$ for some $K>0$ .This result was improved by Smets and Van den Berg \cite{s3} for almost every $c\in [-\sqrt{4\alpha},\sqrt{4\alpha}]$, assuming that $\limsup_{u\to \infty}V(u)/|u|^2=0$. (iv) Tersian and Chaparova \cite{t1} studied the equation $u^{(4)}+pu''+a(x)u-b(x)u^2-c(x)u^3=0$ where $a(x),b(x), c(x)$ are periodic, and $02$, and obtained the existence and nonexistence of nontrival periodic solutions of the equation by Brezis-Nirenberg's linking Theorem and minimizing methods. In the present paper, we shall study the existence of periodic solutions of the non-autonomous fourth-order equation \eqref{3}. Our main results are as follows: \begin{theorem}\label{dl1} Let $A>0$, $B>0$. Assume that $V(t,u)\in C^1({\mathbb{R}} \times {\mathbb{R}},{\mathbb{R}})$ satisfies the assumptions: \begin{itemize} \item[(V1)] $V(t,u)=V(t+2T,u),V(t,u)=V(t,-u)$, for all $t\in {\mathbb{R}},u\in {\mathbb{R}}$; \item[(V2)] $V(t,u)=o(|u|^2)$, as $u\to 0$ uniformly in $t \in {\mathbb{R}}$; \item[(V3)] There exists a constant $\theta >2$ such that $$ 0<\theta V(t,u)\leq uV_u(t,u),\quad \forall t\in {\mathbb{R}},u\in {\mathbb{R}}\setminus\{0\}. $$ \end{itemize} Then \eqref{3} has at least one nontrivial $2T$-periodic solution, provided that $\frac{T}{T_1}\notin \mathbb{N}$ with $T_1=\pi\sqrt{2}/\sqrt{-A+\sqrt{A^2+4B}}$. \end{theorem} \begin{theorem}\label{dl2} Let $A>0$, $B>0$. Suppose that $V(t,u)\in C^1({\mathbb{R}} \times {\mathbb{R}},{\mathbb{R}})$ satisfies that {\rm (V1), (V2)} and the following conditions: \begin{itemize} \item[(V3')] $V(t,u)/| u|^2\to\infty$, as $|u|\to\infty$ uniformly in $t\in {\mathbb{R}}$; \item[(V4)] There are constants $\mu,d_1,d_2>0$ such that $|V_u(t,u)|\leq d_1|u| ^\mu+d_2$, for all $t\in{\mathbb{R}},u\in {\mathbb{R}}$; \item[(V5)] There are constants $h,d_3>0,r\geq max \{1,\mu\}$ such that $$ uV_u(t,u)-2V(t,u)\geq d_3| u |^r,\quad \forall t\in {\mathbb{R}},\; |u|>h. $$ \end{itemize} Then the conclusion of Theorem \ref{dl1} holds. \end{theorem} \begin{remark}\label{yl1} \rm Hypothesis (V3) is so-called Ambrosetti-Rabinowitz superquadratic condition which implies that there exist constants $r_1>0$, $r_2>0 $ such that \begin{equation}\label{7} V(t,u)\geq r_1| u|^\mu -r_2, \quad \forall t\in {\mathbb{R}},\; u\in \mathbb{R}. \end{equation} By direct computation we notice that, for example, $V(t,u)=u^2 \ln (1+u^{2i})\ln (1+2u^{2j})$ or $V(t,u)=u^2 \ln (1+u^{2i})$ ($i,j\in \mathbb{N}$) satisfies (V3'), (V4), and (V5), but does not satisfy \eqref{7}. Therefore, Theorems \ref{dl1} and \ref{dl2} study two types of superquadratic nonlinearities. \end{remark} \section{Preliminaries} To study the existence of $2T$-periodic solutions of \eqref{3}, we first consider the solvability of the two-point boundary problem \begin{equation}\label{eq.p} \begin{gathered} u^{(4)}-Au''-Bu-V_u(t,u)=0,\quad 00$, \begin{equation}\label{17} P_1(T)0$, if $TnT_1$. To prove Theorems \ref{dl1} and \ref{dl2}, we shall use linking method due to Schechter. For that, we start recalling the definition of linking sets in the sense of homeomorphisms \cite{s1}. Let $E$ be a real Banach space and let $\Phi$ be the set of all continuous maps $\Gamma=\Gamma(t)$ from $E\times[0,1]$ to $E$ such that (i) $\Gamma(0)=I$, the identity map. (ii) For each $t\in[0,1)$, $\Gamma (t)$ is a homeomorphism of $E$ into $E$ and $\Gamma^{-1}(t)\in \mathbb{C}(E\times[0,1],E)$. (iii) $\Gamma(1)E$ is a single point in $E$ and $\Gamma(t)A$ converges uniformly to $\Gamma(1)E$ as $t\to 1$ for each bounded set $A\subset E$. (iv) For each $t_0\in[0,1)$ and each bounded set $Y\subset E$, $\sup_{0\leq t\leq t_0,u\in Y}\{\|\Gamma(t)u\| +\|\Gamma^{-1}(t)u\|\}<\infty$. We say that $Y$ links $Z$ if $Y$ and $Z$ are subsets of $E$ such that $Y\cap Z=\phi$ and, for each $\Gamma\in\Phi$, there is a $t\in(0,1]$ such that $\Gamma(t)Y\cap Z\neq \phi$. Many examples of linking sets are presented in \cite{s1}. A typical one is as follows: \subsection*{Example} \cite[Example 3, P.38]{s1}. Let $M$ and $N$ be closed subspaces of Banach space $E$ such that $\dim N<\infty$ and $E=M\oplus N$. Let $w_0\neq0$ be an element of $M$, $0<\rho0$,then there is a subsequence of $(u_m)$ converging to a limit $u_0\in X(T)$. \end{lemma} \begin{proof} Choose $\theta^*\in (2,\theta)$. By (V3), \eqref{7} and \eqref{19}, we have \begin{equation}\label{20} \begin{aligned} M_1+\|u_m\| &\geq I(u_m;T)-\frac{1}{\theta^*}I'(u_m;T)u_m \\ &= \frac{1}{2}\int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt-\int_0^TV(t,u_m)dt \\ &\quad -\frac{1}{\theta^*}\Big(\int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt -\int_0^TV_u(t,u_m)u_mdt\Big) \\ &= (\frac{1}{2}-\frac{1}{\theta^*})\int_0^T(u_m^{''2}+Au_m^{'2})dt -(\frac{1}{2}-\frac{1}{\theta^*})\int_0^TBu_m^2dt\\ &\quad +\int_0^T(\frac{V_u(t,u_m)u_m}{\theta^*}-V(t,u_m))dt \\ &\leq (\frac{1}{2}-\frac{1}{\theta^*})\int_0^T(u_m^{''2}+Au_m^{'2})dt -(\frac{1}{2}-\frac{1}{\theta^*})\int_0^TBu_m^2dt\\ &\quad +\frac{\theta-\theta^*}{\theta^*}\int_0^TV(t,u_m)dt \\ &\leq (\frac{1}{2}-\frac{1}{\theta^*})\int_0^T(u_m^{''2}+Au_m^{'2})dt -(\frac{1}{2}-\frac{1}{\theta^*})\int_0^TBu_m^2dt\\ &\quad +r_1\frac{\theta-\theta^*}{\theta^*}\|u_m\|^{\theta}_{L^\theta} -Tr_2\frac{\theta-\theta^*}{\theta^*} \\ &\leq (\frac{1}{2}-\frac{1}{\theta^*})\int_0^T(u_m^{''2} +Au_m^{'2})dt-(\frac{1}{2}-\frac{1}{\theta^*})B\|u_m\|^2_{L^2}\\ &\quad +r_3\|u_m\|^{\theta}_{L^2}-Tr_2\frac{\theta-\theta^*}{\theta^*} \end{aligned} \end{equation} with $r_3>0$. We claim that $\|u_m\|_{L^2}$ is bounded. Otherwise, $\|u_m\|_{L^2}\to\infty$, $\|u_m\|\to\infty$. Thus, since $\theta>2$, for $m$ sufficiently large, we have \begin{equation}\label{21} -(\frac{1}{2}-\frac{1}{\theta^*})B\|u_m\|_{L^2}^2 +r_3\|u_m\|_{L^2}^{\theta}-Tr_2\frac{\theta-\theta^*}{\theta^*}>0. \end{equation} Consequently, by \eqref{20} and \eqref{21}, we deduce that \[ M_1+\|u_m\|\geq(\frac{1}{2}-\frac{1}{\theta^*}) \int_0^T(u_m^{''2}+Au_m^{'2})dt\geq(\frac{1}{2} -\frac{1}{\theta^*})\|u_m\|^2, \] which contradicts $\|u_m\|\to\infty$. So $\|u_m\|_{L^2}$ is bounded. Therefore, by \eqref{20}, there exists $M_2>0$ such that \begin{equation}\label{22} M_1+\|u_m\|\geq(\frac{1}{2}-\frac{1}{\theta^*})\int_0^Tu_m^{''2}dt+M_2 =(\frac{1}{2}-\frac{1}{\theta^*})\|u_m\|^2+M_2, \end{equation} This inequality implies $\|u_m\|$ is bounded in $X(T)$. Then we can assume that, without loss of generation, \begin{equation} \label{23} u_m\rightharpoonup u_0 \in X(T),\quad u_m\to u_0 \in \mathbb{C}([0,T]). \end{equation} So, by \eqref{14} and \eqref{23}, we have \begin{equation}\label{24} \begin{aligned} &\|u_m-u_0\|^2+A\int_0^T|u_m'-u_0'|^2dt \\ &= B\int_0^T|u_m-u_0|^2dt+(I'(u_m)-I'(u_0))(u_m-u_0) \\ &\quad +\int_0^T(V_u(t,u_m)-V_u(t,u_0))(u_m-u_0)dt\to 0, \end{aligned} \end{equation} namely, $u_m\to u_0$ in $X(T)$. \end{proof} \begin{lemma}\label{tl2} Under the assumptions of Theorem \ref{dl1}, if $T>T_1$ and $\frac{T}{T_1}\notin \mathbb{N}$, then the functional $I(u;T)$ possesses a nontrivial critical point in $X(T)$. \end{lemma} \begin{proof} There exists $n\in \mathbb{N}$ such that $nT_10$, there is $\delta\in (0,1)$ such that $$ |V(t,u)|\leq \varepsilon|u|^2\quad\text{if $|u|\leq\delta$ and $t\in [0,T]$}. $$ By the Sobolev embedding Theorem, there exists a constant $r_5>0$ such that \begin{equation}\label{32} \|u\|_{C([0,T])}=\|u\|_{L^{\infty}[0,T]}\leq r_5\|u\|,\quad \forall u\in X(T). \end{equation} Let $0<\rho<\min\{\delta/r_5,R\}$ and $\|u\|=\rho$, then $|u(t)|\leq \delta$ for all $t\in [0,T]$. Therefore, \[ \int_0^TV(t,u(t))dt\leq \varepsilon\|u\|^2_{L^2}. \] Noticing $00$, then $u_0\neq 0$. If $d_0=0$, then $\mathop{\rm dist}(u_m,Z)\to 0$ by Theorem \ref{dl3}. Hence there is a sequence $(v_m)\subset Z$ such that $u_m-v_m\to 0$ in $X(T)$, so $v_m\to u_0$, thus $\|u_0\|=\lim_{m\to\infty}\|v_m\|=\rho\neq0$. \end{proof} \begin{lemma}\label{tl3} Under the assumptions of Theorem \ref{dl1}, if $00$, we have \begin{equation} \label{38} \begin{aligned} I(\sigma\overline{u};T) &= \frac{\sigma^2}{2}\int_0^T(\overline{u}^{''2}+ A\overline{u}^{'2}-B\overline{u}^2)dt-\int_0^TV(t,\sigma\overline{u})dt \\ &\leq \frac{\sigma^2}{2}(\int_0^T(\overline{u}^{''2}+A\overline{u}^{'2} -B\overline{u}^2))dt-r_1\sigma^{\theta} \int_0^T|\overline{u}|^{\theta}dt+r_2T. \end{aligned} \end{equation} Then $I(\sigma\overline{u};T)\to -\infty$ as $\sigma\to \infty$. Hence, by Lemma \ref{tl1} and Theorem \ref{dl4}, the functional $I(u;T)$ has at least one nontrivial critical point in $X(T)$. \end{proof} The proof of Theorem \ref{dl1} follows from combining Lemmas \ref{tl1}, \ref{tl2} and \ref{tl3}. \section{Proof of Theorem \ref{dl1}} %1.2 \begin{lemma} \label{tl4} Under the assumptions of Theorem \ref{dl2}, if $T>T_1$ and $\frac{T}{T_1}\notin\mathbb{N}$, then the functional $I(u;T)$ possesses a nontrivial critical point in $X(T)$. \end{lemma} \begin{proof} In the same way as \eqref{25}-\eqref{27}, we define $E_n$, $Y$ and $Z$. Under the assumptions of Theorem \ref{dl2}, we can verify that \eqref{30}, \eqref{31} and \eqref{33} still hold, whose proofs are similar to that of Lemma \ref{tl1} with the exception of the inequality \eqref{31} resulting from (V3). In its place we proceed as follows Still take $e=c_{n+1}\sin\big(\frac{(n+1)\pi t}{T}\big)\in E_n^{\perp}$ with $c_{n+1}$ such that $\|e\|=1$, and let $$ w=u+\lambda e=\sum_{k=1}^nc_k \sin(\frac{k\pi t}{T}) +\lambda e,\lambda \geq0. $$ Then $\|w\|=\|u\|+\|\lambda e\|=\|u\|+\lambda$. There exist $r_6,r_6'>0$ such that $r_6'\|w\|_{L^2}\leq \|w\|\leq r_6\|w\|_{L^2}$, for all $w\in E_{n+1}$. By (V3'), there exists $r_7>0$ such that \begin{equation} V(t;u)\geq(\frac{T}{4}P_{n+1}(T)c_{n+1}^2r_6^2+1)|u|^2-r_7,\quad \forall t\in \mathbb{R},u\in \mathbb{R}. \end{equation} Therefore, %\label{40} \begin{align*} I(w;T)&= \frac{1}{2}\int_0^T(w^{''2}+Aw^{'2}-Bw^2))dt-\int_0^TV(t,w)dt \\ &= \frac{T}{4}\sum_{k=1}^nc_k^2P_k(T) +\frac{T}{4}\lambda^2P_{n+1}(T)c_{n+1}^2-\int_0^TV(t,w)dt \\ &\leq \frac{T}{4}\lambda^2P_{n+1}(T)c_{n+1}^2-\int_0^TV(t,w)dt \\ &\leq \frac{T}{4}P_{n+1}(T)c_{n+1}^2r_6^2\|w\|^2_{L^2} -(\frac{T}{4}P_{n+1}(T)c_{n+1}^2r_6^2+1)\|w\|^2_{L^2}+r_7T \\ &= -\|w\|^2_{L^2}+r_7T \\ &\leq -r_6^{-2}\|w\|^2+r_7T\to -\infty\quad (\text{as }\|w\|\to \infty). \end{align*} Hence, under the assumptions of Theorem \ref{dl2}, $Y$ links $Z$, so, by Theorem \ref{dl3}, there exists a sequence $(u_m)\subset X(T)$ such that \eqref{34} and \eqref{35} hold. We shall prove that $(u_m)$ is bounded in $X(T)$. If not, we may assume that $\|u_m\|\to\infty$. From $(V_5)$, we get \begin{equation} \label{41} \begin{aligned} 2I(u_m;T)-I'(u_m;T)u_m &= \int_0^T(u_m(t)V_u(t,u_m(t))-2V(t,u_m(t)))dt, \\ &\leq d_3\int_{|u_m(t)|\geq h}|u_m(t)|^rdt+d_4. \end{aligned} \end{equation} with $d_4$ being a constant. By \eqref{34}, \eqref{35} and \eqref{41}, we obtain \begin{equation}\label{42} \frac{1}{\|u_m\|} \int_{|u_m(t)|\geq h}|u_m(t)|^rdt\to 0. \end{equation} On the other hand, in view of (V4), we have \begin{equation} \label{43} \begin{aligned} &I'(u_m;T)u_m \\ &= \int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt-\int_0^Tu_m(t)V_u(t,u_m)dt \\ &\leq \int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt-d_1\int_0^T|u_m(t)|^{\mu+1}dt-d_2\int_0^T|u_m(t)|dt \\ &= \int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt-d_1(\int_{|u_m(t)|\geq h}|u_m(t)|^{\mu+1}dt \\ &\quad +\int_{|u_m(t)|\leq h}|u_m(t)|^{\mu+1}dt)-d_2\int_0^T|u_m(t)|dt \\ &\leq \int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt-d_1\|u_m\|_{L^{\infty}} \int_{|u_m(t)|\geq h}|u_m(t)|^{\mu}dt\\ &\quad -d_2\|u_m\|_{L^1}-d_5 \\ &\leq \int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt -d_6\|u_m\|\int_{|u_m(t)|\geq h}|u_m(t)|^{\mu}dt\\ &\quad -d_7\|u_m\|-d_5 \\ &\leq \int_0^T(u_m^{''2}+Au_m^{'2}-Bu_m^2)dt -d_6h^{\mu-r}\|u_m\|\int_{|u_m(t)|\geq h}|u_m(t)|^rdt\\ &\quad -d_7\|u_m\|-d_5, \end{aligned} \end{equation} with $d_5,d_6,d_7$ being positive constants. The two sides of \eqref{43} are divided by $\|u_m\|^2$, by \eqref{12}, we have \begin{equation}\label{44} \begin{aligned} \frac{I'(u_m;T)u_m}{\|u_m\|^2} &\geq \frac{\|u_m\|^2_{*}}{\|u_m\|^2} -B\int_0^T(\frac{u_m}{\|u_m\|})^2dt\\ &\quad -d_6h^{\mu-r}\frac{\int_{|u_m(t)| \geq h}|u_m(t)|^rdt}{\|u_m\|}-\frac{d_7\|u_m\|+d_5}{\|u_m\|^2}. \end{aligned} \end{equation} Set $\widetilde{u_m}(t)=\frac{u_m(t)}{\|u_m\|}$, then $\widetilde{u_m}(t)=1$. We may assume that $\widetilde{u_m}(t)\rightharpoonup \chi\in X(T)$ and $\widetilde{u_m}(t)\to \chi $ in $\mathbb{C}([0,T])$, and $\frac{\|u_m\|_{*}}{\|u_m\|}\to\tau>0$. Letting $m\to\infty$ in \eqref{44}, and by \eqref{41}, we have $B\int_0^T(\chi(t))^2dt\geq \tau^2>0$, which implies the measure of $\Omega:= \{t\in [0,T]:\chi(t))\neq0\}$ is positive. For every $t\in \Omega$, we have $|u_m(t)|=\|u_m\||\widetilde{u_m}(t)|\to\infty$, so by \eqref{34}, \eqref{35} and (V5), we have \begin{equation} \label{45} \begin{aligned} 2d_0&\leftarrow 2I(u_m;T)-I'(u_m;T)u_m \\ &= \int_0^T(u_m(t)V_u(t,u_m(t))-2V(t,u_m(t)))dt, \\ &= \int_{\Omega}(u_m(t)V_u(t,u_m(t))-2V(t,u_m(t)))dt\\ &\quad +\int_{[0,T]\backslash\Omega}(u_m(t)V_u(t,u_m(t))-2V(t,u_m(t)))dt, \\ &\leq d_3\int_{\Omega}|u_m(t)|^rdt+\text{a bounded term} \to\infty, \end{aligned} \end{equation} which is a contradiction. Therefore, $(u_m)$ is bounded in $X(T)$. Referring to \eqref{23}-\eqref{24}, we can show that $u_m$ converges to some critical point $u_0$ of $I(u;T)$ in $X(T)$. Following the proof of Lemma \ref{tl2}, we also have $u_0\neq 0$. \end{proof} \begin{lemma}\label{tl5} Under the assumptions of Theorem \ref{dl2}, if $0