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ON THE DYNAMICS OF A DELAYED SIR EPIDEMIC MODEL
WITH A MODIFIED SATURATED INCIDENCE RATE

ABDELILAH KADDAR

Abstract. In this paper, a delayed SIR epidemic model with modified sat-

urated incidence rate is proposed. The local stability and the existence of
Hopf bifurcation are established. Also some numerical simulations are given

to illustrate the theoretical analysis.

1. Introduction

Epidemic models have been studied by many authors. Most of them are interest-
ing in the formulation of the incidence rate, i.e. the infection rate of susceptible in-
dividuals through their contacts with infective (see, for example, [8, 10, 12, 13, 17]).
In order to model this disease transmission process several authors employ following
incidence functions. The first one is the bilinear incidence rate βSI, where S and I
are respectively the number of susceptible and infective individuals in the popula-
tion, and β is a positive constant [7, 11, 14, 19, 20]. The second one is the saturated
incidence rate of the form βSI

1+α1S , where α1 is a positive constant. The effect of
saturation factor (refer to α1) stems from epidemic control (tacking appropriate
preventive measures) [1, 3, 15, 18]. The third one is the saturated incidence rate of
the form βSI

1+α2I , where α2 is a positive constant. In this incidence rate the number
of effective contacts between infective and susceptible individuals may saturate at
high infective levels due to crowding of infective individuals or due to the protection
measures by the susceptible individuals [11, 2, 16].

We consider a delayed SIR epidemic model with a modified saturated incidence
rate as follows:

dS

dt
= A− µS(t)− βS(t− τ)I(t− τ)

1 + α1S(t− τ) + α2I(t− τ)
,

dI

dt
=

βS(t)I(t)
1 + α1S(t) + α2I(t)

− (µ + α + γ)I(t),

dR

dt
= γI(t)− µR(t).

(1.1)
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where S is the number of susceptible individuals, I is the number of infective
individuals, R is the number of recovered individuals, A is the recruitment rate of
the population, µ is the natural death of the population, α is the death rate due
to disease, β is the transmission rate, α1 and α2 are the parameter that measure
the inhibitory effect, γ is the recovery rate of the infective individuals, and τ is the
incubation period [4, 16, 18].

The fundamental characteristics of this model are:
(C1) The modified saturated incidence rate βSI

1+α1S+α2I , which includes the three
forms, βSI (if α1 = α2 = 0), βSI

1+α1S (if α2 = 0), and βSI
1+α2I (if α1 = 0), is

saturated with the susceptible and the infective individuals.
(C2) The inclusion of time delay into susceptible and infective individuals in

incidence rate, only on the first equation, because susceptible individuals
infected at time t− τ is able to spread the disease at time t.

The first two equations in system (1.1) do not depend on the third equation, and
therefore this equation can be omitted without loss of generality. Hence, system
(1.1) can be rewritten as

dS

dt
= A− µS(t)− βS(t− τ)I(t− τ)

1 + α1S(t− τ) + α2I(t− τ)
,

dI

dt
=

βS(t)I(t)
1 + α1S(t) + α2I(t)

− (µ + α + γ)I(t).
(1.2)

The dynamics of the system (1.2) are studied in terms of local stability and of the
description of the Hopf bifurcation, that is proven to exist as the delay τ cross
some critical value. A numerical illustrations are given to illustrate the theoretical
analysis.

2. Steady state and local stability analysis

In this section, we discuss the local stability of an endemic equilibrium and a
disease-free equilibrium of system (1.2) by analyzing the corresponding character-
istic equations, respectively [9]. System (1.2) always has a disease-free equilibrium
E1 = (A

µ , 0). Further, if

R0 :=
A(β − α1(µ + α + γ))

µ(µ + α + γ)
> 1,

system (1.2) admits a unique endemic equilibrium E∗ = (S∗, I∗), where

S∗ =
A[(µ + α + γ) + α2A]

µ[(µ + α + γ)R0 + α2A]
, I∗ =

A(R0 − 1)
(µ + α + γ)R0 + α2A

.

Remark 2.1. The basic reproduction number (also called the threshold value),
R0 representing how many secondary infectious result from the introduction of one
infected individual into a population of susceptible [6].

Now let us start to discuss the local behavior of the system (1.2) of the equilib-
rium points E1 = (A

µ , 0), and E∗ = (S∗, I∗). At the equilibrium E1, characteristic
equation is

(λ + µ)
[
λ− µ(µ + α + γ)(R0 − 1)

µ + α1A

]
= 0. (2.1)
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Obviously, (2.1) has two roots λ1 = −µ < 0, and λ2 = µ(µ+α+γ)(R0−1)
µ+α1A . Hence, we

have the following result.

Proposition 2.2. If R0 > 1, then The equilibrium point E1 is unstable.

Let x = S−S∗ and y = I − I∗. Then by linearizing system (1.2) around E∗, we
have

dx

dt
= −µx(t)− βI∗(1 + α2I

∗)
(1 + α1S∗ + α2I∗)2

x(t− τ)− βS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
y(t− τ),

dy

dt
=

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2
x(t) + [

βS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
− (µ + α + γ)]y(t).

(2.2)
The characteristic equation associated to system (2.2) is

λ2 + pλ + r + sλ exp(−λτ) + q exp(−λτ) = 0, (2.3)

where

p = µ +
α2µ(µ + α + γ)2(R0 − 1)

β[(µ + α + γ) + α2A]
, r =

α2µ
2(µ + α + γ)2(R0 − 1)

β[(µ + α + γ) + α2A]
,

s =
µ2(µ + α + γ)2R0(R0 − 1)

βA[(µ + α + γ) + α2A]
, q =

µ2(µ + α + γ)3R0(R0 − 1)
βA[(µ + α + γ) + α2A]

.

Theorem 2.3. Let us assume
(H1) 1 < R0,
(H2) α2µ < β − α1(µ + α + γ).

Then there exists τ0 > 0 such that, when τ ∈ [0, τ0) the steady state E∗ is locally
asymptotically stable, when τ > τ0, E∗ is unstable and when τ = τ0, equation (2.3)
has a pair of purely imaginary roots ±iω0, with

ω2
0 =

1
2
(s2 + 2r − p2) +

1
2
[(s2 + 2r − p2)2 − 4(r2 − q2)]1/2, (2.4)

and

τ0 =
1
ω0

arccos [−psω2
0 + (r − ω2

0)q
s2ω2

0 + q2
], (2.5)

where p, r, s, q are defined in (2.3).

For the proof of the above theorem, we need the following lemma.

Lemma 2.4 ([5]). If the hypotheses
(S1) p + s > 0,
(S2) q + r > 0,
(S3) r − q < 0,

hold, then there exists τ0 > 0 such that, when τ ∈ [0, τ0), all roots of the equation
(2.3) have negative real parts, when τ = τ0, equation (2.3) has a pair of purely
imaginary roots ±iω0, and when τ > τ0, equation (2.3) has at least one root with
positive real part, where τ0, and ω0 are defined in Theorem 2.3.

Proof of Theorem 2.3. From hypothesis (H1), the hypotheses (S1) and (S2) of lemma
2.4 are satisfied. From the expression of q and r, we have

r − q =
µ(µ + α + γ)(R0 − 1)
β[(µ + α + γ) + α2

2A
2]

(α2µ− β + α1(µ + α + γ))
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From hypotheses (H1) and (H2), we have r− q < 0. Therefore, the hypothesis (S3)
of lemma 2.4 is satisfied. Thus we have

• For τ ∈ [0, τ0), (E∗, I∗) is asymptotically stable.
• For τ > τ0, (E∗, I∗) is unstable.
• For τ = τ0, equation (2.3) has a pair of purely imaginary roots ±iω0.

�

3. Hopf bifurcation

From theorem 2.3, we have the following result.

Theorem 3.1. Suppose that (H1)-(H2) hold. Then there exists ε0 > 0 such that
for each 0 ≤ ε < ε0, system (1.2) has a family of periodic solutions P = P (ε) with
period T = T (ε), for the parameter values τ = τ(ε) such that P (0) = 0, T (0) = 2π

ω0

and τ(0) = τ0.

Proof. We apply the Hopf bifurcation theorem introduced in [9]. We only need to
verify that ±iω0 are simple, and the transversally condition d Re(λ)

dτ |τ=τ0 6= 0.
First, we show that iω0 is simple: Consider the branch of the characteristic root

λ(τ) = µ(τ) + iν(τ), of (2.3), bifurcating from iω0 at τ = τ0. By differentiating
(2.3) with respect to the delay τ , we obtain

{2λ + p + s exp(−λτ)− sτλ exp(−λτ)− qτ exp(−λτ)}dλ

dτ
= (sλ + q)λ exp(−λτ).

(3.1)
If we suppose, by contradiction, that iω0 is not simple, the right hand side of (3.1)
gives

(s + q)iω0 = 0,

and leads a contradiction with the fact that s + q > 0.
Lastly, we need to verify the transversally condition,

d Re(λ)
dτ

|τ=τ0 6= 0.

From (3.1), we have

(
dλ

dτ
)−1 =

(2λ + p) exp(λτ) + s

λ(sλ + q)
− τ

λ
.

As,

sign
d Re(λ)

dτ
|τ=τ0 = sign(Re(

dλ

dτ
)−1|τ=τ0).

Then

sign
d Re(λ)

dτ
|τ=τ0 = sign(Re

(2λ + p) exp(λτ) + s

λ(sλ + q)
). (3.2)

From (2.3), we have

exp(λτ) = − sλ + q

λ2 + pλ + r
. (3.3)

So, by (3.2) and (3.3) we obtain

sign
d Re(λ)

dτ
|τ=τ0 = sign([(s2 + 2r − p2)2 − 4(r2 − q2)]1/2).

Consequently, d Re(λ)
dτ |τ=τ0 > 0. �
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4. Numerical Application

4.1. Effect of incubation period. In this section, we give a numerical simulation
supporting the theoretical analysis given in section 2 and 3. Consider the following
parameters:

α1 = 0.01, α2 = 0.01, A = 0.94, β = 0.1, d = 0.05, α = 0.5, γ = 0.5.

System (1.2) has the unique positive equilibrium E∗ = (11.7711, 0.3347). It follows
from Theorem 2.3, that the critical positive time delay τ0 = 2.8465. Thus we know
that when 0 ≤ τ < τ0, E∗ is asymptotically stable. And from Theorem 3.1, when
τ passes through the critical value τ0, E∗ loses its stability and a family of periodic
solutions with period P = 38.0965 bifurcating from E∗ occurs (see Figure 1).
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Figure 1. For τ = 1, the solutions (S(t) , I(t) ) of system (1.2)
are asymptotically stable and converge to the equilibrium E∗ (top).
When τ = 2.8465, a Hopf bifurcation occurs and periodic solutions
appear, with same period T (0) = 38.0965 (middle). For τ = 4, the
equilibrium E∗ of system (1.2) is unstable (bottom).

4.2. Effect of changing the inhibitory effect. Now, we show how the critical
delay τ0, changes as the parameters α1, and α2 move. In table 1, we assume that
the parameters

A = 0.94, β = 0.4, d = 0.01, α = 0.02, γ = 0.3

are fixed. The delayed SIR epidemic model with a bilinear incidence rate (α1 =
α2 = 0) and saturated incidence rate ((α1, α2) 6= (0, 0)) generate the same local
asymptotic proprieties if (α1, α2) is close enough to (0, 0). However with large
values of α1 and/or α2 this equivalence was not true anymore (see, table 1).
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Table 1. Dependence of the critical value of delay τ0 on the in-
hibitory effect α1, and α2.

α2, α1 0 0.01 0.05 0.1 0.5 1
0 1.11 1.12 1.18 1.26 2.07 3.80

0.01 1.14 1.15 1.21 1.29 2.12 3.96
0.05 1.26 1.28 1.34 1.43 2.32 4.63
0.1 1.42 1.43 1.50 1.59 2.56 5.48
0.5 2.66 2.68 2.80 2.95 4.54 12.80
1 4.33 4.37 4.54 4.76 7.26 23.54

5. Concluding remarks and Future research

In this article, we introduced a delayed SIR model with a modified saturated
incidence rate of the form βSI

1+α1S+α2I , which includes the three forms, βSI (if
α1 = α2 = 0), βSI

1+α1S (if α2 = 0), and βSI
1+α2I (if α1 = 0). In this formulation it

includes
• The mixing process (related to 1

1+α1S+α2I ), i.e., the individuals in the pop-
ulation will be totally mixed and the probability of contact with an infective
will decrease as population size increases.

• The saturation effects due to crowding of infective individuals and to the
protection measures by the susceptible individuals.

We showed that the local stability of the endemic equilibrium point, E∗, depend
on time delay, τ , (the incubation period). The system changes its behavior from
stable to unstable nature around E∗ when τ crosses the critical value τ0 via a Hopf
bifurcation and periodic solutions bifurcating from E∗. The numerical simulations
are given to illustrate the theoretical analysis and to show that for large values of the
inhibitory effect α1 and/or α2 the dynamics generated by the modified saturated
incidence rate is not equivalent to the following three forms, βSI, βSI

1+α1S , and βSI
1+α2I .

For the future research, we consider a delayed SIR model with a generalized
saturated incidence rate of the form βSp1Iq1

1+α1Sp2+α2Iq2 which must be much more com-
plicated to explore.
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