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ON SOLUTIONS OF A VOLTERRA INTEGRAL EQUATION
WITH DEVIATING ARGUMENTS

M. DIANA JULIE, KRISHNAN BALACHANDRAN

Abstract. In this article, we establish the existence and asymptotic charac-
terization of solutions to a nonlinear Volterra integral equation with deviat-

ing arguments. Our proof is based on measure of noncompactness and the

Schauder fixed point theorem.

1. Introduction

Several authors have studied nonlinear Volterra integral equations with deviating
arguments and functional integral equations; see for example [1, 4, 5, 11, 13, 14].
Banaś [3] proved an existence theorem for functional integral equation while Bal-
achandran and Illamaran [1] proved an existence theorem for Volterra integral equa-
tion with a deviating argument. Existence of solutions to nonlinear integral equa-
tions, which contain particular cases of important integral and functional equations
such as nonlinear Volterra integral equation, Urysohn integral equation and inte-
gral equations of Chandrasekhar type, have been considered in many papers and
monographs [8, 12, 15].

In this paper we study the nonlinear Volterrra integral equation

x(t) = g
(
t, x(h1(t)), . . . , x(hn(t))

)
+

∫ t

0

k
(
t, s, x(H1(s)), . . . , x(Hm(s))

)
ds, (1.1)

where t ≥ 0. In particular, we prove the existence and asymptotic stability of
solutions for this equation. The investigation is done on the space of continuous
and tempered functions on Rn. The main tool used in our considerations is the
measure of noncompactness and the Schauder fixed point theorem. The results
obtained in this paper generalize several results presented in [6, 9, 10, 16].

2. Notation and auxiliary results

Suppose E is a real Banach space with the norm ‖·‖ and zero element θ. Denote
by B(x, r) the closed ball centered at x and with radius r. We write Br for the
ball B(θ, r). If X is a subset of E then the symbols X and Conv X stand for the
closure and convex closure of X, respectively. Further, let ME denote the family
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of all nonempty and bounded subsets of E and NE its subfamily consisting of all
relatively compact sets.

We define the the following notion of measure of noncompactness.

Definition 2.1. A mapping µ : ME → R+ is said to be a measure of noncompact-
ness in the space E if it satisfies the following conditions:

(i) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ;
(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y );
(iii) µ(X)= µ(Conv X) = µ(X);
(iv) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];
(v) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for

n = 1, 2, 3 . . . and if limn→∞ µ(Xn) = 0, then the set X∞ = ∩∞n=1Xn is
nonempty.

The family ker µ defined in axiom (i) is called the kernel of the measure of
noncompactness µ.

Let us remark that the intersection set X∞ from (v) is a member of the kernel
of the measure of noncompactness µ. Indeed, from the inequality µ(X∞) ≤ µ(Xn)
for n = 1, 2, . . . , we infer that µ(X∞) = 0, so X∞ ∈ ker µ. This property of the
intersection set X∞ will be crucial in our study.

Further facts concerning measures of noncompactness and their properties may
be found in [2, 7].

Now, let us assume that p = p(t) is a given function defined and continuous on
the interval R+ with real positive values. We will denote by C

(
R+, p(t); Rn

)
= Cp,

the Banach space consisting of all continuous functions from R+ into Rn such that

‖x‖ = sup{|x(t)|p(t) : t ≥ 0} < ∞.

Now we recall the definition of the measure of noncompactness in the space Cp

which will be used in the sequel [2, 7]. Let X be a nonempty and bounded subset
of the space Cp. Fix a positive number T . For x ∈ X and ε > 0 denote by ωT (x, ε)
the modulus of continuity of the function x(tempered by the function p) on the
interval [0, T ], i.e.

ωT (x, ε) = sup{|x(t)p(t)− x(s)p(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

Further, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X}, ωT
0 (X) = lim

ε→0
ωT (X, ε),

ω0(X) = lim
T→∞

ωT
0 (X).

Moreover, we put

α(X) = lim
T→∞

{sup
x∈X

{sup{|x(t)|p(t) : t ≥ T}}}.

Finally, let us the define the function µ on the family MCp
by formula µ(X) =

ω0(X) + α(X).
It may be shown that the function µ is the measure of noncompactness in the

space Cp [2, 7]. The kernel kerµ is the family of all nonempty and bounded sets
X such that functions belonging to X are locally equicontinuous on R+ and such
that limt→∞ x(t)p(t) = 0 uniformly with respect to the set X, i.e. for each ε > 0
there exists T > 0 with the property that |x(t)|p(t) ≤ ε for t ≥ T and for x ∈ X.



EJDE-2009/57 VOLTERRA INTEGRAL EQUATION WITH DEVIATING ARGUMENTS 3

Finally, let us assume that x ∈ Cp. For T > 0 and denote by νT (x, ε) the usual
modulus of continuity of the function x on the interval [0, T ]:

νT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

3. Main Result

We assume the following conditions:
(H1) The function g : R+ ×Rn2 → Rn is continuous and there exists a constant

K ≥ 0 such that

|g(t, x1, . . . , xn)− g(t, y1, . . . , yn)| ≤ K
n∑

i=1

|xi − yi|

for all t ∈ R+ and (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn2
;

(H2) There exists a continuous function a : R+ → R+ such that |g(t, 0, . . . , 0)| ≤
a(t) for all t ∈ R+;

(H3) Let ∆ = {(t, s) : 0 ≤ s ≤ t < ∞}. The kernel k : ∆ × Rnm → Rn is
continuous and there exists a continuous function L0 : R+ → R+, a contin-
uous nonincreasing function L1 : R+ → R and a continuous nondecreasing
function q : R+ → R+ such that

|k(t, s, x1, . . . , xm)| ≤ L0(s) + exp(L1(t))q(s)
m∑

i=1

|xi|

for all t, s ∈ R+ and (x1, x2, . . . , xm) ∈ Rnm;
(H4) For i = 1, 2, . . . n, j = 1, 2, . . . m the functions hi,Hj : R+ → R+ are

continuous and hi(t) ≤ t, Hj(t) ≤ t;
(H5) limt→∞ tq(t) expL1(t) = 0 and limt→∞[a(t) + b(t)] exp(−Mb(t)) = 0 where

b(t) =
∫ t

0
L0(s)ds;

Let us define the function L(t) as

L(t) =
∫ t

0

[L0(s) + q(s) expL1(s)]ds.

Fix a constant M > 1 and denote by CL = C
(
R+, exp(−ML(t)); Rn

)
. It is obvious

that the function L(t) is nondecreasing and continuous on R+.

Theorem 3.1. Under assumptions (H1)-(H5), Equation (1.1) has at least one
solution x ∈ CL such that x(t) = o(exp(ML(t)) as t →∞, provided (Kn+m/M) <
1.

Proof. Consider the operator F defined on the space CL by the formula

(Fx)(t) = g
(
t, x(h1(t)), . . . , x(hn(t))

)
+

∫ t

0

k
(
t, s, x(H1(s)), . . . , x(Hm(s))

)
ds,

where t ≥ 0. Obviously the function Fx is continuous on the interval R+. Moreover,
in view of our assumptions, for arbitrarily fixed x ∈ CL and t ∈ R+, we obtain

|(Fx)(t)| exp(−ML(t))

≤
[∣∣g(

t, x(h1(t)), . . . , x(hn(t))
)∣∣

+
∫ t

0

∣∣k(
t, s, x(H1(s)), . . . , x(Hm(s))

)∣∣ds
]
exp(−ML(t))
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≤
[∣∣∣g(

t, x(h1(t)), . . . , x(hn(t))
)
− g(t, 0 . . . , 0)

∣∣∣ + |g(t, 0 . . . , 0)|
]
exp(−ML(t))

+
[ ∫ t

0

L0(s)ds + exp(L1(t))
∫ t

0

q(s)
m∑

i=1

|x(Hi(s))|ds
]
exp(−ML(t))

≤ K
n∑

i=1

|x(hi(t))| exp(−ML(t)) + [a(t) + b(t)] exp(−ML(t))

+ exp(L1(t))
∫ t

0

q(s)‖x‖
m∑

i=1

exp(ML(Hi(s)))ds · exp(−ML(t))

≤ K
n∑

i=1

|x(hi(t))| exp(−ML(hi(t))) + [a(t) + b(t)] exp(−ML(t))

+ m‖x‖
∫ t

0

[L0(s) + q(s) exp(L1(s))] exp(ML(s))ds · exp(−ML(t))

≤ Kn‖x‖+ [a(t) + b(t)] exp(−Mb(t)) +
( m

M

)
‖x‖

≤
[
Kn +

m

M

]
‖x‖+ D,

where D = sup{[a(t) + b(t)] exp(−Mb(t)) : t ∈ R+}. Obviously D < ∞ in view
of the hypothesis (H5). The obtained estimate shows that Fx is bounded on R+.
This fact with the continuity of Fx on R+ yields that F transforms the space CL

into itself. Moreover for r = D/(1 −Kn −m/M), we have that F maps the ball
Br into itself.

Let us take an arbitrary nonempty subset A of the ball Br. Fix T > 0 and ε > 0.
Next, take arbitrary t, s ∈ [0, T ] with |t− s| ≤ ε. Then, for arbitrarily fixed x ∈ A,
we get

|(Fx)(t)− (Fx)(s)|
≤

∣∣g(
t, x(h1(t)), . . . , x(hn(t))

)
− g

(
s, x(h1(s)), . . . , x(hn(s))

)∣∣
+

∣∣ ∫ t

0

k
(
t, τ, x(H1(τ)), . . . , x(Hm(τ))

)
dτ

−
∫ s

0

k
(
s, τ, x(H1(τ)), . . . , x(Hm(τ))

)
dτ

∣∣
≤

∣∣g(
t, x(h1(t)), . . . , x(hn(t))

)
− g

(
t, x(h1(s)), . . . , x(hn(s))

)∣∣
+

∣∣∣g(
t, x(h1(s)), . . . , x(hn(s))

)
− g

(
s, x(h1(s)), . . . , x(hn(s))

)∣∣∣
+

∫ t

0

∣∣∣k(
t, τ, x(H1(τ)), . . . , x(Hm(τ))

)
− k

(
s, τ, x(H1(τ)), . . . , x(Hm(τ))

)∣∣∣dτ

+
∫ t

s

∣∣∣k(
s, τ, x(H1(τ)), . . . , x(Hm(τ))

)∣∣∣dτ (3.1)

≤ K
n∑

i=1

|x(hi(t))− x(hi(s))|+ νT
1 (g, ε) + TνT

1 (k, ε)

+ ε sup
{∣∣k(

s, τ, x(H1(τ)), . . . , x(Hm(τ))
)∣∣ : s, τ ∈ [0, T ],

|x(Hi(τ))| ≤ r exp(ML(T )), i = 1, 2, . . . ,m
}

,
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where

νT
1 (g, ε) = sup

{
|g(t, x1, . . . , xn)− g(s, x1, . . . , xn)| : t, s ∈ [0, T ],

|t− s| ≤ ε, |xi| ≤ r exp(ML(T )), i = 1, 2, . . . , n
}

,

νT
1 (k, ε) = sup

{
|k(t, τ, x1, . . . , xm)− k(s, τ, x1, . . . , xm)| : t, s, τ ∈ [0, T ],

|t− s| ≤ ε, |xi| ≤ r exp(ML(T )), i = 1, 2, . . . ,m
}

.

Now let us denote

β(ε) = νT
1 (g, ε) + TνT

1 (k, ε) + ε sup
{∣∣k(

s, τ, x(H1(τ)), . . . , x(Hm(τ))
)∣∣ :

s, τ ∈ [0, T ], |x(Hi(τ))| ≤ r exp(ML(T )), i = 1, 2, . . . ,m
}

.

Keeping in mind, the uniform continuity of g(t, x1, . . . , xn) and k(t, s, x1, . . . , xm)
on compact subsets of R+×Rn2

and ∆×Rnm respectively, we deduce that β(ε) → 0
as ε → 0. Furthermore, from (3.1), we have

|(Fx)(t) exp(−ML(t))− (Fx)(s) exp(−ML(s))|
≤ |(Fx)(t) exp(−ML(t))− (Fx)(s) exp(−ML(t))|

+ |(Fx)(s)|| exp(−ML(t))− exp(−ML(s))|

≤ K

n∑
i=1

|x(hi(t))− x(hi(s))| exp(−ML(t)) + β(ε) exp(−ML(t))

+ |(Fx)(s)|| exp(−ML(t))− exp(−ML(s))|

≤ K
n∑

i=1

|x(hi(t)) exp(−ML(hi(t))− x(hi(s)) exp(−ML(hi(s))|

+ K

n∑
i=1

|x(hi(s)) exp(−ML(hi(s))− x(hi(s)) exp(−ML(hi(t))|

+ β(ε) exp(−ML(t)) + |(Fx)(s)|| exp(−ML(t))− exp(−ML(s))|

≤ K
n∑

i=1

ωT (x, νT (hi, ε)) + Kr
n∑

i=1

exp(ML(hi(s)))νT
(
exp(−ML(hi(t))), ε

)
+ β(ε) exp(−ML(t)) + r exp(ML(T ))νT

(
exp(−ML(t)), ε

)
.

The above estimate and the fact that exp(−ML(t)) and exp(−ML(hi(t))) are
uniformly continuous on [0, T ], yields the inequality

ωT
0 (FA) ≤ KnωT

0 (A).

Hence,
ω0(FA) ≤ Knω0(A). (3.2)

Next, let us assume that t ≥ T . Then, by virtue of our assumptions we obtain

|(Fx)(t)| exp(−ML(t))

≤
[∣∣g(

t, x(h1(t)), . . . , x(hn(t))
)
− g(t, 0 . . . , 0)

∣∣ +
∣∣g(t, 0 . . . , 0)

∣∣] exp(−ML(t))

+
[ ∫ t

0

L0(s)ds + exp(L1(t))
∫ t

0

q(s)
m∑

i=1

|x(Hi(s))|ds
]
exp(−ML(t))
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≤ K
n∑

i=1

|x(hi(t))| exp(−ML(t)) + [a(t) + b(t)] exp(−ML(t))

+ exp(L1(t))
∫ t

0

q(s)‖x‖
m∑

i=1

exp(ML(Hi(s)))ds · exp(−ML(t))

≤ K
n∑

i=1

|x(hi(t))| exp(−ML(hi(t))) + [a(t) + b(t)] exp(−ML(t))

+ m‖x‖ exp(L1(t))
∫ t

0

q(s) exp(ML(s))ds · exp(−ML(t))

≤ K
n∑

i=1

|x(hi(t))| exp(−ML(hi(t))) + [a(t) + b(t)] exp(−Mb(t))

+ mrtq(t) exp(L1(t))

Now, taking into account (H5), from the above estimate we obtain

α(FA) ≤ Knα(A). (3.3)

where α(A) was defined previously. Next, from (3.2) and (3.3) we have

µ(FA) ≤ Cµ(A) (3.4)

where C = Kn > 0 is a constant and µ denotes the measure of noncompactness
defined earlier.

Furthermore, let us consider the sequence of sets (Bn
r ), where B1

r = Conv F (Br),
B2

r = Conv F (B1
r ) and so on. Observe that all sets of this sequence are nonempty,

bounded, closed and convex. Moreover, Bn+1
r ⊂ Bn

r for n = 1, 2, 3, . . . . Thus in
virtue of (3.4) it is easily seen that

µ(Bn
r ) ≤ Cnµ(Br)

This inequality and the fact that C < 1 yields that limn→∞ µ(Bn
r ) = 0. Thus from

(v) in Definition 2.1, we deduce that the set B = ∩∞n=1B
n
r is nonempty, bounded,

closed and convex. Moreover, in view of the remark we have that B ∈ ker µ. It
should be also noted that the operator F maps the set B into itself.

Next we show that F is continuous on the set B. To do this fix ε > 0 and take
arbitrary functions x, y ∈ B such that ‖x − y‖ ≤ ε. Taking into account the fact
that B ∈ ker µ and the description of sets belonging to kerµ we can find T > 0 such
that for each z ∈ B and t ≥ T the inequality |z(t)| exp(−ML(t)) ≤ ε/2 is satisfied.

Let us observe that in view of our assumptions, for an arbitrarily fixed t ∈ R+,
we obtain
|(Fx)(t)− (Fy)(t)| exp(−ML(t))

≤
∣∣∣g(

t, x(h1(t)), . . . , x(hn(t))
)
− g

(
t, y(h1(t)), . . . , y(hn(t))

)∣∣∣ exp(−ML(t))

+
∫ t

0

∣∣∣k(
t, τ, x(H1(τ)), . . . , x(Hm(τ))

)
− k

(
t, τ, y(H1(τ)), . . . , y(Hm(τ))

)∣∣∣dτ · exp(−ML(t))

≤ K
n∑

i=1

|x(hi(t))− y(hi(t))| exp(−ML(t)) + TνT (k, ε) exp(−ML(t)).

(3.5)
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Now let t ∈ [0, T ], then we have

|(Fx)(t)− (Fy)(t)| exp(−ML(t)) ≤ Cε + TνT (k, ε) exp(−ML(t)) (3.6)

where the quantity νT (k, ε) is defined as follows

νT (k, ε) = sup
{
|k(t, τ, x1, . . . , xm)− k(t, τ, y1, . . . , ym)| : t, τ ∈ [0, T ],

|xi|, |yi| ≤ r exp(ML(T )), |xi − yi| ≤ ε exp(ML(T )), i = 1, 2, . . . ,m
}

.

From the definition of the function k(t, s, x1, . . . , xm), we conclude that νT (k, ε) →
0 as ε → 0.

Further, let us assume that t > T . Then, taking into account that x, y ∈ B and
that F transforms the set B into itself we have that Fx, Fy ∈ B. Hence by the
characterization of the set B given above, we get

|(Fx)(t)− (Fy)(t)| exp(−ML(t))

≤ |(Fx)(t)| exp(−ML(t)) + |(Fy)(t)| exp(−ML(t)) ≤ ε.
(3.7)

Now from (3.5)-(3.7), we deduce that the operator F is continuous on the set B.
Finally, taking into account all facts concerning set B and the operator F :

B → B and applying the classical Schauder fixed point principle we infer that F
has at least one fixed point x in the set B. Obviously, the function x = x(t) is
a solution of (1.1). Moreover, keeping in mind that B ∈ ker µ, we obtain that
x(t) = o(exp(ML(t))) as t →∞. �

4. Example

Consider the following Volterra integral equation with deviating arguments

x(t) =
1 + arctan

(
x(t/3)

)
4 + t2

+
∫ t

0

[
s cos 2t + 3s2e−2t ln

(
1 + |x(s/2)|

)]
ds, (4.1)

where t ≥ 0. This equation is clearly of the form (1.1) with g(t, x) =
1 + arctan(x)

4 + t2

and k(t, s, x) = s cos(2t) + 3s2e−2t ln
(
1 + |x|

)
where m = n = 1, h1(t) = t/3 and

H1(t) = t/2.
It is easily seen that for (4.1), the assumptions (H1) and (H2) are satisfied with

K = 1/4 and a(t) =
1

4 + t2
. Let us observe that

|k(t, s, x)| ≤ s + 3s2e−2t|x|.

Note that the assumption (H3) is satisfied with L0(t) = t, L1(t) = −2t and q(s) =
3s2. On the other hand, (4.1) satisfies assumption (H5) with b(t) = t2/2. Now, we
get (Kn + m/M) < 1 for M > 1.

Thus, in view of Theorem 3.1 we conclude that problem (4.1) has a solution
x = x(t) such that

x(t) = o
(

exp
(
M

[ t2

2
− 3e−2t

2
(t2 + t +

1
2
) +

3
4
]))

as t →∞, where M > 1 is a constant.
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