\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 127, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/127\hfil Positive solutions] {Positive solutions for a system of nonlinear boundary-value problems on time scales} \author[A. K. Rao \hfil EJDE-2009/127\hfilneg] {A. Kameswara Rao} \address{A. Kameswara Rao \newline Department of Applied Mathematics, Andhra University, Visakhapatnam 530 003, India} \email{kamesh\_1724@yahoo.com} \thanks{Submitted July 6, 2009. Published October 4, 2009.} \subjclass[2000]{39A10, 34B15, 34A40} \keywords{Dynamic equations; eigenvalue intervals; positive solution; cone} \begin{abstract} We determine the values of a parameter $\lambda$ for which there exist positive solutions to the system of dynamic equations \begin{gather*} u^{\Delta \Delta}(t)+\lambda p(t)f(v(\sigma(t)))=0,\quad t\in[a, b]_\mathbb{T}, \\ v^{\Delta \Delta}(t)+\lambda q(t)g(u(\sigma(t)))=0, \quad t\in[a, b]_\mathbb{T}, \end{gather*} with the boundary conditions, $\alpha u(a)-\beta u^{\Delta}(a)=0$, $\gamma u(\sigma^2(b))+\delta u^{\Delta}(\sigma(b))=0$, $\alpha v(a)-\beta v^{\Delta}(a)=0$, $\gamma v(\sigma^2(b))+\delta v^{\Delta}(\sigma(b))=0$, where $\mathbb{T}$ is a time scale. To this end we apply a Guo-Krasnosel'skii fixed point theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} Let $\mathbb{T}$ be a time scale with $a, \sigma^2(b)\in \mathbb{T}$. Given an interval $J$ of $\mathbb{R}$, we will use the interval notation \begin{equation}\label{e11} J_\mathbb{T}=J\cap\mathbb{T}. \end{equation} We are concerned with determining values of $\lambda$ (eigenvalues) for which there exist positive solutions for the system of dynamic equations \begin{equation}\label{e12} \begin{gathered} u^{\Delta \Delta}(t)+\lambda p(t)f(v(\sigma(t)))=0, \quad t\in[a,b]_\mathbb{T},\\ v^{\Delta \Delta}(t)+\lambda q(t)g(u(\sigma(t)))=0, \quad t\in[a,b]_\mathbb{T}, \end{gathered} \end{equation} satisfying the boundary conditions \begin{equation}\label{e13} \begin{gathered} \alpha u(a)-\beta u^{\Delta}(a)=0, \quad \gamma u(\sigma^2(b))+\delta u^{\Delta}(\sigma(b))=0,\\ \alpha v(a)-\beta v^{\Delta}(a) =0,\quad \gamma v(\sigma^2(b))+\delta v^{\Delta}(\sigma(b))=0\,. \end{gathered} \end{equation} We will use the following assumptions: \begin{itemize} \item[(A1)] $f, g\in C([0, \infty), [0, \infty))$; \item[(A2)] $p, q\in C([a, \sigma(b)]_\mathbb{T}, [0, \infty))$, and each function does not vanish identically on any closed subinterval of $[a,\sigma(b)]_\mathbb{T}$; \item[(A3)] the following limits exist as real numbers:\\ $f_0:=\lim_{x\to 0^{+}}f(x)/x$, $g_0:=\lim_{x\to 0^{+}}g(x)/x$,\\ $f_\infty:=\lim_{x\to \infty}f(x)/x$, and $g_\infty:=\lim_{x\to \infty}g(x)/x$ \end{itemize} There is an ongoing flurry of research activities devoted to positive solutions of dynamic equations on time scales. This work entails an extension of the paper by Chyan and Henderson \cite{c2} to eigenvalue problem for system of nonlinear boundary value problems on time scales. Also, in that light, this paper is closely related to the works of Li and Sun \cite{l1,s1}. On a larger scale, there has been a great deal of study focused on positive solutions of boundary value problems for ordinary differential equations. Interest in such solutions is high from a theoretical sense \cite{e2,g2,h2,k1,k2} and as applications for which only positive solutions are meaningful \cite{a2,g1,h5,w2}. These considerations are caste primarily for scalar problems, but good attention has been given to boundary value problems for systems of differential equations \cite{h3,h4,i1,i2}. The main tool in this paper is an application of the Guo-Krasnosel’skii fixed point theorem for operators leaving a Banach space cone invariant \cite{e2}. A Green function plays a fundamental role in defining an appropriate operator on a suitable cone. \section{Green's Function and Bounds} In this section, we state the well-known Guo-Krasnosel'skii fixed point theorem which we will apply to a completely continuous operator whose kernel, $G(t, s)$ is the Green's function for \begin{equation}\label{e21} \begin{gathered} -y^{\Delta \Delta}=0,\\ \alpha u(a)-\beta u^{\Delta}(a)=0, \quad \gamma u(\sigma^2(b))+\delta u^{\Delta}(\sigma(b))=0 \end{gathered} \end{equation} is given by \begin{equation}\label{e22} G(t,s)= \frac{1}{d} \begin{cases} \{\alpha(t-a)+\beta\}\{\gamma(\sigma^2(b)-\sigma(s))+\delta\}: & a\leq t\leq s\leq\sigma^2(b)\\ \{\alpha(\sigma(s)-a)+\beta\}\{\gamma(\sigma^2(b)-t)+\delta\}: & a\leq \sigma(s)\leq t\leq \sigma^2(b) \end{cases} \end{equation} where $\alpha, \beta, \gamma, \delta\geq 0$ and $$ d:=\gamma \beta+\alpha \delta+\alpha \gamma(\sigma^2(b)-a)>0. $$ One can easily check that \begin{equation}\label{e23} G(t, s)>0, \quad (t, s)\in (a, \sigma^2(b))_\mathbb{T}\times(a, \sigma(b))_\mathbb{T} \end{equation} and \begin{equation}\label{e24} G(t,s)\leq G(\sigma(s),s)=\frac{[\alpha(\sigma(s)-a)+\beta] [\gamma(\sigma^2(b)-\sigma(s))+\delta]}{d} \end{equation} for $t\in [a, \sigma^2(b)]_\mathbb{T}$, $s\in [a, \sigma(b)]_\mathbb{T}$. Let $I=\big[\frac{3a+\sigma^2(b)}{4}, \frac{a+3\sigma^2(b)}{4}\big]_\mathbb{T}$. Then \begin{equation}\label{e25} G(t, s)\geq kG(\sigma(s), s) =k\frac{[\alpha(\sigma(s)-a)+\beta][\gamma(\sigma^2(b)-\sigma(s)) +\delta]}{d} \end{equation} for $t\in I$, $s\in [a, \sigma(b)]_\mathbb{T}$, where \begin{equation}\label{e26} k=\min\Bigg\{\frac{\gamma(\sigma^2(b)-a)+4\delta}{4(\gamma(\sigma^2(b)-a) +\delta)}, \; \frac{\alpha(\sigma^2(b)-a)+4\beta}{4(\alpha(\sigma^2(b)-a)+\beta)}\Bigg\}. \end{equation} We note that a pair $(u(t), v(t))$ is a solution of the eigenvalue problem \eqref{e12}, \eqref{e13} if and only if \begin{equation}\label{e27} \begin{gathered} u(t)=\lambda\int_{a}^{\sigma(b)} G(t,s)p(s)f \Big(\lambda\int_{a}^{\sigma(b)} G(\sigma(s),r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s, a\leq t \leq\sigma^2 (b),\\ v(t)=\lambda \int_{a}^{\sigma(b)}G(t,s)q(s)g(u(\sigma(s)))\Delta s, \quad a\leq t\leq \sigma^2 (b). \end{gathered} \end{equation} Values of $\lambda$ for which there are positive solutions (positive with respect to a cone) of \eqref{e12}, \eqref{e13} will be determined via applications of the following fixed point theorem \cite{k1}. \begin{theorem}[Krasnosel'skii] \label{t21} Let $\mathcal{B}$ be a Banach space, and let $\mathcal{P}\subset \mathcal{B}$ be a cone in $\mathcal{B}$. Assume that $\Omega_{1}$ and $\Omega_{2}$ are open subsets of $\mathcal{B}$ with $0\in\Omega_{1}\subset\overline{\Omega}_{1}\subset\Omega_{2}$, and let \begin{equation}\label{e28} T:\mathcal{P}\cap(\overline{\Omega}_{2} \backslash \Omega_{1})\to \mathcal{P} \end{equation} be a completely continuous operator such that either \begin{itemize} \item[(i)] $\|Tu\|\leq\|u\|$, $u\in\mathcal{P}\cap\partial\Omega_{1}$, and $\|Tu\|\geq\|u\|$, $u\in \mathcal{P}\cap\partial\Omega_{2}$; or \item [(ii)] $\|Tu\|\geq\|u\|$, $u\in \mathcal{P}\cap\partial\Omega_{1}$, and $\| Tu\|\leq\|u\|$, $u\in \mathcal{P}\cap\partial\Omega_{2}$. \end{itemize} Then, $T$ has a fixed point in $\mathcal{P}\cap(\overline{\Omega}_{2} \backslash \Omega_{1})$. \end{theorem} \section{Positive Solutions in a Cone} In this section, we apply Theorem \ref{t21} to obtain solutions in a cone (i.e., positive solutions) of \eqref{e12}, \eqref{e13}. Assume throughout that $[a, \sigma^2(b)]_\mathbb{T}$ is such that \begin{equation}\label{e31} \begin{gathered} \xi =\min \Big\{ t\in \mathbb{T}: t\geq\frac{3a+\sigma^2(b)}{4}\Big\},\\ \omega =\max\Big\{t\in \mathbb{T}: t\leq \frac{a+3\sigma^2(b)}{4}\Big\}; \end{gathered} \end{equation} both exist and satisfy \begin{equation}\label{e32} \frac{3a+\sigma^2(b)}{4}\leq \xi < \omega \leq \frac{a+3\sigma^2(b)}{4}. \end{equation} Next, let $\tau \in [\xi, \omega]_\mathbb{T}$ be defied by \begin{equation}\label{e33} \int_{\xi}^{\omega}G(\tau, s)p(s)\Delta s=\max_{t\in [\xi,\omega]_\mathbb{T}}\int_{\xi}^{\omega}G(t,s)p(s)\Delta s. \end{equation} Finally, we define \begin{gather}\label{e34} l=\min_{s\in[a,\sigma(b)]_\mathbb{T}} \frac{G(\sigma(\omega),s)}{G(\sigma(s), s)}, \\ \gamma=\min\{k,l\}. \label{e35} \end{gather} For our construction, let $\mathcal{B}=\{x:[a, \sigma^2(b)]_\mathbb{T}\to \mathbb{R}\}$ with supremum norm $\|x\|=\sup \{| x(t)|:t\in [a,\sigma^2(b)]_\mathbb{T}\}$ and define a cone $\mathcal{P}\subset\mathcal{B}$ by \begin{equation}\label{e36} \mathcal{P}=\Big\{x\in \mathcal{B}| x(t)\geq 0~ {\rm on}~ [a,\sigma^2(b)]_\mathbb{T}, \quad\text{and}\quad x(t)\geq \gamma \| x\|, ~{\rm for} ~t\in [\xi, \omega]_\mathbb{T}\Big\}. \end{equation} For our first result, define positive numbers $L_1$ and $L_2$, by % \label{e37} \begin{gather*} L_1:=\max\Big\{\Big[\gamma\int_{\xi}^{\omega}G(\tau, s)p(s)\Delta sf_{\infty}\Big]^{-1}, \Big[\gamma\int_{\xi}^{\omega}G(\tau, s)q(s)\Delta s g_{\infty}\Big]^{-1}\Big\},\\ L_2:=\min\Big\{\Big[\int_{a}^{\sigma(b)}G(\sigma(s), s)p(s)\Delta s f_{0}\Big]^{-1}, \Big[\int_{a}^{\sigma(b)}G(\sigma(s), s)q(s)\Delta s g_{0}\Big]^{-1}\Big\}. \end{gather*} \begin{theorem}\label{t31} Assume that conditions {\rm (A1)--(A3)} are satisfied. Then, for each $\lambda$ satisfying \begin{equation}\label{e38} L_1<\lambda< L_2, \end{equation} there exists a pair $(u, v)$ satisfying \eqref{e12}, \eqref{e13} such that $u(x)>0$ and $v(x)>0$ on $(a,\sigma^2(b))_\mathbb{T}$. \end{theorem} \begin{proof} Let $\lambda$ be as in \eqref{e38}. And let $\epsilon >0$ be chosen such that %\label{e39} \[ \max\Big\{\Big[\gamma\int_{\xi}^{\omega}G(\tau, s)p(s)\Delta s (f_{\infty}-\epsilon)\Big]^{-1}, \Big[\gamma\int_{\xi}^{\omega}G(\tau, s)q(s)\Delta s (g_{\infty}-\epsilon)\Big]^{-1}\Big\}\leq \lambda \] \begin{align*} \lambda \leq\min\Big\{&\Big[\int_{a}^{\sigma(b)}G(\sigma(s), s)p(s)\Delta s (f_{0}+\epsilon)\Big]^{-1},\\ &\Big[\int_{a}^{\sigma(b)}G(\sigma(s), s)q(s)\Delta s (g_{0}+\epsilon)\Big]^{-1}\Big\}. \end{align*} Define an integral operator $T:\mathcal{P}\to \mathcal{B}$ by \begin{equation}\label{e310} Tu(t)=\lambda\int_{a}^{\sigma(b)}G(t,s)p(s) f\Big(\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s. \end{equation} By the remarks in Section 2, we seek suitable fixed points of $T$ in the cone $\mathcal{P}$. Notice from (A1), (A2), and \eqref{e23} that, for $u\in \mathcal{P}$, $Tu(t)\geq 0$ on $[a,\sigma^2(b)]_\mathbb{T}$. Also, for $u\in \mathcal{P}$, we have from \eqref{e24} that \begin{equation}\label{e311} \begin{aligned} Tu(t)&:=\lambda\int_{a}^{\sigma(b)}G(t,s)p(s) f\Big(\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s\\ &\leq \lambda\int_{a}^{\sigma(b)}G(\sigma(s),s)p(s) f\Big(\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s \end{aligned} \end{equation} so that \begin{equation}\label{e312} \|Tu\|\leq\lambda\int_{a}^{\sigma(b)}G(\sigma(s),s)p(s) f\Big(\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s. \end{equation} Next, if $u\in \mathcal{P}$, we have from \eqref{e25}, \eqref{e35}, and \eqref{e310} that \begin{equation}\label{e313} \begin{aligned} &\min _{t\in [\xi, \omega]_\mathbb{T}}Tu(t)\\ &=\min _{t\in [\xi, \omega]_\mathbb{T}}\lambda\int_{a}^{\sigma(b)}G(t,s)p(s) f\Big(\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s\\ &\geq \lambda\gamma\int_{a}^{\sigma(b)}G(\sigma(s),s)p(s) f\Big(\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s\\ &\geq \gamma \|Tu\|. \end{aligned} \end{equation} Consequently, $T:\mathcal{P}\to\mathcal{P}$. In addition, standard arguments shows that $T$ is completely continuous. Now, from the definitions of $f_0$ and $g_0$, there exists $H_1>0$ such that \[ %\label{e314} f(x)\leq(f_0+\epsilon)x,~~g(x)\leq(g_0+\epsilon)x,\quad 00$ such that \begin{equation}\label{e319} f(x)\geq(f_\infty-\epsilon)x,\quad g(x)\geq(g_\infty-\epsilon)x,\quad x\geq\overline{H}_2. \end{equation} Let %\label{e320} $H_2=\max\{2H_1, \overline{H}_2/\gamma\}$. Let $u\in \mathcal{P}$ and $\|u\|=H_2$. Then, \begin{equation}\label{e321} \min_{t\in[\xi,\omega]_\mathbb{T}}u(t)\geq\gamma\| u\|\geq\overline{H}_2. \end{equation} Consequently, from \eqref{e25} and choice of $\epsilon$, for $a\leq s\leq\sigma(b)$, we have that \begin{equation}\label{e322} \begin{aligned} \lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r &\geq \lambda \int_{\xi}^{\omega}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\\ &\geq\lambda\int_{\xi}^{\omega}G(\tau, r)q(r)g(u(\sigma(r)))\Delta r\\ &\geq \lambda \int_{\xi}^{\omega}G(\tau, r)q(r)(g_\infty-\epsilon)u(r)\Delta r\\ &\geq\gamma\lambda\int_{\xi}^{\omega}G(\tau, r)q(r)(g_\infty-\epsilon)\Delta r\|u\|\\ &\geq\|u\|=H_2. \end{aligned} \end{equation} And so, we have from \eqref{e25} and choice of $\epsilon$ that % \label{e323} \begin{align*} Tu(\tau)&=\lambda\int_{a}^{\sigma(b)}G(\tau,s)p(s) f\Big(\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r\Big)\Delta s\\ &\geq\lambda\int_{a}^{\sigma(b)}G(\tau,s)p(s) (f_\infty-\epsilon)\lambda\int_{a}^{\sigma(b)}G(\sigma(s), r)q(r)g(u(\sigma(r)))\Delta r \Delta s\\ &\geq \lambda\int_a^{\sigma(b)} G(\tau, s)p(s)(f_\infty-\epsilon)H_2 \Delta s\\ &\geq \gamma H_2>H_2=\|u\|. \end{align*} Hence, $\|Tu \|\geq \|u \|$. So if we set %\label{e324} $\Omega_2=\{x\in\mathcal{B}:\|x\|0$ and $v(x)>0$ on $(a, \sigma^2(b))_\mathbb{T}$. \end{theorem} \begin{proof} Let $\lambda$ be as in \eqref{e328}. And let $\epsilon >0$ be chosen such that \[ %\label{e329} \max\Big\{\Big[\gamma\int_{\xi}^{\omega}G(\tau, s)p(s)\Delta s (f_{0}-\epsilon)\Big]^{-1}, \Big[\gamma\int_{\xi}^{\omega}G(\tau, s)q(s)\Delta s (g_{0}-\epsilon) \Big]^{-1}\Big\}\leq\lambda, \] \begin{align*} \lambda\leq\min\Big\{&\Big[\int_{a}^{\sigma(b)}G(\sigma(s), s)p(s)\Delta s (f_{\infty}+\epsilon)\Big]^{-1},\\ &\Big[\int_{a}^{\sigma(b)}G(\sigma(s), s)q(s)\Delta s (g_{\infty}+\epsilon)\Big]^{-1}\Big\}. \end{align*} Let $T$ be the cone preserving, completely continuous operator that was defined by \eqref{e310}. From the definitions of $f_0$ and $g_0$, there exists $H_1>0$ such that \begin{equation}\label{e330} f(x)\geq(f_0-\epsilon)x,\quad g(x)\geq(g_0-\epsilon)x,\quad 00$ is such that $g(x)\leq N$ for all $0\max\Big\{2H_2, M\lambda\int_a^{\sigma(b)}G(\sigma(s),s)p(s)\Delta s\Big\}. \end{equation} Then, for $u\in \mathcal{P}$ with $\|u \|=H_3$, \begin{equation}\label{e340} Tu(t)\leq\lambda\int_a^{\sigma(b)}G(\sigma(s), s)p(s)M \Delta s \leq H_3=\|u \| \end{equation} so that $\|Tu \|\leq \|u \|$. If %\label{e341} $\Omega_2=\{x\in\mathcal{B}|~~\|x\|\max\{2H_2, \overline{H}_1\}$ such that $g(x)\leq g(H_3)$, for $0\max\{H_3, \lambda \int_a^{\sigma(b)}G(\sigma(r), r)q(r)g(H_3) \Delta r\}$ such that $f(x)\leq f(H_4)$, for $0