\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 72, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/72\hfil Existence of solutions] {Existence of solutions for a $p(x)$-Laplacian non-homogeneous equations} \author[I. Andrei \hfil EJDE-2009/72\hfilneg] {Ionic\u{a} Andrei} \address{Ionic\u{a} Andrei \newline Department of Mathematics, High School of Cujmir, 227150 Cujmir, Romania} \email{andreiionica2003@yahoo.com} \thanks{Submitted March 9, 2009. Published June 2, 2009.} \subjclass[2000]{35D05, 35J60, 58E05} \keywords{$p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; \hfill\break\indent critical point; weak solution} \begin{abstract} We study the boundary value problem \begin{gather*} -\mathop{\rm div}(|\nabla u|^{p(x)-2}\nabla u)=f(x,u)\quad \text{in }\Omega, \\ u=0\quad \text{on }\partial \Omega, \end{gather*} where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$. Our attention is focused on the cases when $$ f(x,u)=\pm (-\lambda |u|^{p(x)-2}u+|u|^{q(x)-2}u), $$ where $ p(x)1\}.$ For any $h\in C_+(\overline\Omega)$ we define $$ h^+=\sup_{x\in\Omega}h(x)\quad\mbox{and}\quad h^-=\inf_{x\in\Omega}h(x). $$ For $p\in C_+(\overline\Omega)$, we introduce {\it the variable exponent Lebesgue space} \begin{align*} L^{p(\cdot)}(\Omega)=\big\{&u: u \mbox{ is a measurable real-valued function}\\ &\text{such that }\int_\Omega|u(x)|^{p(x)}\,dx<\infty\big\}, \end{align*} endowed with the so-called {\it Luxemburg norm} $$ |u|_{p(\cdot)}=\inf\big\{\mu>0;\;\int_\Omega| \frac{u(x)}{\mu}|^{p(x)}\,dx\leq 1\big\}, $$ which is a separable and reflexive Banach space. For basic properties of the variable exponent Lebesgue spaces we refer to \cite{ko}. If $0 <|\Omega|<\infty$ and $p_1$, $p_2$ are variable exponents in $C_+(\overline\Omega)$ such that $p_1 \leq p_2$ in $\Omega$, then the embedding $L^{p_2(\cdot)}(\Omega)\hookrightarrow L^{p_1(\cdot)}(\Omega)$ is continuous, \cite[Theorem~2.8]{ko}. Let $L^{p'(\cdot)}(\Omega)$ be the conjugate space of $L^{p(\cdot)}(\Omega)$, obtained by conjugating the exponent pointwise that is, $1/p(x)+1/p'(x)=1$, \cite[Corollary~2.7]{ko}. For any $u\in L^{p(\cdot)}(\Omega)$ and $v\in L^{p'(\cdot)}(\Omega)$ the following H\"older type inequality \begin{equation}\label{Hol} \big|\int_\Omega uv\,dx\big|\leq\Big(\frac{1}{p^-}+ \frac{1}{{p'}^-}\Big)|u|_{p(\cdot)}|v|_{p'(\cdot)} \end{equation} is valid. An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the {\it $p(\cdot)$-modular} of the $L^{p(\cdot)}(\Omega)$ space, which is the mapping $\rho_{p(\cdot)}:L^{p(\cdot)}(\Omega)\to\mathbb{R}$ defined by $$ \rho_{p(\cdot)}(u)=\int_\Omega|u|^{p(x)}\,dx. $$ If $(u_n)$, $u\in L^{p(\cdot)}(\Omega)$ then the following relations hold \begin{gather}\label{L40} |u|_{p(\cdot)}<1\;(=1;\,>1)\;\Leftrightarrow\;\rho_{p(\cdot)}(u) <1\;(=1;\,>1) \\ \label{L4} |u|_{p(\cdot)}>1 \;\Rightarrow\; |u|_{p(\cdot)}^{p^-}\leq\rho_{p(\cdot)}(u) \leq|u|_{p(\cdot)}^{p^+} \\ \label{L5} |u|_{p(\cdot)}<1 \;\Rightarrow\; |u|_{p(\cdot)}^{p^+}\leq \rho_{p(\cdot)}(u)\leq|u|_{p(\cdot)}^{p^-} \\ \label{L6} |u_n-u|_{p(\cdot)}\to 0\;\Leftrightarrow\;\rho_{p(\cdot)} (u_n-u)\to 0, \end{gather} since $p^+<\infty$. For a proof of these facts see \cite{ko}. Spaces with $p^{+}=\infty$ have been studied by Edmunds, Lang and Nekvinda \cite{ed}. Next, we define $W_0^{1,p(x)}(\Omega)$ as the closure of $C_0^{\infty}(\Omega)$ under the norm \[ \| u\|_{p(x)}=|\nabla u|_{p(x)}. \] The space $(W_0^{1,p(x)}(\Omega),\| \cdot \|_{p(x)})$ is a separable and reflexive Banach space. We note that if $q\in C_+(\overline{\Omega})$ and $q(x)0$. First, we consider the problem \begin{equation}\label{e6} \begin{gathered} -\mathop{\rm div}(|\nabla u|^{p(x)-2}\nabla u) =-\lambda | u | ^{p(x)-2}u +| u | ^{q(x)-2}u \quad\text{in } \Omega \\ u=0 \quad\text{on }\partial\Omega \end{gathered} \end{equation} We say that $u\in W_0^{1,p(x)}(\Omega)$ is a weak solution of \eqref{e6} if \[ \int_{\Omega}| \nabla u | ^{p(x)-2}\nabla u \nabla v dx +\lambda \int_{\Omega} | u | ^{p(x)-2}uv\,dx- \int_{\Omega}| u | ^{q(x)-2}uv\,dx=0 \] for all $v\in W_0^{1,p(x)}(\Omega)$. We will prove the following result. \begin{theorem}\label{thm1} For every $\lambda >0$, problem \eqref{e6} has infinitely many weak solutions provided $2\leq p^- $, $p^+0$ such that for any $\lambda \geq \lambda^*$ problem \eqref{e7} has a nontrivial weak solution provided $p^+0)$ is coercive in $H_0^1(\Omega)$, Ambrosetti and Rabinowitz showed that problem \eqref{e8} has a positive solution for any $\lambda >0$. \section{Proof of Theorem 1} The key argument in the proof is the following version of the Mountain Pass Theorem (see \cite[Theorem 9.12]{ra}): \subsection*{Mountain Pass Theorem} Let $X$ be an infinite dimensional real Banach space and let $I\in C^1(X,\mathbb{R})$ be even, satisfying the Palais-Smale condition (i.e., any sequence $\{x_n\}\subset X$ such that $\{I(x_n)\}$ is bounded and $I'(x_n)\to 0$ in $X^*$ has a convergent subsequence) and $I(0)=0$. Suppose that \begin{itemize} \item[(I1)] there exists two constants $\rho$, $a>0$ such that $I(x)\geq a $ if $\|x\|=\rho$, \item[(I2)] for each finite dimensional subspace $X_1\subset X$, the set $\{x\in X_1; I(x)\geq 0\}$ is bounded. \end{itemize} Then $I$ has an unbounded sequence of critical values. \smallskip Let $E$ denote the generalized Sobolev space $W_0^{1,p(x)}(\Omega)$ and let $\lambda >0$ be arbitrary but fixed. The energy functional corresponding to problem \eqref{e6} is defined as $J_{\lambda}:E\to \mathbb{R}$, \[ J_{\lambda}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx +\lambda \int_{\Omega}\frac{1}{p(x)}|u|^{p(x)}dx -\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx. \] A simple calculation based on relations \eqref{L4} and \eqref{L5} and the compact embedding of $E$ into $L^{r(x)}(\Omega)$ for all $r\in C_+(\overline{\Omega})$ with $r(x)0$ and $\alpha >0$ such that $J_{\lambda}(u)\geq \alpha >0$ for any $u\in E$ with $\|u\|_{p(x)}=\eta$ \end{lemma} \begin{proof} We first point out that we have \begin{equation}\label{e11} |u(x)|^{q^-}+|u(x)|^{q^+}\geq |u(x)|^{q(x)}, \quad \forall x\in \overline{\Omega} \end{equation} Using \eqref{e11} we deduce that \begin{equation}\label{e12} J_{\lambda}(u)\geq \frac{1}{p^+}\cdot\int_{\Omega}|\nabla u|^{p(x)}dx-\frac{1}{q^-}\cdot \Big(\int_{\Omega}|u|^{q^-}dx+\int_{\Omega}|u|^{q^+}dx\Big) \end{equation} Since $p^+0$ there exists a positive constant $K_2(\lambda)$ such that \begin{equation}\label{e19} \lambda \cdot \int_{\Omega}\frac{1}{p(x)}|u|^{p(x)}dx\leq K_2(\lambda)\cdot\left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right), \quad \forall u\in E. \end{equation} By inequalities \eqref{e15} and \eqref{e19}, we get \[J_{\lambda}(u)\leq K_1 \cdot \left( \|u\|_{p(x)}^{p-}+\|u\|_{p(x)}^{p^+}\right)+K_2(\lambda)\cdot \left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right) -\frac{1}{q^+}\int_{\Omega}|u|^{q(x)}dx\] for all $u\in E$. Let $u\in E$ be arbitrary but fixed. We define \[ \Omega_1=\{x\in \Omega; |u(x)|<1\}, \quad \Omega_2 =\Omega\setminus \Omega_1. \] Then we have \begin{align*} J_{\lambda}(u) &\leq K_1 \cdot \left( \|u\|_{p(x)}^{p-}+\|u\|_{p(x)}^{p^+}\right)+K_2(\lambda)\cdot \left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right) -\frac{1}{q^+}\int_{\Omega}|u|^{q(x)}dx\\ & \leq K_1 \cdot \left( \|u\|_{p(x)}^{p-}+\|u\|_{p(x)}^{p^+}\right)+K_2(\lambda)\cdot \left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right) -\frac{1}{q^+}\int_{\Omega_2}|u|^{q(x)}dx\\ &\leq K_1 \cdot \left( \|u\|_{p(x)}^{p-}+\|u\|_{p(x)}^{p^+}\right) +K_2(\lambda)\cdot \left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right) -\frac{1}{q^+}\int_{\Omega_2}|u|^{q^-}dx\\ &\leq K_1 \cdot \left( \|u\|_{p(x)}^{p-}+\|u\|_{p(x)}^{p^+}\right) +K_2(\lambda)\cdot \left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right)\\ &\quad -\frac{1}{q^+}\int_{\Omega}|u|^{q^-}dx+\frac{1}{q^+} \int_{\Omega_1}|u|^{q^-}dx. \end{align*} But there exists a positive constant $K_3$ such that \[ \frac{1}{q^+}\int_{\Omega_1}|u|^{q^-}dx\leq K_3,\quad \forall u\in E. \] Thus we deduce that \[ J_{\lambda}(u)\leq K_1 \cdot \big( \|u\|_{p(x)}^{p-}+\|u\|_{p(x)}^{p^+}\big) +K_2(\lambda)\cdot \big(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\big) -\frac{1}{q^+}\int_{\Omega}|u|^{q^-}dx+K_3, \] for all $u\in E$. The functional $|\cdot|_{q^-}:E\to \mathbb{R}$ defined by \[ |u|_{q^-}=\Big( \int_{\Omega}|u|^{q^-}dx\Big)^{1/q^-} \] is a norm in $E$. In the finite dimensional subspace $E_1$ the norms $|\cdot|_{q^-}$ and $\|\cdot\|_{p(x)}$ are equivalent, so there exists a positive constant $K=K(E_1)$ such that \[ \|u\|_{p(x)}\leq K\cdot |u|_{q^-}, \quad \forall u\in E_1. \] As a consequence we have that there exists a positive constant $K_4$ such that \[ J_{\lambda}(u)\leq K_1 \cdot \left( \|u\|_{p(x)}^{p-} +\|u\|_{p(x)}^{p^+}\right)+K_2(\lambda)\cdot \left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right) -K_4\cdot \|u\|^{q^-}+K_3, \] for all $u\in E_1$. Hence \[ K_1 \cdot \left(\|u\|_{p(x)}^{p-}+\|u\|_{p(x)}^{p^+}\right) +K_2(\lambda)\cdot \left(\|u\|_{p(x)}^{p^-}+\|u\|_{p(x)}^{p^+}\right) -K_4\cdot \|u\|^{q^-}_{p(x)}+K_3\geq 0, \] for all $u\in S$. and since $q^->p^+$ we conclude that $S$ is bounded in $E$. The proof is complete. \end{proof} \begin{lemma}\label{lem3} If $\{u_n\}\subset E$ is a sequence which satisfies the conditions \begin{gather}\label{e20} |J_{\lambda}(u_n)|1$ for any integer $n$. By \eqref{e21} we deduce that there exists $N_1>0$ such that for any $n>N_1$, we have \[ \|J_{\lambda}'(u_n)\|\leq 1. \] On the other hand, for any $n>N_1$ fixed, the application \[ E\ni v\to \langle J'_{\lambda}(u_n),v \rangle \] is linear and continuous. The above information implies \[ |\langle J'_{\lambda}(u_n), v \rangle| \leq \|J_{\lambda}'(u_n)\|\cdot \|v\|_{p(x)}\leq \|v\|_{p(x)}, \quad \forall v\in E, n>N_1. \] Setting $v=u_n$ we have \[ -\|u_n\|_{p(x)}\leq \int_{\Omega}|\nabla u_n|^{p(x)}dx +\lambda \int_{\Omega}|u_n|^{p(x)}dx-\int_{\Omega}|u_n|^{q(x)}dx \leq \|u_n\|_{p(x)} \] for all $n>N_1$. We obtain \begin{equation}\label{e22} -\|u_n\|_{p(x)}- \int_{\Omega}|\nabla u_n|^{p(x)}dx-\lambda \int_{\Omega}|u_n|^{p(x)}dx\leq -\int_{\Omega}|u_n|^{q(x)}dx \end{equation} for any $n>N_1$. Provided that $\|u_n\|_{p(x)}>1$ relations \eqref{e20}, \eqref{e22} and \eqref{L4} imply \begin{align*} M&>J_{\lambda}(u_n)\\ &\geq \Big( \frac{1}{p^+}-\frac{1}{q^-}\Big)\cdot \int_{\Omega}(|\nabla u_n|^{p(x)})dx\\ &\quad +\lambda \cdot \Big( \frac{1}{p^+}-\frac{1}{q^-}\Big)\cdot \int_{\Omega}|u_n|^{p(x)}dx-\frac{1}{q^-}\cdot \|u_n\|_{p(x)}\\ &\geq \Big( \frac{1}{p^+}-\frac{1}{q^-}\Big)\cdot \int_{\Omega} |\nabla u_n|^{p(x)}dx-\frac{1}{q^-}\cdot \|u_n\|_{p(x)}\\ &\geq \Big( \frac{1}{p^+}-\frac{1}{q^-}\Big) \cdot \|u_n\|^{p^-}_{p(x)}-\frac{1}{q^-}\cdot \|u_n\|_{p(x)}. \end{align*} Letting $n\to \infty$ we obtain a contradiction. It follows that $\{u_n\}$ is bounded in $E$. Since $\{u_n\}$ is bounded in $E$ we deduce that there exists a subsequence, again denoted by $\{u_n\}$, and $u_0\in E$ such that $\{u_n\}$ converges weakly to $u_0$ in $E$. Using Theorem 1.3 in \cite{fa}, $E$ is compactly embedded in $L^{p(x)}(\Omega)$ and in $L^{q(x)}(\Omega)$ it follows that $\{u_n\}$ converges strongly to $u_0$ in $L^{p(x)}(\Omega)$ and $L^{q(x)}(\Omega)$. The above information and relation \eqref{e21} imply \[ \langle J'_{\lambda}(u_n)-J'_{\lambda}(u_0), u_n-u_0\rangle \to 0 \quad \text{as } n\to \infty. \] On the other hand, we have \begin{align*} &\int_{\Omega}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u_0|^{p(x)-2} \nabla u_0)\cdot (\nabla u_n-\nabla u_0)dx\\ &=\langle J'_{\lambda}(u_n)-J'_{\lambda}(u_0), u_n-u_0 \rangle -\lambda \cdot \int_{\Omega}(|u_n|^{p(x)-2}u_n-|u_0|^{p(x)-2}u_0) (u_n-u_0)dx\\ &\quad +\int_{\Omega}(|u_n|^{q(x)-2}u_n-|u_0|^{q(x)-2}u_0)(u_n-u_0)dx. \end{align*} Using the fact that $\{u_n\}$ converges strongly to $u_0$ in $L^{q(x)}(\Omega)$ and inequality \eqref{Hol}, we have \begin{align*} &\big|\int_{\Omega}(|u_n|^{q(x)-2}u_n-|u_0|^{q(x)-2}u_0)(u_n-u_0)dx\big|\\ &\leq\big|\int_{\Omega}|u_n|^{q(x)-2}u_n(u_n-u_0)dx\big| +\big|\int_{\Omega}|u_0|^{q(x)-2}u_0(u_n-u_0)dx\big|\\ &\leq C_3\cdot \|u_n|^{q(x)-1}|_{\frac{q(x)}{q(x)-1}}\cdot |u_n-u_0|_{q(x)} +C_4\cdot \|u_0|^{q(x)-1}|_{\frac{q(x)}{q(x)-1}}\cdot |u_n-u_0|_{q(x)} \end{align*} where $C_3$ and $C_4$ are positive constants. Since $|u_n-u_0|_{q(x)}\to 0$ as $n\to \infty$ we deduce that \begin{gather}\label{e24} \lim_{n\to \infty}\int_{\Omega}(|u_n|^{q(x)-2}u_n-|u_0|^{q(x)-2}u_0) (u_n-u_0)dx=0,\\ \label{e25} \lim_{n\to \infty}\int_{\Omega}(|u_n|^{p(x)-2}u_n-|u_0|^{p(x)-2}u_0) (u_n-u_0)dx=0. \end{gather} By \eqref{e24} and \eqref{e25}, we obtain \begin{equation}\label{e26} \lim_{n\to \infty}\int_{\Omega}(|\nabla u_n|^{p(x)-2}\nabla u_n -|\nabla u_0|^{p(x)-2}\nabla u_0)\cdot (\nabla u_n -\nabla u_0)dx=0. \end{equation} It is known that \begin{equation}\label{e27} (|z|^{r-2}z-|t|^{r-2}t)\cdot (z-t)\geq \big(\frac{1}{2}\big)^r|z-t|^r, \quad \forall r\geq 2,\; z,t\in \mathbb{R}^N. \end{equation} Relations \eqref{e26} and \eqref{e27} yield \[ \lim_{n\to \infty}\int_{\Omega}|\nabla u_n-\nabla u_0|^{p(x)}dx=0\,. \] This fact and relation \eqref{L6} imply $\|u_n-u_0\|_{p(x)}\to \infty$ as $n\to \infty$. The proof is complete. \end{proof} \begin{proof}[Completed proof of Theorem \ref{thm1}] It is clear that the functional $J_{\lambda}$ is even and verifies $J_{\lambda}(0)=0$. Lemma \ref{lem3} implies that $J_{\lambda}$ satisfies the Palais-Smale condition. On the other hand, Lemmas \ref{lem1} and \ref{lem2} show that conditions (I1) and (I2) are satisfied. The Mountain Pass Theorem can be applied to the functional $J_{\lambda}$. We conclude that equation \eqref{e6} has infinitely many weak solutions in $E$. The proof is complete. \end{proof} \section{Proof of Theorem \ref{thm2}} Let $E$ denote the generalized Sobolev space $W_0^{1,p(x)}(\Omega)$ and let $\lambda >0$ be arbitrary but fixed. We start by introducing the energy functional corresponding to problem \eqref{e6} as $I_{\lambda}:E\to \mathbb{R}$, \[ I_{\lambda}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx -\lambda \int_{\Omega}\frac{1}{p(x)}|u|^{p(x)}dx +\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx. \] The same arguments as those used in the case of the functional $J_{\lambda}$ show that $I_{\lambda}$ is well-defined on $E$ and $I_{\lambda}\in C^1(E,\mathbb{R})$ with the derivative given by \[ \langle I'_{\lambda}(u), v\rangle =\int_{\Omega}|\nabla u|^{p(x)-2}\nabla u \nabla v dx -\lambda \int_{\Omega}|u|^{p(x)-2}uv\,dx +\int_{\Omega}|u|^{q(x)-2}uv dx \] for any $u$, $v\in E$. We obtain that the weak solutions of \eqref{e6} are the critical points of $I_{\lambda}$. This time our idea is to show that $I_{\lambda}$ possesses a nontrivial global minimum point in $E$. With this end in view we start by proving two auxiliary results. \begin{lemma}\label{lem4} The functional $I_{\lambda}$ is coercive on $E$. \end{lemma} \begin{proof} To prove this lemma, we first show that for any $a$, $b>0$ and $00$ it follows that \[ a-b\cdot t^{l-k}<0, \quad \forall t>\big(\frac{a}{b}\big)^{1/(l-k)} \] and \[ t^k \cdot(a-b\cdot t^{l-k})\leq a\cdot t^k1$, \begin{align*} I_{\lambda}(u) &\geq \frac{1}{p^+}\int_{\Omega}|\nabla u|^{p(x)}dx -\frac{\lambda}{p^-}\int_{\Omega}|u|^{p(x)}dx +\frac{1}{q^+}\int_{\Omega}|u|^{q(x)}dx\\ &\geq \frac{1}{p^+}\|u\|^{p^-}_{p(x)} -\Big( \frac{\lambda}{p^-}\int_{\Omega}|u|^{p(x)}dx -\frac{1}{q^+}\int_{\Omega}|u|^{q(x)}dx\Big)\\ &\geq \frac{1}{p^+}\|u\|_{p(x)}^{p^-}-D. \end{align*} Thus $I_{\lambda}$ is coercive and the proof of is complete. \end{proof} \begin{lemma}\label{lem5} The functional $I_{\lambda}$ is weakly lower semicontinuous. \end{lemma} \begin{proof} First we prove that the functional $A:E\to \mathbb{R}$, \[ A(u)=\int_{\Omega}\frac{1}{p^(x)}|\nabla u|^{p(x)}dx, \] is convex. Indeed, since the function $[0,\infty)\ni t\to t^s$ is convex for any $s>1$, we deduce that for each $x\in \Omega$ fixed it the inequality \[ \big|\frac{z+t}{2}\big|^{p(x)}\leq \big| \frac{|z|+|t|}{2}\big|^{p(x)} \leq \frac{1}{2}|z|^{p(x)}+\frac{1}{2}|t|^{p(x)},\quad \forall z,\; t \in \mathbb{R}^N \] holds. Using the above inequality we deduce that \[ \big| \frac{\nabla u +\nabla v}{2}\big|^{p(x)} \leq \frac{1}{2}|\nabla u|^{p(x)}+\frac{1}{2}|\nabla v|^{p(x)}, \quad \forall u,v\in E, \; x\in \Omega . \] Multiplying with $1/p(x)$ and integrating over $\Omega$ we obtain \[ A\big(\frac{u+v}{2}\big)\leq \frac{1}{2}A(u)+\frac{1}{2}A(v), \quad \forall u,v\in E. \] Thus $A$ are convex. Next, we show that the functional $A$ is weakly lower semicontinuous on $E$. Taking into account that $A$ is convex, by \cite[Corollary III.8]{br} it is sufficient to show that $A$ is strongly lower semicontinuous on $E$. We fix $u\in E$ and $\varepsilon>0$. Let $v\in E$ be arbitrary. Since $A$ is convex and inequality \eqref{Hol} holds; we have \begin{align*} A(u)&\geq A(u)+\langle A'(u),v-u\rangle\\ &\geq A(u)-\int_{\Omega}|\nabla u|^{p(x)-1}|\nabla (v-u)|dx\\ &\geq A(u)-D_1\cdot \|\nabla u|^{p(x)-1}|_{\frac{p(x)}{p(x)-1}} \cdot |\nabla (u-v)|_{p(x)}\\ &\geq A(u)-D_2\cdot \|u-v\|_{p(x)}\\ &\geq A(u)-\varepsilon \end{align*} for all $v\in E$ with $\|u-v\|_{p(x)}<\varepsilon /[\|\nabla u|^{p(x)-1}|_{\frac{p(x)}{p(x)-1}}]$. We have denoted by $D_1$ and $D_2$ two positive constants. It follows that $A$ is strongly lower semicontinuous and since it is convex we obtain that $A$ is weakly lower semicontinuous. Finally, we remark that if $\{u_n\}\subset E$ is a sequence which converges weakly to $u$ in $E$ then $\{u_n\}$ converges strongly to $u$ in $L^{p(x)}(\Omega)$ and $L^{q(x)}(\Omega)$. Thus, $I_{\lambda}$ is weakly lower semicontinuous. The proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] By Lemmas \ref{lem4} and \ref{lem5}, we deduce that $I_{\lambda}$ is coercive and weakly lower semicontinuous on $E$. Then \cite[Theorem 1.2]{st} implies that there exist a global minimizer $u_{\lambda}\in E$ of $I_{\lambda}$ and thus a weak solution of problem \eqref{e7}. We show that $u_{\lambda}$ is not trivial for $\lambda$ large enough. Indeed, letting $t_0>1$ be a fixed real and $\Omega_1$ an open subset of $\Omega$ with $|\Omega_1|>0$ we deduce that there exists $u_0\in C^{\infty}_0(\Omega)\subset E$ such that $u_0(x)=t_0$ for any $x\in \overline{\Omega}_1$ and $0\leq u_0(x)\leq t_0$ in $\Omega \setminus \Omega_1$. We have \begin{align*} I_{\lambda}(u_0) &=\int_{\Omega}\frac{1}{p(x)}|\nabla u_0|^{p(x)}dx -\lambda \int_{\Omega}\frac{1}{p(x)}|u_0|^{p(x)}dx +\int_{\Omega}\frac{1}{q(x)}|u_0|^{q(x)}dx\\ &\leq L-\frac{\lambda}{p^+}\int_{\Omega_1}|u_0|^{p(x)}dx\\ &\leq L-\frac{\lambda}{p^+}\cdot t_0^{p^-}\cdot |\Omega_1| \end{align*} where $L$ is a positive constant. Thus, there exists $\lambda^*>0$ such that $I_{\lambda}(u_0)<0$ for any $\lambda \in [\lambda^*,\infty)$. It follows that $I_{\lambda}(u_{\lambda})<0$ for any $\lambda\geq \lambda^*$ and thus $u_{\lambda}$ is a nontrivial weak solution of problem \eqref{e7} for $\lambda$ large enough. The proof of is complete. \end{proof} \subsection*{Remark} After this article was accepted, the author learned that the results here are a particular case of the results in \cite{mii}. \begin{thebibliography}{99} \bibitem{ac} E. Acerbi and G. Mingione: Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001), 121-140. \bibitem{al} C. O. Alvez and M. A. S. Souto: Existence of solutions for a class of problems involving the $p(x)$-Laplacian. Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 17-32. \bibitem{am} A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349-381. \bibitem{br} H. Brezis: Analyse fonctionnelle: th\'{e}orie et applications. Masson, Paris, 1992. \bibitem{di} L. Diening: Theorical and numerical results for electrorheological fluids. Ph. D. thesis, University of Freiburg, Germany, 2002. \bibitem{ed} D. E. Edmunds, J. Lang and A. Nekvinda: On $L^{p(x)}$ norms. Proc. Roy. Soc. London Ser. A 455 (1999), 219-225. \bibitem{fa} X. Fan, J. Shen and D. Zhao: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$. J. Math. Anal. Appl. 262 (2001), 749-760. \bibitem{fa1} X. L. Fan and Q. H. Zhang: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal. 52 (2003), 1843-1852. \bibitem{fa2} X. L. Fan, Q. H. Zhang and D. Zhao: Eigenvalues of $p(x)$-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302 (2005), 306-317. \bibitem{gherad} M. Ghergu and V. R\u adulescu: Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford University Press, 2008. \bibitem{ha} T. C. Halsey: Electrorheological fluids. Science 258 (1992), 761-766. \bibitem{ko} O. Kov\'{a}\v{c}ik and J. R\'{a}kosnik: On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czech. Math. J. 41(1991), 592-618. \bibitem{mi} M. Mih\u{a}ilescu: Elliptic problems in variable exponent spaces, Bull. Austral. Math. Soc. 74 (2006), 197-206. \bibitem{mii} M. Mihailescu: On a class of nonlinear problems involving a $p(x)$-Laplace type operator, Czechoslovak Mathematical Journal 58 (133) (2008), 155-172. \bibitem{mi0} M. Mih\u{a}ilescu and V. R\u{a}dulescu: A continuous spectrum for nonhomogeneous differential operators in Orlicz-Sobolev spaces, Mathematica Scandinavica 104 (2009), 132-146 \bibitem{mi1} M. Mih\u{a}ilescu and V. R\u{a}dulescu: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. London Ser. A 462 (2006), 2625-2641. \bibitem{mi2} M. Mih\u{a}ilescu and V. R\u{a}dulescu: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proceedings of the American Mathematical Society 135 (2007), no. 9, 2929-2937. \bibitem{mu} J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983. \bibitem{mu1} J. Musielak and W. Orlicz: On modular spaces. Studia Math. 18 (1959), 49-65. \bibitem{na} H. Nakano: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo, 1950. \bibitem{or} W. Orlicz: \"{U}ber konjugierte Exponentenfolgen. Studia Math. 3 (1931), 200-211. \bibitem{pf} C. Pfeiffer, C. Mavroidis, Y. Bar-Cohen and B. Dolgin: Electrorheological fluid based force feedback device, in Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), Vol. 3840. 1999, pp. 88-99. \bibitem{ra} P. Rabinowitz: Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984. \bibitem{ra1} V. R\u{a}dulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations, Contemporary Mathematics and Its Applications, vol. 6, Hindawi Publ. Corp., 2008. \bibitem{ra2} V. R\u adulescu, D. Repov\v s: Perturbation effects in nonlinear eigenvalue problems, Nonlinear Analysis: Theory, Methods and Applications 70 (2009), 3030-3038. \bibitem{ru} M. Ruzicka: Electrorheological Fluids Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2002. \bibitem{sh} I. Sharapudinov: On the topology of the space $L^{p(t)}([0;1])$. Matem. Zametki 26 (1978), 613-632. \bibitem{st} M. Struwe: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Heidelberg, 1996. \bibitem{ts} I. Tsenov: Generalization of the problem of best approximation of a function in the space $L^s$. Uch. Zap. Dagestan Gos. Univ. 7 (1961), 25-37. \bibitem{wi} W. M. Winslow: Induced fibration of suspensions. J. Appl. Phys. 20 (1949), 1137-1140. \bibitem{zh} Q. Zhang: A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions. J. Math. Anal. Appl. 312 (2005), 24-32. \bibitem{zh1} V. Zhikov: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29 (1987), 33-66. \bibitem{zh2} V. Zhikov: On passing to the limit in nonlinear variational problem. Math. Sb. 183 (1992), 47-84. \end{thebibliography} \end{document}