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SOLUTIONS TO BOUNDARY-VALUE PROBLEMS FOR
NONLINEAR DIFFERENTIAL EQUATIONS OF
FRACTIONAL ORDER

XINWEI SU, SHUQIN ZHANG

ABSTRACT. we discuss the existence, uniqueness and continuous dependence
of solutions for a boundary value problem of nonlinear fractional differential
equation.

1. INTRODUCTION

Fractional differential equations have gained considerable popularity and impor-
tance during the past three decades or so, due mainly to their varied applications in
many fields of science and engineering. Analysis of fractional differential equations
has been carried out by various authors. As for the research in solutions and also
many real applications for factional differential equations, we refer to the book by
Kilbas, Srivastava and Trujillo [4] and references therein. Boundary-value problems
for fractional differential equations have been discussed in [I1 2 B [5 [7, 8, ). Bai
and Lii [2] used fixed-point theorems on a cone to obtain the existence and multi-
plicity of positive solutions for a Dirichlet-type problem of the nonlinear fractional
differential equation

DY%u(t) + f(t,u(t) =0, 0<t<1, l<a<2
u(0) =u(l) =0,

where f:[0,1] x [0,00) — [0,00) is continuous and D, is the fractional derivative
in the sense of Riemann-Liouville. However, as mentioned in [§], the Riemann-
Liouville fractional derivative is not suitable for nonzero boundary values. There-
fore, Zhang [§] investigated the existence and multiplicity of positive solutions for
the problem

D u(t) = f(t,u(t)), 0<t<l l<a<2,
w(0) +u'(0) =0, u(l)+u'(1) =0,

with the Caputo’s fractional derivative D, and a nonnegative continuous function
fon[0,1]x[0,00). The existence of solutions for the nonlinear fractional differential
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equation
§D{u(t) =g(t,u(t), 0<t<l 1<6<2,
u(0) =a#0, u(l)=p4#0

has been discussed using the Laplace transform method in [9], where §' D? denotes
the Caputo’s fractional derivative and ¢ : [0,1] x R — R is a given continuous
function. By means of Schauder fixed-point theorem, Su [7] proved an existence
result for the problem

(t) = f(t,v(t), D v(t)), 0<t<1,
DPu(t) = g(t,u(t), D u(t)), 0<t<1,
w(0) = u(1) = v(0) = v(1) = 0,

where 1l < o, <2, p,v >0, a—v>1,—pu>1, fg:[0,]] x RxR — R are
given functions and D is the standard Riemann-Liouville differentiation.

Motivated by the previous results, we present in this paper analysis of a bound-
ary value problem for the fractional differential equation involving more general
boundary conditions and a nonlinear term dependent on the fractional derivative
of the unknown function

“Dgult) = f(t,ult), "Dy u(t), 0<t<l,
a1u(0) — asu’(0) = A, byu(1l) + bou'(1) = B,

where 1 < o <2,0< <1, a;,0; >0, i = 1,2, a1by + arbs + asby > 0, YD,
and CD§+ are the Caputo’s fractional derivatives and f : [0,1] x R x R — R is
continuous. We impose a growth condition on the function f to prove an existence
result for . For f Lipschitz in the second and third variables, the uniqueness of
solution and the solution’s dependence on the order « of the differential operator,
the boundary values A and B, and the nonlinear term f are also discussed.

Throughout this work, we denote by [, and Df, the Riemann-Liouville frac-
tional integral and derivative respectively. The definitions and some properties
of fractional integrals and fractional derivatives of different types can be found in
[4, [6]. In order to proceed, we recall some fundamental facts of fractional calculus
theory.

(1.1)

Remark 1.1. If & = n is an integer, the Riemann-Liouville fractional derivative
of order « is the usual derivative of order n. The following properties are well
known: 1,17, £(1) = I8P f(t), DI f(t) = f(t).a > 0,8 > 0. € L'(0,1);
I, - Clo, 1} — C0,1], a > 0.

Remark 1.2. For a = n, the Caputo’s fractional derivative of order o becomes
a conventional n-th derivative. The Caputo’s fractional derivative is defined in [4]

*)
as follows: D¢ f(t) = D (f(t) — > é f (0+)tk) provided that the right-side
derivative exists. In particular, D8+C’ 0 for any constant C € R, a > 0.
Moreover, we can derive the following useful properties from [4, Lemmas 2.21 and

2.22]: CD" TG f(t) = f(), e > 0, f(t) € C0,1]; I§. “Dg, f(t) = f(t) — £(0),0 <
a<1,f(t) e o],

Similar composition relation below between I} and “Dg, can be found in [8,
Lemma 2.3], but the author did not point out the space to which u(t) belongs.
Besides, the subscript n of the coefficient ¢, is wrong.
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Lemma 1.3. Assume that u(t) € C(0,1) N L(0,1) with a derivative of order n
that belongs to C(0,1) N LY(0,1). Then
(

I§+CD8‘+u(t) =u(t)+co+crt+ Cot? 4t ep gt

for some ¢; € R, i =0,1,2,....,n— 1, where n is the smallest integer greater than
or equal to .

We can also prove this lemma using [2, Lemma 2.2] and Remark This proof
is obvious and we omit it here.

2. EXISTENCE AND UNIQUENESS RESULTS

In this section, we first impose a growth condition on f which allows us to
establish an existence result of solution, and then utilize the Lipschitz condition on
f to prove a uniqueness theorem for the problem . Our approaches are based
on the fixed-point theorems due to Schauder and Banach.

Let I =[0,1] and C(I) be the space of all continuous real functions defined on
I. Define the space X = {u(t) | u(t) € C(I) and CDg+u(t) e C(I),0 < B <1}
endowed with the norm |ju|| = maxser |u(t)| + maxies |CDg+u(t)|. Then by the
method in [7, Lemma 3.2] and Remark [1.2| we can know that (X, || -||) is a Banach
space.

Now we present the Green’s function for boundary value problem of fractional
differential equation.

Lemma 2.1. Let 1 < a < 2. Assume that g : [0,1] — R is a continuous function.
Then the unique solution of

“Dgu(t) = g(t), 0<t<l,
a1u(0) — azu’(0) = 0,byu(1) + beu/(1) = 0,

is u(t) = fol G(t, s)g(s)ds, where

rig (e = )t — e (1 — s)ot — ah(1 — 5)om1y]

T'(a)
R e e (R o A
T - et - ety
bl - ], r<s

here | = a1by + a1bs + agb;.

This lemma can be proved using Lemma and Remark For details, we
refer the reader to [8, Lemma 3.1].

Similarly, we can obtain the solution for the boundary-value problem with ho-
mogeneous equation and nonhomogeneous boundary conditions.

Lemma 2.2. Let 1 < a < 2. Then the unique solution of
“Dyu(t)=0, 0<t<l,
a1u(0) —agu'(0) = A,  bu(l) + bou'(1) = B,

is u(t) _ (b1+b2)lA+azB + alB?blAt.
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In the following discussion, we denote

go(t) — (bl + bQ)A + GQB + alB — blAt,
l l
and use the assumption

H1<a<2,0<p8<1,a5b >20,40=1,2, aiby + aibs + azby > 0,
f:10,1] x R x R — R is a given continuous function.

Lemma 2.3. Assume that (H) holds. Then (l.1) is equivalent to the nonlinear
integral equation

/ G(t,5)f(s, u(s), D, u(s))ds + o(2). (2.1)

In other words, every solution of (L.1)) is also a solution of (2.1)) and vice versa.

Proof. Let u € X be a solution of (1.1)), applying the method used to prove Lemma
we can obtain that u is a solution of ([2.1))
Conversely, let u € X be a solution of (2.1). We denote the right-hand side of

the equation (2.1) by w(t); i.e.,
(lzbl — alblt

w(0) = I 1 u(®),  Dyult)) + —= =I5 f (1 (1), “ Dy u()
+Mlg;1 (1,u(1), “ Dy, u(1)) + ¢(t).

Using Remarks [[.1] and [I.2] we have

albl

w!(£) = DY I 15 F(tu(t), © Dfu(t) — I £, (1), € D (1))
- B L(Lu(),ODu(1)) + M
= 15510 te), Do) — “PHIG 0, 0(1), D)
- B (), €D u(1) + P2,

“Dgw(t) = Df: (w(t) — w(0F) —w'(07)t) = DG, I f(t,u(t), © Dy, u(t))
:f(tvu( ) Do+u( ))

namely, “D&, u(t) = f(t, u(t), CDﬁ u(t)). Onme can verify easily that aju(0) —
agu/(0) = A,bju(l) + beu/(1) = B. Therefore, u is a solution of (L.I)), which
completes the proof. O

Lemma indicates that the solution of the problem (1.1]) coincides with the
fixed point of the operator T' defined as

1
Tu(t) = [ Glt,9)f(s,u(s).“Du()ds + (1)
0
Now, we give the main results of this section.

Theorem 2.4. Let the assumption (H) be satisfied. Suppose further that
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(H1)
lim maXier ‘f(ta z, y)‘ lF(a)F(Q B ﬁ) _.
(lal+lyh—oe |z + |y| (20 + agbe)I'(2 - B) + 21
Then there exists at least one solution u(t) to the boundary-value problem (1.1)).

Proof. For any t € I, we find
1

|G(t, 5)|ds
0
t 1 1
< L(/ (t—s)*"tds + azby (1—s)*"tds + it / (1- s)a_lds)
(@) \Jo I Jo ! 0

+

1 1
ﬁ (QQTbQ/ (1—s)"2ds + al?Qt / (1- s)afzds)
Q= 0 0
. 1 ( o azb; + a1b1t) 1 agby + a1bot
r

- T(a+1) l (o) l
1 asb; + arby asbs + a1by

< 1

= T ( )

- 21 + a2b2
IT(«)

and
1
/ Gt 5)|ds
0
1 a1b1

t - ! et a1by ! _ §)024s
gm/o(t—s) ds—l—lr(a)/o (1—s) ds+7lr(a71)/o (1—5)*2d
tozfl

a1by a1by
T T M(a+1) ()
1 a1b1 albg) < 2

- T

Sr(a)(H Tt (@)

Therefore, |G(t,-)| and |G}(t,-)| are integrable for any ¢ € I.

Denote h(z,y) = maxe; | f (¢, #,y)| and Choose & = L (K —lim|z|4|y)—oo %)
It follows from the condition (H1) that there exists a constant d; > 0 such that
Wz, y) < (K —e)(|e| + ly]) for [z +|y| > dy. Let M = max{h(z,y) : [z +|y| < di}
and choose d2 > d; such that M/dy < K —e. Then we get h(x,y) < (K —¢)dg, |z|+
ly| < dg. Therefore, h(z,y) < (K — )¢, |z| + |y| < ¢ for any ¢ > ds.

Let k1 = maxser |@(t)], ko = maxier [¢'(t)], & = max{ky, k2/T(2 — B)}, ds =
2Kk/e and d = max{da,d3}. Define

U=A{u(t):ult) € X, ul)| <d, tel}.
Then U is a convex, closed and bounded subset of X. Moreover, for any v € U,

h(u(t), ° DY u(t)) < (K — ¢)d.

Now we prove that the operator T maps U to itself. For any u € U, we can get

Tu(t)] < [@(t)] +/O (G(t, s)h(u(s), "Dy, u(s))|ds

1
<k +d(K - 5)/ |G(t, s)|ds
0
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<k +d(K—a)%,
|©Dg. (Tu)(t)]
‘F(l_ﬂ)/ot(t—s) (Tw)'(s)ds]
= 1"(11_5)/0 (t—s)" / (GL(s, )£ (7, u(r), DY ulr)ldr + [/ (s)] ) ds

<p(1175)/ (t— 5 (1¢'(s |+/ G (s 7)h(u(r), © DY, u(r))|dr ) ds

k[ —s)"Pds et ) (s, 7)|dr
gm_m/o(t )~Bds + d(K s)m_ﬂ)/ (t / G ( |d
ki+d( )#
SIe-9) NERENEY
for 0 < 8 < 1, and
() ()] = | / Gi(t,) (5, u(s), D u(s))ds + /()

|+/|G'ts (), CDP, u(s)|ds

< ko + d(K — 5)/ G (t, 9)]ds < ks + d(K — ¢

0 ['(«a)
for 3 = 1. Hence,
(21 + agb2)T(2 — B) + 21 5 1
Tul| <2k +d(K — <d—=+dK —¢e)— =d.
Note also that

Tu(t) = I, £(t,u(t), © Dcu(t)) + ~ 2= o £(1, (1), € DG u(1)
—a2b2—a1b2t

O (1, u(1), € DY (1) + (1),

(Tu) (1) = I3 £t u(), D) — P15 (1,u(1), € DGuu()
= (1, u(), € D)) + PP IA,
CDf (Tu)(t) = 1,7 (Tw)' (1)

= 1070 f(t,u(t), € DY, ult)) — alTblf(?Iﬁ“f(l, u(1),“ Dy u(1))
albg

aB—bA
- TI £ (1, u(1), “ Dy u(1)) +13+ﬁ%~

It is easy to see Tu(t), CD(@ (Tu)(t) € C(I). Therefore, T: U — U.
Claim: T is a continuous operator. In fact, for u,, n = 0,1,2
such that lim,, ., ||u, — u|| — 0, we have

[Tun (t) = Tu(t)]

.andu e U
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[ 610 (7000, Dfae) ~ 5,000, o))

<I£1€alx|f(t un(t), D0+un( ) — ft,u 0+U |/ |G(t, s)|ds
2l+a2b2
< M) x| (t, un (1), © Dy un(t)) — f(t,u(t),“ Dy, u(t)],

|°DF, (Tun)(t) = “Dg (Tu) (?)]

e / (t— )P (Tun) () — (Tu) (s))ds|

*F(ll— / -8 / G (s, 7) ( (7 un(T), DI u (7))
— f(r,u(r), ¢ Dl u(r )|d7)ds
< max | f(t, un(t), “Dyun(t)) = f(tult),“ Dy u(t))]

X ﬁ/o (t—s)” / |G (s T)\dr)ds
2 ¢ _
< mae | (0,11, D (1)) = £(00(0). Dt 577y | (6= )77

2
< mrglgflf(t,un(t),CD@un(t)) — F(t,u(t), C D u(t))|

for 0 < B <1, and
[(Tun)' () — (TU)'( )|

/ Gi(t,s) (f(s,un(5), C DS un(s)) — f(s,u(s), D2, u(s) )ds‘

tel

< max | (¢, un (£), D2, un(t)) — f(tu(t), © D2, u(t))| / Gt 5)|ds

< oy (0. “ Dy (1) = £t (). D ()|

for § = 1. Then in view of the uniform continuity of the function f on I x [—d, d] x
[—d, d], we obtain that T is continuous.

The last step is to prove that T' is a completely continuous operator. Let t,7 € I
be such that t < 7 and N = maxes uev | f (¢, u(t), D0+u( )| + 1. Then we have

(Tu(t) — Tu(7)|
- | / (t,5) ) f(s, u(s), C D uls))ds + o(t) — o(7)

<N /|Gts Ts|ds—|—/ |G(t,s) — G(r,s)|ds

+ 1609 - 6(r, 1) + 1) - o1r)
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Eor—s)ol — (¢t — g)0~ a1by (1 —s)e 1
SN[/O (( )F(a)(t ! +(T_t)(zb(1r(oz)

* allﬁ (11“((15—)&1) ))ds

+/t ((T ;(2;_ +(T_t)(alzb1 < ;(802;_ +a11b2 (;(_048)01_) ))ds

! arby (1 —8)*"1  arby (1 —5)*72
+ (B B+ 2 Ee i )as] 4 hote) - o)

T(r—s)! L(t—s)! arby [ (1—s)>t
:N{/O o) ds—/O tf‘(a) ds—|—(7'—t)< lb/o lI‘(a) ds
CYEESN RURY
= [PT(a_thl)Jr(T_t)(zr(czzil) 1?1(22))]“7_0@’

“Dy, (TU)() “Dg, (Tu)(7)]
E =73 / / G(s,0)f(0,u(0), CD§+u(9))d9+<p/(s))ds
_/ (r— )~ / G (5,0) £(0, u(9), C DL, u(6))d0 + ' (5) )dsy
S y/ t—s)” / G (5,0)£(0,u(6), CDO+u(9))d9)ds
—/ (T—s)" / G.(s,0)f(0,u(0),° D u(0)) d@)ds|
I(1— |/ / G (5,0)£(6,u(b), CD0+U(9))d9)ds
7/ (r—s)" ﬁ(/ G(5,0)£(0.u(6), © D} u(6))d6) |

0 0
+F(1%|/ (t—s)~" '(S)ds—/o (T—s)_ﬁap'(s)dsl
w9 s [t

72]\[ t —s) P —(r—s S L T’T Bds
<F(1—6)F()/((t )= )d+F(1—6)( /( 5)"d

|alB b1A| |CL1B b1A|
Ir(1- 3 / —(r=9)7" IT(1— 3 / T —8)ds

2N |alB - b1A| 1-8 1-3

= (F(Q—ﬁ)f‘(a) T re—s )P = 2 =) )

for 0 < 8 < 1, and

|(Tu)'(t) = (Tw)' (7)]
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/ Gi(t, 5) (5, u(s), DL, u(s))ds + /(1)

- / G\ (7, ) f(s,u(s), D2, u(s))ds — @' (r)]

0

= %( /0 (¢ =9~ (= )" D) + / = s)eas)
N I .
L Ul

for g =1.

Now, using the fact that the functions 7@ — ¢, 7=t —t*~t and 717 — 1= are
uniformly continuous on the interval I, we conclude that TU is an equicontinuous
set. Obviously it is uniformly bounded since TU C U. Thus, T is completely

continuous. The Schauder fixed-point theorem asserts the existence of solution in
U for the problem (|1.1)) and the theorem is proved. O

The following corollary is obvious.

Corollary 2.5. Let the assumption (H) be satisfied. Suppose further that there
exist two nonnegative functions a(t),b(t) € C[0,1] such that |f(t,z,y)| < a(t)|z]” +
b(t)|y|®, where 0 < p,0 < 1. Then there exists at least one solution for the boundary

value problem (1.1).

Example 2.6. Consider the problem
3/2 1 1/2
“Dgltu = (t = 5)°(u(t) + “Dyl*u(). 0 <<,
a1u(0) — azu’(0) = A, byu(1) + b/ (1) = B.
Using I'(1/2) = v/, a simple computation shows K = (Im)/(2(2] 4 abs)/7 + 81).
Since [f(t,z,y)] = |t = 3[*|z +y| <
[z +]y]
1
lim 8 =
(l2l+lyh—oo 2| + |y 8

then, if 1/8 < (Im)/(2(21 4 a2bs)+/7 + 81) (for example, we choose a; = by = 1,a2 =
by = 0, then K ~ 0.2082 > 1/8), Theorem ensures the existence of solution for
this problem.

Theorem 2.7. Let the assumption (H) be satisfied. Furthermore, let the function
f fulfill a Lipschitz condition with respect to the second and third variables; i.e.,
lf(t,z,y) — f(t,u,v)|] < L(lx —u| + |[v—y|) with a Lipschitz constant L such that
0 < L < K, where K is as the same as that in Theorem[2.]} Then the boundary
value problem has a unique solution u(t) € X.

Proof. We have shown in Theorem that Tu(t)7CDO'H+ (Tu)(t) € C(I); ie., T :
X — X. To apply the Banach fixed-point theorem, we need to verify that T is a
contraction mapping. For any u,v € X, we have

[Tu(t) — To(t )I

_|/ G(t, ) (£(5,u(s), “ Dfuls)) ~ (s, v(s),° DG v(s))) ds]
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1
gLHu—vH/ Gt 5)|ds
0

(2l + asz)L

< -~ - =7 —

Dy, (Tu)(t) = “Dg, (To)(2)]

*71 t —s)7P u)’ v S
= | (=@ ) - Ty ()as

71 t — B S, T T, U\T ¢ u
<t 0= ([ 16406, 00,00,
— f(rv(r),C DL u(r )|d7’)d8

1
SLu—vi/ (t—s)" /G'STdT
o=l G (s.7)
2L

= T@- BT (a)
for 0 < B <1, and

(Tu) (1) — (To) (1)
:y/o Gi(t,5) (15, u(s), “Du(s)) = F(s,0(5), “ DG v(s)) ) d]

[lu —of

1
< Lju=of [ 164 5)jds <
0

2 u ol
—|lu—w
[()
for 8 = 1. Thus, ||Tu—Tv| < L(Qll}rzljgh + F(2_5)1ﬂ(a))||u— v|| = %Hu—v” Hence,
the Banach fixed-point theorem yields that 7" has a unique fixed point which is the
unique solution of the problem (|L.1). The proof is therefore complete. O

3. DEPENDENCE ON THE PARAMETERS

The present section is devoted to the study of the dependence of solution on the
parameters «, A and B, and f for the problem (1.1]), provided that the function
f(t,x,y) is Lipschitz with respect to x and y.

Theorem 3.1. Suppose that the conditions of Theorem [2.7 hold. Let ui(t), ua(t)
be the solutions, respectively, of the problems (1.1)) and

ODgzult) = f(tult), “Dyult), 0<t<1,

3.1
a1u(0) —azu'(0) = A,  bru(l) + bou/(1) = B, 31)
where 1 < a—e < a < 2. Then |luy — uz|] = O(e).
Proof. Let G1(t,s) = G(t, s) and
F(alfs) [(t o S)a—a—l o %(1 o S)a—s—l o alli(l _ s)a—a—lt]
+I‘(a—15 5 [_ a2lb2 (1 _ S)a7572 _ all&(l _ S)a7572t]’ s < t,

Gg (t, 8) =

F(al—s) [_ ashy ( )oz—a—l _ allﬁ(l _ S)a—a—lt]

+F(a—15—1)[ 2lb2 (1 _ 8)&7672 . allﬂ(l _ s)a7£72t]’ t § s,
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be the Green’s function of (3.1). Then

t)=/1Gﬂt@ﬂtm@LCDéuﬂﬂﬂs+@ﬁ%

/ G2 t,s f(t ’LLQ( ) C.D0+u2( ))dS"i‘QD(t)
First we show that
/ |G1(t, s) — Ga(t, s)|ds = / |G (t, ) — Gy, (L, s)|ds = O(e).  (3.2)

Observing that
1

Et—s)ot  (t—s)o=t
)|G1(t,s)—G2(t,s)|ds§/0| I g,
aghy | aibit, [t (1—s)*7t  (1—s)o!
ML 11)/| " Te 9 |ds

agby arbot. [t (1—5)"2  (1—s) =2
Tt )/O|I’(a—1) “Tla-:-1) |ds

and
1
/Naatﬁ Gt 5)|ds

(t_s)a e-2 aib 1 (1—3)0‘_1 (1_S)oz—a—1
/| O‘*l Ila—e— ’d+ lll/o’ T(a)  T(a—¢) |ds

a162/| _ a2 (178)o¢€2|d
s
(a=1) T(a—e—-1)""
without loss of generality, we only estimate one of the integrals in the right-hand
side of the two inequalities above.

t—Sal (t_s)asl
[ fa—a) |

_ a 1 (t_s)a e—1 t—S)a e—1 B (t_s)afsfl .
/| ) |d*/' e CEDE

1 &~ 1_ xa—s—l T _ —s a—e—1 s
‘fﬂﬁé‘ e+ ey ~ r g 697
1 1 1 1 1 1

oo & e tagla:

B 1 T"(a — € + 0¢)]
= (a(a T T @—eor(@(a- g))

for some @ such that 0 < § < 1. So we arrive at the relations in (3.2). Furthermore,
1 (t) — u2(t)]

= ‘/ Gl t 3 t ul( ) D0+u1( ))ds_/() GQ(t7S)f(t7u2( ) D0+u2 ))d8|

g/o |G1(t,s)(f(t,ur(s), O DY i (s))ds — f(t,ua(s), © D, ua(s))|ds
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1
+ / |G1(t, ) f(t, ua(s), CDngug(s))ds — Ga(t, s) f(t,ua(s), CD0'6+u2 )|ds
0

1 1
< Lljus — us / Gt 5)[ds + 1] / G (t,5) — Gt 8)|ds
0 0

(2l + a2b2)L

1
< W”m —ug|| + |||f|||/0 |Gy (t,5) — Galt, s)|ds,

where [[|f[| = supgccq 1 {maxeer [ (t uz(t), “ Df us(t)]}.
Dy, ui(t) = Dy ua(t)]

<iin) /t‘s /‘G f(r.w (7). “Dg (7))
— Ghy(s,7) [ (r,ua(7),“ D us(7) |d7)ds
1

< =g ), ¢ 8>“3(/ [Gha(s 7)1 (7 (), € DGl n (7))
- Glls(sv T)f(Ta U2 (T), CD§+ UQ |d7'

+ [ 1657 (0. € Dra(r)) = G5, (7 (7). Dl () ) s

r(11 / /\G 57|d7' ds
+ 1A (1 / /\G ) — G (s, 7)) ds

< Lnul _—
<T@ i)

+ I (1 / /\G ) = Gl (s )ldr)ds

for 0 < B < 1, and

\u1<>—u2<>|<L||u1—u2||/ |G1tts>|ds+u|f|||/ (Gt 5) — Gy (£, 9)|ds

( )Hm U2II+H|f|H/ |Gt 5) — Gy (2, 5)|ds

for 8 = 1. It follows that

[ur — ual

e Al [ =97 ([ 16166.7) ~ Gt mlar)as

I / Gt s) — Gz(t,s)|ds]

for 0 < f <1 and

[l *U2H

1
(1511 [ 1609~ Gattas 111 [ 161 9) ~ G i)
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for 5 = 1. Thus, in accordance with (3.2)), we obtain ||u; — uz|| = O(e), which
completes the proof. [

Theorem 3.2. Assume the conditions of Theorem are valid. Let uy(t), ua(t)
be the solutions, respectively, of the problems

CDg,ult) = F(t,u(t), CDE,u(t)), 0<t<1,
a1u(0) — azu’(0) = A, byu(l) + bou'(1) = B,

and
CD0+U( ) f(tau( ) D0+u( ))’ 0<t< 17
alu(O)—agu (0) :A+61, blu( )+b2u’(1) :B+€2,
Then |lug — ug|| = O(max{ey,ea}).
Proof. Let
b1+ b2)A+ asB B-bA
or(t) = & 2)z Bz Tt
b1 +02)(A+e1)+ax(B+e¢ a1(B+eées) —bi(A+e
<p2(t):(1 2)( ll) 2(Btex) | anf 2)1 (Ate),

Then

P = / G(t,5)f (s, ur(), E D, un ())ds + 1 (1),

/ G(t.) 1 (5, ua(s), Dk us())ds + (1)

So we obtain

1
ur () — ua(t)] < Lijur — ugl /0 |G(t;8)|ds + @1 () = pa(D)]

L(21 + asbs)

AT T 0202) )y — (b1 +b2)er + asea  |aiea — bieq]
- IT(«) !

usl| + ] ;i ,

D5, ur(t) = “Dg ua(t))

1
SL”Ul_UQHW/ t_S / |G/ S T |dT

1 ! B, 4 o
T / (t— )1 () — h(s)Ids
2L 1 laiea — bieq]
Ste_prwmm et e

for 0 < 8 < 1, and

1
Juy (t) — up(t)] < Lljug — mll/0 |G (¢, 5)lds + [ (£) — @5 ()]

2L aies — bie
< 25y — g + 1122 0o 211 J

~ (o)
for 8 = 1. Thus,

[ur — ual
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< 1 ((bl + b2)€1 + asgeg 4 |a152 — b1€1| 1 |a152 — b1€1|)
~1-L/K l l re2-p) l
maX{El,Eg}(b1+b2+a2 +a1+b1 1 a1+b1)
- 1-L/K l l re-p |1 ’
Therefore, the conclusion of the theorem follows. O

Theorem 3.3. Suppose the conditions of Theorem|[2.7 are satisfied. Let ui(t), ua(t)
be the solutions, respectively, of the problems

CDgu(t) = ft,ut),“ D u(t), 0<t<1,
a1u(0) — azu’(0) = A, byu(1) + bou/(1) = B,

and

CDgu(t) = f(t,ut), "Dl u(t)) +e, 0<t<1,
a1u(0) — azu’(0) = A, byu(l) + bou/(1) = B.

Then ||u1 — uz|| = O(e).
Proof. Note that u;(t) = fol G(t, s)f(s,ui(s), CDngul(s))dS + (1),
ug(t) = fol G(t,s)(f(s,ua(s), CDg+u2(s)) + ¢&)ds + ¢(t). Thus,

1 1
lug(t) — ua(t)| < L|lug — usl| / |G(t,s)|ds + 8/ |G(t, s)|ds
0 0

L(2l + (12()2)
- IT'(«)

8(2l =+ a2b2)

lur — uz| + )

DG, un () — © D us(t)]

< L|luy — UQHﬁ /Ot(t — 5)_5(/01 |G;(s,7—)|d7)ds

+1_\(1€_ﬂ)/0t(t—8)B(AI|G;(S,T)|dT)d5

<L E——
ST2-AT(@ '™~ "7

@B
for 0 < B <1, and

1 1
iy (£) — wy(£)] < Lljus — s / Gt )|ds + / (1, 5)]ds

< ﬂ”” — || + 2
ST T ()
for 8 = 1. Then,
€ 2l + asbs 2
—us|| <
lun = wall < 3= L/K( Ta) T2 —ﬁ)F(a))’

and we get the desired result. (I
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