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AN OSCILLATION THEOREM FOR A SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE

POTENTIAL

JAGMOHAN TYAGI

Abstract. We obtain a new oscillation theorem for the nonlinear second-
order differential equation

(a(t)x′(t))′ + p(t)f(t, x(t), x′(t)) + q(t)g(x(t)) = 0, t ∈ [0,∞),

via the generalization of Leighton’s variational theorem.

1. Introduction

The purpose of this study is to establish a new oscillation criteria for the non-
linear differential equation

(a(t)x′(t))′ + p(t)f(t, x(t), x′(t)) + q(t)g(x(t)) = 0, (1.1)

where a, p, q ∈ C(R+, R), f ∈ C(R+ × R2, R), g ∈ C(R, R), a(t) > 0 and p(t) ≥ 0.
Komkov [5] generalized a well-known variational theorem of Leighton [7]. In this

note, we establish a new oscillation theorem for (1.1) via Komkov’s result. Also,
we do not impose restriction on the sign of the potential q. Here, we consider
only solution of (1.1) which are defined for all large t. A solution of (1.1) is called
oscillatory if it has arbitrarily large zeros, otherwise it is called nonoscillatory.
Oscillation criteria for the special cases of (1.1)

x′′(t) + q(t)g(x(t)) = 0, (1.2)

x′′(t) + q(t)x(t) = 0, (1.3)

have been extensively investigated; (see, e.g., [1, 2, 3, 4, 6], [8]–[13] for an excellent
bibliography). The most important simple oscillation criterion for linear differential
equations is the well-known Leighton’s theorem [6], which states that if q(t) ≥ 0
and satisfies

lim
t→∞

∫ t

0

q(s)ds = ∞, (1.4)

2000 Mathematics Subject Classification. 34C10, 34C15.

Key words and phrases. Nonlinear; ordinary differential equations; oscillation.
c©2009 Texas State University - San Marcos.
Submitted September 28, 2007. Published January 20, 2009.

1



2 J. TYAGI EJDE-2009/19

then (1.3) is oscillatory. Wintner [11] modified the Leighton’s criteria and proved
a stronger result which required a weaker condition

lim
t→∞

1
t

∫ t

0

∫ s

0

q(τ)dτds = ∞. (1.5)

Also, Wintner did not impose any condition on the sign of q(t). Wintner’s result
was further improved by Hartman [3] who proved that (1.5) can be substituted by
the weaker condition

−∞ < lim inf
t→∞

1
t

∫ t

0

∫ s

0

q(τ)dτds < lim sup
t→∞

1
t

∫ t

0

∫ s

0

q(τ)dτds ≤ ∞. (1.6)

Later in 1978, Kamenev [4] showed that if for some positive integer n > 2,

lim sup
t→∞

1
tn−1

∫ t

0

(t− s)n−1q(s)ds = ∞, (1.7)

then (1.3) is oscillatory. Also, there is a good amount of literature on oscillation of
(1.2) (see [1, 2, 8, 9, 10, 12, 13] and the literature cited therein). In 1992, James S.
W. Wong [12] proved the following extension of Cole’s result [1] to the more general
equation (1.2).

Theorem 1.1. Let g(x) satisfy the superlinearity condition

0 <

∫ ∞

x

du

g(u)
< ∞, 0 <

∫ −∞

−x

du

g(u)
< ∞, ∀0 < x ∈ R.

Also, let A(t) =
∫∞

t
q(s)ds exists for each t ≥ 0 and satisfy

lim
T→∞

∫ T

0

A(t)dt = ∞.

Then (1.2) is oscillatory.

The above cited results do not include a damping term. The main result is stated
and proved in section 2 which includes a nonlinear damping term.

2. Main Result

In this section, we state and prove the main theorem of the paper.

Theorem 2.1. Let there exist two divergent sequences {τn}, {ηn} ⊂ R+ such that
0 < τn < ηn ≤ τn+1 < ηn+1 ≤ . . . , for all n ∈ N. Let there exist a C1 function
y defined on [τn, ηn] such that y(τn) = 0 = y(ηn), for all n ∈ N. Let g′(u) exist
and there exist µ > 0 such that g′(u) ≥ µ2 > 0, ug(u) > 0, for all 0 6= u ∈ R and
xf(t, x, u) ≥ 0, for all (t, x, u) ∈ R+ × R2, x 6= 0. Assume that there exist a C1

function F defined on R and a continuous function h on R such that F (0) = 0,
F (y(t)) is not constant on [τn, ηn], for all n ∈ N, F ′(y) = µh(y) with [h(y(t))]2 ≤
4F (y(t)) and∫ ηn

τn

[a(t)(y′(t))2 − q(t)F (y(t))]dt < 0, ∀ t ∈ [τn, ηn], ∀n ∈ N. (2.1)

Then every solution of (1.1) will vanish on [τn, ηn], for all n ∈ N, and hence (1.1)
is oscillatory.
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Proof. Suppose on the contrary, there exist a solution x of (1.1) such that x(t) 6= 0,
for all t ∈ [τp, ηp] for some p ∈ N. Now there are two cases.
Case 1. x(t) > 0, for all t ∈ [τp, ηp]. We observe that the following is valid on
[τp, ηp]:

a(t)(y′(t))2 − q(t)F (y(t)) +
F (y(t))
g(x(t))

[(a(t)x′(t))′ + p(t)f(t, x(t), x′(t)) + q(t)g(x(t))]

= a(t)(x(t))2
[(y(t)

x(t)
)′]2 +

(a(t)x′(t)F (y(t))
g(x(t))

)′
−

(a(t)x′(t)F ′(y(t))y′(t)
g(x(t))

)
−

(a(t)(x′(t))2(y(t))2

(x(t))2
)

+
(a(t)(x′(t))2g′(x(t))F (y(t))

(g(x(t)))2
)

+
(2a(t)y′(t)y(t)x′(t)

(x(t))

)
+

F (y(t))
g(x(t))

p(t)f(t, x(t), x′(t))

≥ a(t)(x(t))2
[(y(t)

x(t)
)′]2 +

(a(t)x′(t)F (y(t))
g(x(t))

)′
−

(a(t)x′(t)µh(y(t))y′(t)
g(x(t))

)
−

(a(t)(x′(t))2(y(t))2

(x(t))2
)

+
(a(t)(x′(t))2µ2(h(y(t)))2

4(g(x(t)))2
)

+
(2a(t)y′(t)y(t)x′(t)

(x(t))

)
+

F (y(t))
g(x(t))

p(t)f(t, x(t), x′(t))

≥
(a(t)x′(t)F (y(t))

g(x(t))

)′
+ a(t)

[
y′(t)− x′(t)µh(y(t))

2g(x(t))
]2

+
F (y(t))
g(x(t))

p(t)f(t, x(t), x′(t)).

Since x is a solution of (1.1), so, we have

a(t)(y′(t))2 − q(t)F (y(t))

≥
(a(t)x′(t)F (y(t))

g(x(t))

)′
+ a(t)

[
y′(t)− x′(t)µh(y(t))

2g(x(t))
]2

+
F (y(t))
g(x(t))

p(t)f(t, x(t), x′(t)).

(2.2)

An integration of (2.2) on [τp, ηp] yields∫ ηp

τp

[a(t)(y′(t))2 − q(t)F (y(t))]dt

≥
(a(t)x′(t)F (y(t))

g(x(t))

)ηp

τp

+
∫ ηp

τp

a(t)
[
y′(t)− x′(t)µh(y(t))

2g(x(t))
]2

dt

+
∫ ηp

τp

F (y(t))
g(x(t))

p(t)f(t, x(t), x′(t))dt.

(2.3)

From this inequality, it follows that∫ ηp

τp

[a(t)(y′(t))2 − q(t)F (y(t))]dt ≥ 0,

which contradicts (2.1).
Case 2. x(t) < 0 for all t ∈ [τp, ηp]. The proof of case 2 is similar to that of case 1
and is omitted for the sake of brevity. This completes the proof. �
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Remark 2.2. Consider the differential equation

(a(t)x′(t))′ + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x(t)) = 0, (2.4)

where a, p, q ∈ C(R+, R), f ∈ C(R+ × R2, R), g ∈ C(R, R), a(t) > 0 and p(t) ≥ 0.
With the hypotheses of Theorem 2.1, if we replace the condition xf(t, x, u) ≥ 0
for all (t, x, u) ∈ R+ × R2, x 6= 0 in Theorem 2.1 by xuf(t, x, u) ≥ 0 for all
(t, x, u) ∈ R+ × R2, x 6= 0, then (2.4) is oscillatory.

3. Examples

In this section, we construct some examples for illustration.

Example 3.1. Consider the differential equation

(a(t)x′(t))′ + p(t)f(t, x(t), x′(t)) + q(t)g(x(t)) = 0, (3.1)

where a(t) ≡ 1, p(t) ≡ 1, f(t, x, y) = x3ey, q(t) = t2 sin t and g(x) = x + x2n+1, n ∈
N. With the choice of y(t) = sin t, τn = (2n − 1)π, ηn = (2n + 1)π, F (y) = y2,
µ = 1, it is easy to see that the hypotheses of Theorem 2.1 are satisfied. Also, it is
easy to verify ∫ (2n+1)π

(2n−1)π

[cos2 t− t2 sin t sin2 t]dt < 0, ∀n ∈ N.

An application of Theorem 2.1 implies that (3.1) is oscillatory.

Remark 3.2. Let a(t) ≡ 1, p(t) ≡ 0, q(t) = t2 sin t and g(x) = x in (3.1). Then
none of the known criteria (see, [3, 6, 11], [9, Thms. 3.3, 3.5], [10, Thm. 3.1]) can be
applied to (3.1).

Remark 3.3. Let a(t) ≡ 1, p(t) ≡ 0, g(x) = x + x3 in (3.1). Then [2, Thm. 3]
cannot be applied to (3.1).

Example 3.4. Let a, b ∈ R and a > 4. Consider the damped Mathieu’s equation

x′′(t) + etx(t)(x′(t))2 + (a + b cos 2t)x(t) = 0. (3.2)

This equation can be viewed as (3.1) with a(t) ≡ 1, p(t) = et, f(t, x, y) = xy2, q(t) =
a + b cos 2t and g(x) = x. With the selection of y(t) = sin 2t, τn = (n−1)π

2 , ηn =
(n+1)π

2 , F (y) = y2, µ = 1, it is easy to verify the hypotheses of Theorem 2.1. Also,
the condition∫ (n+1)π

2

(n−1)π
2

[4 cos2 2t− (a + b cos 2t) sin2 2t]dt < 0,∀ a > 4, ∀n ∈ N

holds. Thus, from Theorem 2.1, (3.2) is oscillatory.

Example 3.5. Consider the equation

x′′(t) + cos t x′(t) + sin t x(t) = 0. (3.3)

This equation is oscillatory; see [13, Cor. 3]. Here, we give another alternative which
is simple. (3.3) can be converted into

u′′(t) +
(3 sin t

2
− cos2 t

4

)
u(t) = 0, (3.4)

where u(t) = x(t)e(sin t)/2. (3.4) can be viewed as (3.1) with a(t) ≡ 1, p(t) = 0,
q(t) =

(
3 sin t

2 − cos2 t
4

)
and g(x) = x. After setting y(t) = sin t, τn = 2nπ, ηn =
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(2n+1)π, F (y) = y2, µ = 1, it is not difficult to satisfy the hypotheses of Theorem
2.1 with ∫ (2n+1)π

2nπ

[
cos2 t−

(3 sin t

2
− cos2 t

4
)
sin2 t

]
dt < 0, ∀n ∈ N.

It follows from Theorem 2.1 that (3.4) is oscillatory. Since u(t) = x(t)e(sin t)/2 is an
oscillation preserving substitution, so, (3.3) is oscillatory.

Remark 3.6. The results of Li and Agarwal [8] cannot be applied to (3.3).

Finally, it remains an open question if the result of this note can be modified for
(1.1) with linear damping and variable potential.

Acknowledgements. The author thank the anonymous referee for his/her re-
marks concerning the style of the paper.
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