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AN OPTIMAL EXISTENCE THEOREM FOR POSITIVE
SOLUTIONS OF A FOUR-POINT BOUNDARY VALUE

PROBLEM

MAN KAM KWONG, JAMES S. W. WONG

Abstract. We are interested in the existence of positive solutions to a four-

point boundary value problem of the differential equation y′′(t)+a(t)f(y(t)) =

0 on [0, 1]. The value of y at 0 and 1 are each a multiple of y(t) at an interior
point. Many known existence criteria are based on the limiting values of f(u)/u

as u approaches 0 and infinity.

In this article we obtain an optimal criterion (thereby improving all existing
results of kind mentioned above) by comparing these limiting values to the

smallest eigenvalue of the corresponding four-point problem of the associated
linear equation. In the simpler case of three-point boundary value problems,

the same result has been established in an earlier paper by the first author

using the shooting method.
The method of proof is based upon a variant of Krasnoselskii’s fixed point

theorem on cones, the classical Krein-Rutman theorem, and the Gelfand for-

mula relating the spectral radius of a linear operator to its norm.

1. Introduction

We are interested in the existence of positive solutions of second-order nonlinear
differential equations subject to four-point boundary conditions. In an earlier paper
[7], we provided improvements of a result by Liu [6] on the existence of a positive
solution for the equation:

y′′(t) + a(t)f(y(t)) = 0, 0 < t < 1 (1.1)

subject to the four-point boundary conditions

y(0) = αy(ξ), y(1) = βy(η) (1.2)

where 0 < ξ ≤ η < 1, a(t) is a continuous, and nonnegative function on (0, 1) and
f(y) is a continuous nonnegative function on [0,∞); i.e., f ∈ C([0,∞), [0,∞)). We
proved the following result.

Theorem 1.1. Suppose that a(t) 6≡ 0 on (0, 1),
(H1) 0 < α < 1

1−ξ , 0 < β < 1
η ;

(H2) Λ = αξ(1− β) + (1− α)(1− βη) > 0;
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(H3) The following two limits exist:

f0 = lim
u→0

f(u)
u

, f∞ = lim
u→∞

f(u)
u

.

Then (1.1) (1.2) has at least one positive solution if either

f0 < Λ1, f∞ > Λ2, (1.3)

or
f0 > Λ2, f∞ < Λ1, (1.4)

where

Λ1 = Λ
(
(1− α + αξ)

∫ 1

0

(1− s)a(s) ds
)−1

,

Λ2 = Λ
(
(1− α + αξ)γη

∫ 1

η

(1− s)a(s) ds
)−1

,

and γ = min
(
η, βη, β(1− η)/(1− βη)

)
.

Clearly Λ2 > Λ1, so there exists a gap between the numbers f0 and f∞ in which
existence is unknown. If α = 0 in (1.2), then (1.1) (1.2) becomes a three-point
problem which was studied in an earlier paper by the first named author [4]. Our
main result is as follows.

Theorem 1.2. Let λ1 be the smallest eigenvalue of the three-point problem

u′′(t) + λa(t)u(t) = 0, 0 < t < 1 (1.5)

subject to
u(0) = 0, u(1) = βu(η) (1.6)

where 0 < β < 1/η. If f(y) satisfies either

f0 < λ1 < f∞ (1.7)

or
f∞ < λ1 < f0, (1.8)

then (1.5) (1.6) has at least one positive solution.

Theorem 1.2 was extended in [6] to m-point problems where the boundary con-
dition (1.6) becomes

u(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi), (1.9)

where 0 < ξ1 < · · · < ξm−2 < 1 and ki > 0 for i = 1, . . . ,m − 2 satisfying∑m−2
i=1 kiξi < 1. In both papers [4] and [6], we employed the classical shooting

method which resulted in optimal criteria for f0, f∞ in terms of the smallest eigen-
value of the associated linear problem as given in (1.7) and (1.8). The existence
of the smallest eigenvalue for the classical two-point problem (for which the corre-
sponding eigensolution is positive on (0, 1)), is well-known from the Sturm-Liouville
theory. The existence of λ1 for the multi-point BVP (1.5) (1.9) was proved by the
shooting method in [4].

The purpose of this paper is to prove an analogue of Theorem 1.2 for the four-
point problem which includes both Theorems 1.1 and 1.2 as special cases. In fact,
a result similar to Theorem 1.2 was also proved in Sun [12] using topological degree
theory. However, the proof in this three-point case seems to contain an error where
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the definition of an infimum of a set of parameters may not exist (see [12], pp.
1058-1059). In any case, Sun’s result is only concerned with symmetric solutions.
In Zhang and Sun [14], optimal existence theorems given for multi-point boundary
value problems were given and proved using topological degree theory. However,
the conditions are more restrictive. In the three-point case, their result requires
0 ≤ β < 1 as compared with (H1) of Theorem 1.1.

2. Main Theorem and Proof

Unlike our earlier result Theorem 1.2 where the shooting method was employed,
we use the Krasnoselskii fixed point theorem on cones (see [2] and [3]) to prove our
main result, similar to that used by Liu in [8] for the three-point case; i.e., BVP
(1.1) (1.2) with α = 0.

We introduce the operator A : C[0, 1] → C2[0, 1] defined for y(t) ∈ C[0, 1] by

Ay(t) =
∫ 1

0

G(t, s)a(s)f(y(s)) ds, (2.1)

where G(t, s) is given in terms of the Green’s function k(t, s) for the Dirichlet
two-point boundary value problem:

x′′(t) + a(t)f(x(t)) = 0, x(0) = x(1) = 0.

Here

k(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1,

and
G(t, s) = k(t, s) + l1(t)k(ξ, s) + l2(t)k(η, s), (2.2)

where

l1(t) =
α

Λ
[(β − 1)t + (1− βη)], (2.3)

l2(t) =
β

Λ
[(1− α)t + αξ]. (2.4)

Define the positive number σ by

σ = min{l1(t)ξ(1− ξ) + l2(t)η(1− η) : 0 ≤ t ≤ 1}, (2.5)

which is positive because l1(t) and l2(t) are strictly positive on [0, 1]. Indeed by
assumption (H1), we easily obtain from (2.3) and (2.4)

min{l1(t) : 0 ≤ t ≤ 1} =
α

Λ
min(1− βη, β(1− η)) > 0

and

min{l2(t) : 0 ≤ t ≤ 1} =
β

Λ
min(αξ, 1− α + αξ) > 0.

Using (2.5) in (2.2), we obtain

G(t, s) ≥ σs(1− s), 0 ≤ s, t ≤ 1. (2.6)

Now let
M0

2
= max(α(1− βη), αβ(1− η), αβξ, β(1− α + αξ)). (2.7)

From the definition of k(t, s) it is easy to see that

k(t, s), k(ξ, s), k(η, s) ≤ s(1− s) (2.8)
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where 0 ≤ t, s ≤ 1 and 0 < ξ ≤ η < 1. Upon combining (2.7) and (2.8), we have

G(τ, s) ≤ (1 + M0Λ−1)−1s(1− s), 0 ≤ τ, s ≤ 1. (2.9)

Using (2.9) and the definition of A given by (2.1), we find that

Ay(t) ≥ σ(1 + M0Λ−1)−1Ay(τ). (2.10)

Define c0 = σ(1 + M0Λ−1)−1 and the positive cone

K = {y(t) ∈ C[0, 1] : y(t) ≥ c0‖y‖},

where ‖y‖ = max{|y(t)| : 0 ≤ t ≥ 1} is the supremum norm of C[0, 1]. By (2.10),
it is clear that A(K) ⊆ K.

We now apply the Krasnoselskii fixed point theorem on cones given in the form
by Kwong [5] as follows:

Theorem 2.1 (Krasnoselskii-Petryshyn-Benjamin). Let A : K → K be a com-
pletely continuous operator, where K is a cone on C[0, 1]. Suppose that

(i) there exists p ∈ K such that x− Ax 6= µp, for all µ ≥ 0 and all x ∈ Ka =
{x ∈ K : ‖x‖ = a}; and

(ii) (Leary-Schauder condition) given any µ ∈ [0, 1], x 6= µAx for all x ∈ Kb =
{x ∈ K : ‖x‖ = b}, where b > a > 0.

Then A has a non-zero fixed point x∗ ∈ K satisfying a ≤ ‖x∗‖ ≤ b.

We are now ready to prove our main result:

Theorem 2.2. Let λ1 be the smallest eigenvalue of the linear four-point boundary
value problem (1.5) (1.2). If f(y) satisfies (1.7) or (1.8), then (1.1) (1.2) has at
least one positive solution.

Consider at first the case when f∞ < λ1 < f0, the so-called sublinear case. Let
K be the positive cone in C[0, 1] defined by

K = {y(t) ∈ C[0, 1] : y(t) ≥ c0‖y‖}

where c0 > 0 is given in terms of (2.5) and (2.7) by c0 = σ(1 + M0Λ−1)−1. From
the definition (2.1) of the operator A and by (2.10), we know that A : K → K. It is
now a standard argument to prove that A is completely continuous. Next we need
to verify conditions (i) and (ii) in Theorem 2.1 to establish that A has a fixed point
ŷ ∈ K which is clearly non-zero since ŷ(t) ≥ c0‖ŷ‖, c0 > 0, and by the definition
of K, the function ŷ(t) is positive. It is also easy to verify that the fixed point ŷ
satisfies the four-point boundary condition (1.2).

Now consider the linear operator L defined by setting f(y) ≡ y in (2.1), namely

Ly(t) =
∫ 1

0

G(t, s)a(s)y(s) ds.

Clearly L maps the cone K into itself. We quote the famous Krein-Rutman theorem.

Theorem 2.3 (Krein-Rutman [13]). Let L : K → K be a linear, completely con-
tinuous operator which maps a cone K in a Banach space X into itself. Then
the equation Ly = λy has a smallest positive eigenvalue λ1 > 0 which satisfies
λ1r(L) = 1 where r(L) denotes the spectral radius of the operator L.
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Proof. Assume that f∞ < λ1 < f0. We first prove that condition (i) in Theorem
2.1 holds. Let p ∈ K be the eigensolution of the linear problem; i.e., p = λ1Lp,
where λ−1

1 = r(L) is the smallest positive eigenvalue of L, and the spectral radius
r(L) is given by the formula

r(L) = lim
n→∞

(‖Ln‖)1/n.

The existence of such a p ∈ K is guaranteed by Theorem 2.3 cited above. Since
f0 > λ1, there exists a > 0 sufficiently small such that f(u) ≥ λ1u for all u ∈ Ka.
Suppose that condition (i) is false, then there exists u0 ∈ Ka such that ‖u0‖ = a
and

u0 = Au0 + µ0p (2.11)

for some µ0 ≥ 0. From (2.11), it is clear that µ0 > 0, for otherwise u0 is a fixed
point of A. Since A is positive; i.e., Ay(t) ≥ 0 for all y ≥ 0, we have u0 ≥ µ0p. Let

µ∗ = sup{µ : u0 ≥ µp}.

So u0 ≥ µ∗p ≥ µ0p. Note that Lu0 ≥ L(µ∗p) = µ∗Lp and Au0 ≥ λ1Lu0. Thus

u0 = Au0 + µ0p

≥ λ1Lu0 + µ0p

≥ λ1µ
∗Lp + µ0p

= µ∗(λ1Lp) + µ0p

= (µ∗ + µ0)p.

(2.12)

Since µ0 > 0, we have u0 ≥ (µ∗ + µ0)p, contradicting the definition of µ∗. So
condition (i) holds.

We now turn to condition (ii). From f∞ < λ1, there exist ε > 0 and b sufficiently
large such that f(u) ≤ (λ1 − ε)u for all ‖u‖ ≥ b. Let u1 ∈ Kb; i.e., ‖u1‖ = b, and
u1 = µAu1 for all µ ∈ [0, 1]. Note that

u1 = µAu1 ≤ (λ1 − ε)µLu1 = σLu1, 0 < σ < (λ1 − ε)µ. (2.13)

Since L is linear, we can prove by induction from (2.13) that u1 ≤ σnLnu1 for
n = 1, 2, . . . from which it follows that

‖Ln‖ ≥ f‖Lnu1‖‖u1‖ = σ−n. (2.14)

Using the Gelfand formula for the spectral radius r(L) (see [13]), we obtain from
(2.14)

r(L) = λ−1
1 = lim

n→∞
(‖Ln‖)1/n ≥ σ−1 ≥ (λ1 − ε)−1. (2.15)

Since ε > 0, (2.15) gives the desired contradiction. Hence, we conclude that for
x ∈ Kb, x 6= µAx for all µ ∈ [0, 1] and that condition (ii) holds. The existence of a
non-zero fixed point of A now follows from Theorem 2.1 cited above.

In the superlinear case; i.e., f0 < λ1 < f∞, we need to apply the Krasnoselskii
fixed point theorem in its expansive form with conditions (i) and (ii) in Theorem
2.1 reversed. Suppose that there exists u2 ∈ Kb; i.e., ‖u2‖ = b, such that u2 =
Au2 + µ2p for some µ2 > 0. Since Ay(t) ≥ 0 for all y(t) ≥ 0, and, in particular,
Au2 ≥ 0, so u2 ≥ µ2p, µ2 > 0. Define µ̂ = sup{µ : u2 ≥ µp} which exists and
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µ̂ ≥ u2. Note that Au2 ≥ λ1Lu2 and Lu2 ≥ L(µ̂p) = µ̂Lp. Using the fact that
p = λ1Lp, we observe that

u2 = Au2 + µ2p

≥ λ1Lu2 + µ2p

≥ λ1µ̂Lp + µ2p

= (µ̂ + µ2)p.

(2.16)

Since µ2 > 0, (2.16) shows that µ̂ does not exist. Hence, condition (i) is satisfied.
Next we show that condition (ii) holds for u ∈ Ka where a satisfies 0 < a < b,

if f0 < λ1. For ε > 0 sufficiently small, there exists a, 0 < a < b such that
f(u) ≤ λ1u for all 0 ≤ u ≤ a. If condition (ii) is not satisfied, then there exists
v0 ∈ Ka such that Av0 = µ̄v0 for some µ̄ > 1. Since Ay(t) ≤ λ1Ly(t) for all y ∈ Ka,
we have Av0 = µ̄v0 ≤ λ1Lv0. By the linearity of L, we can prove by induction that
λn

1Lv0 ≥ µ−nv0, for n = 2, 3, . . . , so

‖Ln‖ ≥ ‖Lnv0‖
‖v0‖

=
( µ̄

λ1

)n
. (2.17)

Again by the spectral radius formula, we have from (2.17)

r(L) = λ−1
1 = lim

n→∞
(‖Ln‖)1/n ≥ µ̄

λ1
>

1
λ1

,

which gives the desired contradiction. Therefore condition (ii) of Theorem 2.1 is
also true. This implies the existence of a non-zero fixed point of A and completes
the proof of the theorem. �

3. Examples and Remarks

We give two examples to illustrate the usefulness of our main Theorem.

Example 3.1. Consider the three-point boundary value problem

y′′(t) +
7y2(t) + y(t)

1 + y(t)
= 0 (3.1)

y(0) = 0, y(1) =
1
2
y
(1
2
)
. (3.2)

In Liu [8], it was proved that (1.1) (1.2) with α = 0 has a positive solution if f0 < Λ1

and f∞ > Λ2 where

Λ1 = (1− βη)
( ∫ 1

0

(1− s)a(s) ds
)−1

,

Λ2 = (1− βη)
(
µη

∫ 1

0

(1− s)a(s) ds
)−1

,

with µ = min(η, βη, β(1 − η)(1 − βη)). In case of the specific equation we have
Λ1 = 3/2 and Λ2 = 48. Now consider the linear boundary value problem y′′+λy =
0, subject to the three-point boundary condition (3.2). It is easy to determine
the smallest positive eigenvalue λ1 by equating sin

√
λ/2 = 2 sin

√
λ, yielding λ1 =

6.917. Since 1 = f0 < λ1 < f∞ = 7, the BVP (3.1) (3.2) has a positive solution.
Here Liu’s theorem [8] does not apply since neither condition (1.3) nor (1.4) holds.
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Example 3.2. Consider the four-point boundary value problem

y′′ +
ayey

b + ey + sin y
= 0, a, b > 0 (3.3)

subject to the boundary conditions

y(0) =
1
2
y
(1
3
)
, y(1) =

1
3
y
(1
2
)
. (3.4)

Here f0 = a/(1 + b) and f∞ = a. Also Λ = 19/36, Λ1 = 19/12 and Λ2 = 76. Since
a, b > 0, in order to apply Theorem 1.1, we require a > 76 and b > 12a

19 − 1. This
gives existence of positive solution only when a > 76 and b > 47.

We can compute the smallest positive eigenvalue of the linear BVP y′′+λy = 0,
subject to the four-point boundary condition (3.4) numerically. The answer is λ1 =
5.3163775 and the corresponding eigenfunction is sin{(2.3057271)t + 0.4971368}.
By our main theorem, we obtain the existence of positive solution to (3.3) (3.4) if
a and b satisfy

a

1 + b
< λ1 < a. (3.5)

Condition (3.5) gives a much greater range in a and b. If a = 6, we only need
b > 0.128588. By comparison, if a > 76, we require b > 13.2954 which is better
than b > 47 as required by the estimate (1.3) given in Theorem 1.1.

We close our discussion with a few remarks relating our work to others in the
existing literature.

Remark 3.3. Our main result in this paper is closely related to our two earlier
papers [6], [7], which included extensive references on the subject matter. Therefore
we shall not reproduce here.

Remark 3.4. Boundary condition (1.2) is sometimes referred as separated (2;2)
four point boundary conditions. It should be distinguished from the (1;3) four point
boundary condition such as

y(0) = 0, α1y(ξ1) + α2y(ξ2) + α3y(ξ3) = 0,

where α1, α2, and α3 are real constants and 0 < ξ1 < ξ2 < ξ3 < 1.

Remark 3.5. In [7], we showed that condition (H3), namely, Λ = αξ(1 − β) +
(1−α)(1−βη) > 0 is a necessary condition for the existence of a positive solution.
Previously, (H3) has always been assumed as a sufficient condition. When Λ = 0,
the BVP (1.1) (1.2) is said to be at resonance in the sense that the associated
linear homogeneous boundary value problem x′′(t) = 0, 0 < t < 1, x(0) = αx(ξ),
x(1) = βx(η) has non-trivial solutions. Solutions of the nonlinear BVP will not
be positive. Using upper and lower solution methods coupled with Mawhin’s con-
tinuation theorem, this problem was studied by Bai, Li and Ge [1] concerning the
existence of non-trivial solutions, generalizing the work by Rachunkova [11].

Remark 3.6. Our method of proof is based upon a combination of Krasnoselskii’s
fixed point theorem and Leray-Schauder non-linear alternative which originates
from the Brouwer’s fixed point theorem, see [5]. This approach does not use any
topological degree theory which has been used extensively in similar work on this
subject.
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Remark 3.7. Boundary conditions involving derivatives of solutions such as y′(0) =
αy(ξ), y(1) = βy′(η), seem more complicated. Our method of proof does not work
for such Neumann type boundary conditions even in the non-resonance case. We
have also not discussed multiplicity results and existence of symmetric solutions for
the four point problem see e.g. Rachunkova [9, 10, 12].
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