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EXISTENCE OF MULTIPLE SOLUTIONS FOR A
NONLINEARLY PERTURBED ELLIPTIC PARABOLIC

SYSTEM IN R2

MICHINORI ISHIWATA, TAKAYOSHI OGAWA, FUTOSHI TAKAHASHI

Abstract. We consider the following nonlinearly perturbed version of the

elliptic-parabolic system of Keller-Segel type:

∂tu−∆u +∇ · (u∇v) = 0, t > 0, x ∈ R2,

−∆v + v − vp = u, t > 0, x ∈ R2,

u(0, x) = u0(x) ≥ 0, x ∈ R2,

where 1 < p < ∞. It has already been shown that the system admits a pos-
itive solution for a small nonnegative initial data in L1(R2) ∩ L2(R2) which

corresponds to the local minimum of the associated energy functional to the
elliptic part of the system. In this paper, we show that for a radially sym-

metric nonnegative initial data, there exists another positive solution which

corresponds to the critical point of mountain-pass type. The v-component of
the solution bifurcates from the unique positive radially symmetric solution of

−∆w + w = wp in R2.

1. Introduction

In this paper, we consider the nonlinearly perturbed version of the elliptic-
parabolic system modeling chemotaxis:

∂tu−∆u+∇ · (u∇v) = 0, t > 0, x ∈ R2,

−∆v + v − vp = u, t > 0, x ∈ R2,

u(0, x) = u0(x) ≥ 0, x ∈ R2.

(1.1)

In the context of mathematical biology, Keller and Segel [13] introduced a par-
abolic system, called the Keller-Segel system, as a mathematical model of chemo-
tactic collapse (see also Herrero-Velázquez [11], [12], Nagai [18], [19], Biler [1],
Nagai-Senba-Yoshida [21], Nagai-Senba-Suzuki [20] and Senba-Suzuki [24]). When
the diffusion of the chemical substance is much slower than that of chemotaxis
ameba, then the dynamics of chemotaxis is described by the following simplified
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system:
∂tu−∆u+∇ · (u∇v) = 0, t > 0, x ∈ R2,

−∆v + v = u, t > 0, x ∈ R2,

u(0, x) = u0(x) ≥ 0, x ∈ R2.

(1.2)

It is well known that the existence of the finite time blow up of the solution
for (1.2) which corresponds to the concentration of ameba (Herrero-Velázquez [11],
[12], Nagai [18]).

Chen-Zhong [5] introduced a perturbed system of (1.2): For p > 1,

∂tu−∆u+∇ · (u∇v) = 0, t > 0, x ∈ R2,

−∆v + v + vp = u, t > 0, x ∈ R2,

u(0, x) = u0(x) ≥ 0, x ∈ R2.

(1.3)

This system is considered as a model of the chemotaxis with a nonlinear diffusion for
the chemical substance. It has been proved that the solution of (1.3) has a similar
behavior to the original system (1.2). In fact, one can show the local existence
theory and finite time blow up with mass concentration phenomena as is shown for
(1.2), see Chen-Zhong [5] and Kurokiba-Suzuki [16].

Note that the nonlinear term vp in the second equation in (1.1) has a different
sign compared to (1.3). According to this difference, the behavior of the solution
for (1.1) is much different from the one for (1.3). Indeed, the nonhomogeneous
elliptic problem corresponding to the second equation of (1.1):

−∆v + v − vp = f, x ∈ R2 (1.4)

admits at least two positive solutions when f is a sufficiently small nonnegative
nontrivial function in H−1(R2), while

−∆v + v + vp = f, x ∈ R2

has only one solution. Moreover, it is also known that if the external force f is large
in H−1 sense, then there is no positive solution for the equation (1.4). Hence it is
an interesting question whether the finite time blow up of the solution may occur in
the case (1.1), or more primitively, whether the time local solution exists properly
and the system is well posed in some sense or not. In this point, the structure of
the time dependent positive solutions of (1.1) seems to be very much different from
that of the original system (1.2) or the perturbed system (1.3).

In this paper, we shall consider solutions of (1.1) in the following sense:

u ∈ C([0, T );L2(R2)) ∩ C1((0, T );L2(R2)) ∩ C((0, T ); Ḣ2(R2)),

v ∈ C((0, T );H1(R2)) ∩ C((0, T );W 2,2(R2))

for some T > 0.
Recently Kurokiba-Ogawa-Takahashi [15] proved that, for a small nonnegative

initial data, there exists a solution for (1.1) which is, in a sense, “small” one. On the
other hand, as is mentioned above, the perturbed nonlinear elliptic equation (1.4)
admits at least two positive solutions for small and nonnegative f 6≡ 0. Therefore
it is natural to ask whether the time dependent equation (1.1) also has a second
positive solution. The main issue of this paper is to show the existence of two
positive time dependent solutions of (1.1) under the radially symmetric setting.
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Theorem 1.1 (Multiple existence). Let 1 < p <∞. Then there exists a constant
C∗∗ > 0 such that, if the radially symmetric nonnegative initial data u0 ∈ L1 ∩
L2(R2) satisfies

‖u0‖2 ≤ C∗∗,

then there exist two positive radial pair of solutions (u1(t), v1(t)) and (u2(t), v2(t))
for (1.1). One of them is different from the solution obtained in [15].

Note that the solution obtained in [15] exists globally in time if in addition ‖u0‖1
is sufficiently small.

The main idea to construct the time dependent solutions heavily relies on the
variational structure of the elliptic part of the system. The v-component of the
solution obtained in [15] corresponds to the solution of (1.4) bifurcating from the
trivial solution with f = 0. On the other hand, it has been known that the problem
(1.4) with f = 0 has a unique positive solution w (see Berestycki-Lions [2], Gidas-
Ni-Nirenberg [10] and Kwong [14]). This solution is obtained as a mountain pass
critical point of the energy functional

I0(v) =
1
2

∫
R2
|∇v|2dx+

1
2

∫
R2
|v|2dx− 1

p+ 1

∫
R2
|v|p+1dx.

If the second variation of I0 at w is nondegenerate and if f is small, then we may
construct the solution v of (1.4) bifurcating from the mountain pass solution w.
This is not always possible, since the kernel of the Hessian of I0 at w is nontrivial.
If we restrict the class of initial data, however, there is a possibility of constructing
the second local-in-time solution of (1.1). In this paper, we shall show that this is
indeed possible under the radially symmetric setting.

Also it should be noted that our problem is related to the unconditional unique-
ness problem in the general nonlinear evolution equations. LetX be a Banach space.
If an initial value problem admits the unique solution in the class C([0, T );X) with
initial data in X, then we call the unconditional uniqueness holds for this problem.
If the class of the solution is reasonably restricted, the unconditional uniqueness is
expected to hold for the well-posed problem. For our problem (1.1), however, there
is no possibility to have the unconditional uniqueness by restricting the regularity.
Namely, no matter how the class of the solution is restricted from the regularity
point of view, at least two solutions for (1.1) do exist. Only the variational charac-
terization of the second component v distinguishes two solutions and the uniqueness
class is not definable by means of function spaces. In this sense, the unconditional
uniqueness never holds for (1.1). This kind of phenomena may occur for a general
nonlinear problem. In our particular setting, there exists at least two time depen-
dent solutions and are uniquely continued in time each other under the variational
restriction.

We use the following notation. The Lebesgue space Lp(R2) is denoted by Lp

with 1 ≤ p ≤ ∞ with the norm ‖ · ‖p. For k = 1, 2, · · · and for 1 ≤ p ≤ ∞, let
W k,p = W k,p(R2) be the Sobolev space with the norm ‖f‖p+‖∇f‖p. We frequently
use H1 = W 1,2(R2), and L2

r and H1
r denote the radially symmetric subspaces of

L2 and H1, respectively. (H1
r )∗ denotes the dual space of H1

r . For a Banach space
X, Bδ,X stands for the open ball in X with the radius δ > 0 and the center 0. The
constant C may vary from line to line.
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2. Variational Structure of the Lagrangian Functional

The existence of multiple positive solutions for the semilinear elliptic equation

−∆v + v = vp + f, x ∈ R2 (2.1)

is known for small nonnegative external forces f 6≡ 0 in H−1, see e.g. Zhu [25] and
Cao-Zhou [4]. According to their results, there exists a solution of (2.1) for small
f (in the H−1 sense) which is not a local minimizer of the functional If defined by

If (v) =
1
2

∫
R2
|∇v|2dx+

1
2

∫
R2
|v|2dx− 1

p+ 1

∫
R2
|v|p+1 −

∫
R2
fvdx, v ∈ H1(R2).

In this section, we give some analysis on the dependence of this non-minimal
solution with respect to f , namely, we show some refined results compared to those
of Zhu [25] and Cao-Zhou [4] from a bifurcation theoretical point of view.

As is mentioned in the introduction, the nonlinear elliptic problem (2.1) with
f ≡ 0,

−∆v + v = vp, x ∈ R2, (2.2)
has a radially symmetric positive unique solution w [2, 10, 14]. This solution is
obtained as a critical point of the variational functional I0 by the well known
mountain pass lemma in H1. Note that the Hessian operator of I0 at u ∈ H1 is
realized by Lu := −∆ + 1− p|u|p−1, which is an operator from H1 to H−1. As for
the kernel of the linearized operator Lw at w, the following is well-known (see e.g.
[6, 7, 8, 22]).

Proposition 2.1 (Kernel of the linearized operator). For the radially symmetric
positive unique solution w to (2.2), kerLw, the kernel of the operator Lw = −∆ +
1− p|w|p−1, is spanned by ∂x1w and ∂x2w. In particular, kerLw ∩H1

r = {0}.

According to Proposition 2.1, we may construct a solution branch of the non-
minimal solution of (2.1) with the aid of the implicit function theorem if we restrict
our problem to the class of radially symmetric functions.

Proposition 2.2. There exists δ > 0 and h ∈ C(Bδ,(H1
r )∗ ;H1

r ) such that h(f) is a
critical point of If which is not a local minimum for f ∈ Bδ,(H1

r )∗ with h(0) = w.
Moreover, h is a Lipschitz continuous mapping in Bδ,(H1

r )∗ , namely, there exists
C > 0 such that

‖h(f1)− h(f2)‖H1 < C‖f1 − f2‖(H1
r )∗ , ∀f1, f2 ∈ Bδ,(H1

r )∗ . (2.3)

If f ≥ 0, then h(f) ≥ 0 holds.

Proof. We employ the implicit function theorem for

g : (H1
r )∗ ×H1

r 3 (f, u) 7→ g(f, u) := (dIf )u ∈ (H1
r )∗

around (0, w) ∈ (H1
r )∗ ×H1

r . Hereafter the functional derivatives of g with respect
to f ∈ (H1

r )∗ and u ∈ H1
r are denoted by D1g and D2g, respectively.

Let ϕ ∈ H1
r , η ∈ (H1

r )∗ and v ∈ H1
r . Then it is easy to see that

(D1g)(f,u)(η)ϕ =
d

dt
g(f + tη, u)ϕ

∣∣∣
t=0

=
∫

R2
ηϕ.

Hence (D1g)(f,u): (H1
r )∗ → (H1

r )∗ is an identity mapping. Therefore

D1g : (H1
r )∗ ×H1

r 3 (f, u) 7→ (D1g)(f,u) ∈ L((H1
r )∗; (H1

r )∗)
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is a constant map, especially continuous, where L(X,Y ) denotes the space of
bounded linear operators between Banach spaces X and Y . Similarly,

(D2g)(f,u)(v)ϕ =
d

dt
g(f, u+ tv)ϕ

∣∣∣
t=0

=
∫

R2
Luvϕ,

i.e., (D2g)(f,u) : H1
r → (H1

r )∗ is given by

(D2g)(f,u)(v) = Luv, v ∈ H1
r . (2.4)

In particular,

D2g : (H1
r )∗ ×H1

r 3 (f, u) 7→ (D2g)(f,u) ∈ L(H1
r ; (H1

r )∗)

is also a continuous map; thus g ∈ C1((H1
r )∗×H1

r ; (H1
r )∗). Note that (2.4) implies

(D2g)(0,w) = Lw and Lw restricted to H1
r should have a trivial kernel by virtue of

Proposition 2.1. Therefore by the implicit function theorem (see e.g. ([17, Theorem
5.9])), there exist δ > 0 and h: Bδ,(H1

r )∗ → H1
r such that g(f, h(f)) = 0 in (H1

r )∗

for any f ∈ Bδ,(H1
r )∗ and h(0) = w. The latter implies that h(f) is a critical

point which is not a local minimum of If . Moreover, by the symmetric criticality
principle of Palais [23], h(f) is a critical point of If not only on H1

r but also on H1.
Therefore the first part of the proposition follows.

Also by the implicit function theorem, we have h ∈ C1(Bδ,(H1
r )∗ ;H1

r ), thus there
exists a constant C > 0 such that

‖(dh)f‖L((H1
r )∗;H1

r ) < C for f ∈ Bδ,(H1
r )∗

if δ > 0 is sufficiently small. Then for f1, f2 ∈ Bδ,(H1
r )∗ ,

‖h(f1)− h(f2)‖H1 ≤
∥∥∥∫ 1

0

dt
( d

dt
h(tf2 + (1− t)f1)

)∥∥∥
H1

≤
∫ 1

0

dt‖(dh)tf2+(1−t)f1‖L((H1
r )∗;H1

r )‖f2 − f1‖(H1
r )∗

≤ C‖f2 − f1‖(H1
r )∗ ,

hence (2.3) follows. The nonnegativity of h(f) for f ≥ 0 follows from the standard
argument as in e.g. [4]. �

The following corollary follows immediately from Proposition 2.2.

Corollary 2.3. There exists ρ > 0 such that the conclusion of Proposition 2.2
holds when Bδ;(H1

r )∗ and (H1
r )∗ are replaced by Bρ,L2

r
and L2

r, respectively.

3. Proof of Main Theorem

In this section, we give the proof of Theorem 1.1. Let 1 < p <∞. We choose M
with M < ρ where ρ is the number obtained in Corollary 2.3. We shall construct
a solution of (1.1) in the complete metric space

XT,M =
{
φ ∈ C([0, T );L2

r) ∩ L2(0, T ; Ḣ1
r ); φ ≥ 0, |||φ|||X ≤M

}
with the metric d(φ, ψ) ≡ supt∈[0,T ] |||φ− ψ|||X , where

|||φ|||X ≡
(

sup
τ∈[0,T )

‖φ(τ)‖22 +
∫ T

0

‖∇φ(τ)‖22dτ
)1/2

and T > 0 is chosen to be small later.
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For a nonnegative function a ∈ L2
r, we define a map

Φa : XT,M 3 f 7→ u ∈ XT,M ,

where u is the solution of the following system:

∂tu−∆u+∇ · (u∇v) = 0, t > 0, x ∈ R2,

−∆v + v = vp + f, t > 0, x ∈ R2,

u(0, x) = a(x), x ∈ R2.

(3.1)

Here we choose the solution v(t) of the elliptic part of the above system as h(f(t))
where h is a map constructed in Corollary 2.3. Note that Φa is well defined by
virtue of Corollary 2.3, since supτ∈[0,T ) ‖f(τ)‖2 ≤ |||f |||X ≤M < ρ.

It is also easy to see that Corollary 2.3 yields

sup
τ∈[0,T )

‖h(f(τ))‖H1 ≤ sup
τ∈[0,T )

‖h(f(τ))− h(0)‖H1 + ‖h(0)‖H1

≤C sup
τ∈[0,T )

‖f(τ)− 0‖2 + ‖w‖H1

≤CM + ‖w‖H1 =: σ,

(3.2)

where w is the unique, radially symmetric positive function satisfying −∆w+w =
wp in R2. Hereafter for f and f̄ ∈ XT,M , we denote h(f(τ)) and h(f̄(τ)) by v(τ)
and v̄(τ) (or simply v and v̄), respectively.

Our first lemma is as follows.

Lemma 3.1. For any q ≥ 2, there exists a constant Cq > 0 such that

‖v(τ)‖W 1,q < Cq, (3.3)

‖v(τ)− v̄(τ)‖W 1,q < Cq‖f(τ)− f̄(τ)‖2 (3.4)

holds for any f , f̄ ∈ XT,M and for any τ ∈ [0, T ).

Proof. Recall that v satisfies −∆v+ v = vp + f in R2. Now for a given g ∈ L2, the
unique solution of −∆ṽ + ṽ = g in R2 satisfies

‖ṽ‖W 1,q ≤ Aq‖g‖2 (3.5)

for some constant Aq > 0 when q ≥ 2. Thus the Sobolev embedding H1 ↪→ L2p

and (3.2) yields

‖v‖W 1,q ≤ Aq‖vp + f‖2 ≤ Aq(C‖v‖p
H1 + ‖f‖2) ≤ Aq(Cσp +M) =: Cq,

hence (3.3).
Since v and v̄ satisfy

−∆(v − v̄) + (v − v̄) = vp − v̄p + f − f̄ ,

we have again from (3.5),

‖v − v̄‖W 1,q ≤ Aq

(
‖vp − v̄p‖2 + ‖f − f̄‖2

)
. (3.6)

Here we note that, by the Sobolev embedding H1 ↪→ L2p, (3.2) and Corollary 2.3,

‖vp − v̄p‖22 ≤ C(‖v‖2(p−1)
2p + ‖v̄‖2(p−1)

2p )‖v − v̄‖22p ≤ C‖v − v̄‖2H1 ≤ C‖f − f̄‖22
holds for suitable C > 0. Hence this fact together with (3.6) yields (3.4). �
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Lemma 3.2. There exists C > 0 such that

‖∇v(τ)‖2∞ ≤ C(1 + ‖∇f(τ)‖2)

for τ ∈ [0, T ).

Proof. The second equation of (3.1), the Sobolev embedding H1 ↪→ L2p and (3.2)
lead

‖∆v‖2 ≤ ‖v‖2 + ‖vp‖2 + ‖f‖2 < C

for some C > 0. Hence by using a version of the Brezis-Gallouet inequality [3]:

‖h‖2∞ ≤ C
(
‖h‖2H1(1 + ‖∆h‖1/2

2 ) + ‖∆h‖2
)

for all h ∈ H2(R2), we have

‖∇v‖2∞ ≤ C((‖∆v‖22 + ‖∇v‖22)(1 + ‖∇∆v‖1/2
2 ) + ‖∇∆v‖2)

≤ C(1 + ‖∇∆v‖2).
(3.7)

Note that by Lemma 3.1, the Sobolev embedding H1 ↪→ L2p and (3.2),

‖∇vp‖22 = p2

∫
R2
|v|2(p−1)|∇v|2 ≤ p2‖v‖2(p−1)

2p ‖∇v‖22p < C (3.8)

holds. Then the second equation of (3.1) together with (3.2) and (3.8) yields

‖∇∆v‖2 ≤ ‖∇v‖2 + ‖∇vp‖2 + ‖∇f‖2 ≤ C(1 + ‖∇f‖2).

Hence combining this relation with (3.7), we have the conclusion. �

Using the estimate for v obtained above, we can verify the following key propo-
sition for the verification of Theorem 1.1.

Proposition 3.3. Let a, a ∈ L2
r be smooth nonnegative radial functions. Then for

some C > 0, we have for the solution operator Φa defined by (3),(
1− CT 1/2(T 1/2 +M)

)
|||Φa(f)|||2X ≤ ‖a‖22, (3.9)(

1− CT 1/2(T 1/2 +M)
)
|||Φa(f)− Φa(f̄)|||2X
≤ ‖a− a‖22 + C|||Φa(f)|||2XT 1/2|||f − f̄ |||2X (3.10)

for f , f̄ ∈ XT,M .

Proof. The existence of a smooth solution for the system (3.1) with a smooth initial
data follows from the standard theory of evolution equations. Under the assumption
of the proposition, we denote solutions Φa(f(τ)) and Φa(f̄(τ)) of (3.1) by u(τ) and
ū(τ) (or simply u and ū), respectively. We also denote h(f(τ)) and h(f̄(τ)) by v(τ)
and v̄(τ) (or simply v and v̄), respectively. Now multiplying the first equation of
(3.1) by u = u(τ) and integrating by parts, we have

1
2
d

dτ
‖u(τ)‖22 + ‖∇u(τ)‖22 ≤

1
2
‖u(τ)‖22‖∇v(τ)‖2∞ +

1
2
‖∇u(τ)‖22. (3.11)
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Then, the integration of (3.11) from 0 to t in τ leads

‖u(t)‖22 +
∫ t

0

‖∇u(τ)‖22dτ ≤‖a‖22 +
∫ t

0

‖u(τ)‖22‖∇v(τ)‖2∞dτ

≤‖a‖22 + sup
τ∈[0,T )

‖u(τ)‖22C
∫ t

0

(1 + ‖∇f(τ)‖2)dτ

≤‖a‖22 + sup
τ∈[0,T )

‖u(τ)‖22CT 1/2(T 1/2 +M)

for t ∈ [0, T ), here we have used Lemma 3.2 and
√∫ t

0
‖∇f‖22dτ ≤M , thus (3.9).

Next, we consider equations

∂tu−∆u+∇ · (u∇v) = 0, u(0) = a,

∂tū−∆ū+∇ · (ū∇v̄) = 0, ū(0) = ā.

Multiplying u− ū to the difference of these equations and integrating by parts, we
see

1
2
d

dτ
‖u(τ)− ū(τ)‖22 + ‖∇(u(τ)− ū(τ))‖22

=
∫

R2
u∇(v − v̄) · ∇(u− ū)dx+

∫
R2

(u− ū)∇v̄ · ∇(u− ū)dx.
(3.12)

Then∣∣∣∣∫
R2
u∇(v − v̄)∇(u− ū)dx

∣∣∣∣ ≤ ‖u‖4‖∇(v − v)‖4‖∇(u− u)‖2

≤ ‖u‖24‖∇(v − v)‖24 +
1
4
‖∇(u− u)‖22

≤ ‖u‖24C sup
τ∈[0,T )

‖f(τ)− f(τ)‖22 +
1
4
‖∇(u− u)‖22,

(3.13)

where we have used Lemma 3.1. Also Lemma 3.2 gives∣∣∣∣∫
R2

(u− ū)∇v̄ · ∇(u− ū)dx
∣∣∣∣

≤ ‖u− ū‖2‖∇v̄‖∞‖∇(u− ū)‖2

≤ ‖u− ū‖22‖∇v̄‖2∞ +
1
4
‖∇(u− ū)‖22

≤ C(1 + ‖∇f‖2) sup
τ∈[0,T )

‖u(τ)− ū(τ)‖22 +
1
4
‖∇(u− ū)‖22.

(3.14)

Then plugging (3.13) and (3.14) into (3.12) and integrating from 0 to t in τ , we
have

‖u(t)− ū(t)‖22 +
∫ t

0

‖∇(u(τ)− ū(τ))‖22dτ

≤ ‖a− ā‖22 + 2C
∫ T

0

‖u(τ)‖24dτ sup
τ∈[0,T )

‖f(τ)− f(τ)‖22

+ 2C sup
τ∈[0,T )

‖u(τ)− ū(τ)‖22
∫ T

0

(1 + ‖∇f(τ)‖2)dτ.

(3.15)
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Here, we recall the Ladyzhenskaya inequality (see e.g., [9]):( ∫ T

0

‖ϕ(τ)‖44dτ
)1/2

≤ C
(

sup
τ∈[0,T )

‖ϕ(τ)‖22 +
∫ T

0

‖∇ϕ(τ)‖22dτ
)

for ϕ ∈ C([0, T );L2) ∩ L2(0, T ; Ḣ1). Then we obtain∫ T

0

‖u(τ)‖24dτ ≤
( ∫ T

0

‖u(τ)‖44dτ
)1/2

T 1/2 ≤ C|||u|||2XT 1/2. (3.16)

Hence plugging (3.16) into (3.15) and noting
∫ T

0
(1+‖∇f(τ)‖2)dτ ≤ T 1/2(T 1/2+M)

again, we have(
1− CT 1/2(T 1/2 +M)

)
sup

τ∈[0,T )

‖u(τ)− ū(τ)‖22 +
∫ t

0

‖∇(u(τ)− ū(τ))‖22dτ

≤ ‖a− ā‖22 + C|||u|||2XT 1/2 sup
τ∈[0,T )

‖f(τ)− f̄(τ)‖22

and (3.10) follows. �

Now we are in the position to give the proof of Theorem 1.1.

Proof. Take any M < ρ where ρ is the number which is obtained in Corollary 2.3.
Then choose T > 0 so small that 1

2 ≤ 1 − CT 1/2(T 1/2 + M) and CM2T 1/2 ≤ 1
4

hold, where C is the constant in Proposition 3.3. Let u0 ∈ L2
r(R2) be a nonnegative

initial data with ‖u0‖22 < M2/2 =: C2
∗∗. Then by using the approximation of u0

by a sequence of smooth functions and Proposition 3.3, we can easily verify that
Φu0 is a contraction mapping from XT,M to XT,M . Therefore, the Banach fixed
point theorem implies that there exists a unique solution of u = Φu0(u). It is
obvious that (u, v) = (u, h(u)) gives a solution of (1.1). The standard parabolic
regularity argument gives that the solution becomes regular immediately after t > 0.
The continuous dependence of the solution on the initial data also follows from
(3.10). �
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