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ORBITAL STABILITY OF PERIODIC TRAVELLING WAVES
FOR COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

ADEMIR PASTOR

Abstract. This article addresses orbital stability of periodic travelling-wave

solutions for coupled nonlinear Schrödinger equations. We prove the exis-
tence of smooth curves of periodic travelling-wave solutions depending on the

dnoidal-type functions. Orbital stability analysis is developed in the context
of Hamiltonian systems. We consider both the stability problem by periodic

perturbations which have the same fundamental period as the corresponding

periodic wave and the stability problem by periodic perturbations having two
or more times the minimal period as the corresponding periodic wave.

1. Introduction

This paper is mainly concerned with the orbital stability of periodic travelling-
wave solutions for the following coupled nonlinear Schrödinger equations

iut + ruxx +
(
η|u|2 + σ|w|2

)
u = 0

iρwt + swxx +
(1
η
|w|2 + σ|u|2

)
w = 0,

(1.1)

where u and w are complex-valued functions of the variables x, t ∈ R, the parame-
ters ρ, σ and η are positive real constants, and r = ±1, s = ±1.

In optics, (1.1) describes the interaction between two waves of different frequen-
cies ω1 and ω2 or two waves of the same frequency ω but belonging to two different
polarizations. The parameters η and ρ produce an effective asymmetry between
the modes for the case of the interaction between waves of the different frequencies.
Here, σ is the parameter of the cross-phase modulation, which may be determined
in terms of the parameters of the corresponding physical problem (see [1, 18, 22]),
and r, s describe the type of the group-velocity dispersion. For two waves of differ-
ent frequencies ω1 and ω2, one usually has η = ω2

1/ω
2
2 and σ = 2; for two waves of

different polarizations in a birefringent optical medium one has η = 1 and σ = 2/3
(see e.g. [1]).
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More generally, (1.1) is a particular case of the system

iut + ruxx − α1u+
(
η|u|2 + σ|w|2

)
u+ β1u

2w = 0

iρwt + swxx − α2w +
(1
η
|w|2 + σ|u|2

)
w + β2u

3 = 0,
(1.2)

which arises in many physical situations. For instance, when r = s = 1, α1 = 1,
η = 1/9, σ = 2, β1 = 1/3, and β2 = 1/9, the system (1.2) reads as

iut + uxx − u+
(1

9
|u|2 + 2|w|2

)
u+

1
3
u2w = 0

iρwt + wxx − α2w +
(
9|w|2 + 2|u|2

)
w +

1
9
u3 = 0,

(1.3)

which describes the resonant interaction between a linearly polarized beam of fre-
quency ω and its third harmonic (see [27, 28]).

Here, we specialize the system (1.1) in the case where ρ = 1 and r = s = 1, but
we permit all values of η, σ > 0. Thus, (1.1) reduces to

iut + uxx +
(
η|u|2 + σ|w|2

)
u = 0

iwt + wxx +
(1
η
|w|2 + σ|u|2

)
w = 0.

(1.4)

From the mathematical viewpoint, (1.4) has been studied by many authors (see
e.g. [2, 9, 19, 20, 30], [23]–[26], but only in the context of existence and stability
of solitary-wave solutions. As far as we know, no results concerning the stability of
periodic travelling-wave solutions have been shown.

As a matter of fact, only a few papers address orbital stability of periodic
travelling-wave solutions for Schrödinger-type systems. We cite a few known.
In [4], the authors considered a system arising in nonlinear optics (in a medium
with quadratic nonlinearities, see [17]) and they showed the existence and sta-
bility/instability of periodic travelling waves depending on the Jacobian elliptic
function of the cnoidal type. In [5, 24], the authors considered the system (1.3).
The existence and stability/instability of periodic travelling waves depending on
the dnoidal (in [5]) and cnoidal (in [24]) functions were shown. The techniques to
obtain such results were the ones developed by Grillakis, Shatah, and Strauss [13],
and Grillakis [12].

For the single cubic Schrödinger equation

iut + uxx + |u|2u = 0, (1.5)

Angulo [3] established the existence of periodic travelling waves based on the
dnoidal-type functions. By combining the classical Lyapunov method and the Flo-
quet theory associated to the Lamé equation

v′′ + [λ− 6k2sn2(x; k)]v = 0,

the author showed their orbital stability by periodic perturbations which have the
same fundamental period as the corresponding dnoidal wave (note that one can
also apply the theory in [13]), and orbital instability by periodic perturbations
with twice the fundamental period of the dnoidal wave.

As evidenced above, the abstract Stability/Instability Theorem in [13] can be
applied for many dispersive equations. However, the main difficulty when one
works with travelling waves for coupled systems, instead of one single equation,
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is that the spectral analysis for the “linearized Hamiltonian” turns out to be a
more delicate matter. Indeed, in this case one needs to deal with a matrix having
Schrödinger-type operators as components. As a consequence, in many examples,
the Stability/Instability criterium in [13] turns out to be insufficient for a complete
stability/instability analysis of the travelling waves. The main reason for this, is
that in such approach one needs to know the exact number of negative eigenvalues
of the linearized Hamiltonian.

Grillakis [11, 12] obtained others special instability theorems, which get orbital
instability from the linear instability of the zero solution for the linearization of the
system around the orbit generated by the corresponding travelling wave. The main
advantage when one uses the Grillakis approach is that one does not need to know
the exact number of negative eigenvalues of the linearized Hamiltonian, but only
to have an estimate on a certain bound (see Subsection 4.3 for the details).

Now, we turn our attention to the structure of the paper. The periodic travelling-
wave solutions we are interested in are of the form

u(x, t) = eiγtφγ(x), w(x, t) = eiγtψγ(x), (1.6)

where φγ , ψγ : R → R are smooth periodic functions with the same fixed period
L > 0 and γ is a real parameter. Substituting (1.6) into (1.4), we get the following
system of ordinary differential equations

φ′′γ − γφγ +
(
ηφ2

γ + σψ2
γ

)
φγ = 0

ψ′′γ − γψγ +
(1
η
ψ2
γ + σφ2

γ

)
ψγ = 0.

(1.7)

It is well known that (1.7) admits solitary-wave solutions (for η = 1) of the form

φγ(x) = ψγ(x) =

√
2γ
σ + 1

sech(
√
γx), γ > 0. (1.8)

In [25], the authors proved that the waves in (1.8) are linearly stable for σ > 0
and linearly unstable for −1 < σ < 0. Moreover, by using the concentration-
compactness method, Ohta in [23] showed that those waves are orbitally stable in
the energy space H1(R)×H1(R) for all σ > −1.

In the present paper, we consider two classes of periodic solutions. First, we
suppose ψγ ≡ 0. Then, we can find a smooth curve of periodic solutions for (1.7)
depending on the dnoidal type function, namely,

γ ∈
(2π2

L2
,+∞

)
7→ (φγ , 0) ∈ Hm

per([0, L])×Hn
per([0, L]), (1.9)

where

φγ(x) = η1dn
(√η
√

2
η1x; k

)
, k2 =

η2
1 − η2

2

η2
1

, (1.10)

and η1, η2 are smooth functions depending on the parameter γ with 0 < η2 <
η1. Throughout the paper, we shall refer to the solutions in (1.9) as semitrivial
solutions.

Second, we assume ψγ = bφγ , for some real constant b 6= 0. Then, we can find
another smooth curve of dnoidal waves,

γ ∈
(2π2

L2
,+∞

)
7→ (φγ , bφγ) ∈ Hm

per([0, L])×Hn
per([0, L]), (1.11)
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where, for θ = η + σb2,

φγ(x) = θ1dn
(√θ√

2
θ1x; k

)
, k2 =

θ21 − θ22
θ21

, (1.12)

and θ1, θ2 depend smoothly on the parameter γ and satisfy 0 < θ2 < θ1. Through-
out the paper, we shall refer to the solutions in (1.11) as non-semitrivial solutions.

Concerning the orbital stability, for the semitrivial solutions in (1.9), we show
that the orbit

OL = {(eirφγ(·+ s), 0); r, s ∈ R}

is stable in the energy space H1
per([0, L]) × H1

per([0, L]) provided that η > σ, and
the orbit O2L = {(eirφγ(·), 0); r ∈ R} is unstable in the space H1

per([0, 2L]) ×
H1

per([0, 2L]). On the other hand, for the non-semitrivial solutions (1.11) (with
η = b = 1), we show that the orbit Õ = {(eirφγ(·), eirφγ(·)); r ∈ R} is spectrally
stable with respect to periodic perturbations having the same fundamental period of
φγ , and it is orbitally unstable in the space H1

per([0, 2L])×H1
per([0, 2L]). Moreover,

if we assume −1 < σ < 0, then Õ is orbitally unstable in the space H1
per([0, L]) ×

H1
per([0, L]). To obtain the orbital stability result, we use the Grillakis, Shatah, and

Strauss [13] theory. However, to get the instability results, we employ the theory
developed by Grillakis [11, 12] (see also [26, 29]).

Concerning the local well-posedness of the system (1.4), by introducing the Bour-
gain Xs,b-spaces and making use of the contraction principle, we can prove that the
system (1.4) is locally well-posed in the spaces Hs

per([0, L]) × Hs
per([0, L]), s ≥ 0.

Moreover, from the conserved quantity

F(t) :=
1
2

∫
(|u|2 + |w|2)dx = F(0) (1.13)

the local solution can be extended for any interval of time.
The paper is organized as follows: in Section 2, we review the results concerning

the well-posedness theory. In Section 3, we prove the existence of smooth curves
of semitrivial and non-semitrivial solutions. Section 4 is devoted to the orbital
stability/instability of the semitrivial solutions, whereas in Section 5 the results for
the non-semitrivial solutions are provided.

Notation. For s ∈ R, the Sobolev space Hs
per := Hs

per([0, L]) consists of all L-
periodic distributions f such that

‖f‖2Hs
per

:= L
∞∑

k=−∞

(1 + k2)s|f̂(k)|2 <∞.

The symbols sn(·; k), dn(·; k), and cn(·; k) will denote, respectively, the Jacobian
elliptic functions of snoidal, dnoidal, and cnoidal type.

2. Well-Posedness Theory

In this section, we review the well-posedness theory for the system (1.4). For
additional details we refer the reader to [5], where a more general result can be
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found. We consider the Cauchy problem

iut + uxx +
(
η|u|2 + σ|w|2

)
u = 0, x ∈ [0, L], t ∈ R,

iwt + wxx +
(1
η
|w|2 + σ|u|2

)
w = 0, x ∈ [0, L], t ∈ R,

u(x, 0) = u0(x), w(x, 0) = w0(x).

(2.1)

Let {U(t)}∞t=−∞ be the unitary group corresponding to the linear Schrödinger
equation.

Definition 2.1. Let V be the space of functions f = f(x, t) such that
(i) f : [0, L]× R → C,
(ii) f(x, ·) ∈ S(R) (Schwartz space) for each x ∈ [0, L],
(iii) f(·, t) ∈ C∞per([0, L]) for each t ∈ R.

For s, b ∈ R, we define the Bourgain space Xs,b to be the completion of V with
respect to the norm

‖f‖Xs,b
=
(∑
n∈Z

∫ ∞

−∞
〈n〉2s〈τ + n2〉2b|f̂(n, τ)|2dτ

)1/2

,

where 〈·〉 = 1 + | · |.

Remark 2.2. Notice that since ‖f‖Xs,b
= ‖U(−t)f‖Hb(Rt;Hs

per)
, it follows from

Sobolev’s Lemma that if b > 1/2 then Xs,b ↪→ C(Rt;Hs
per).

Let ζ ∈ C∞0 (R) be a cut off function such that supp ζ ⊂ (−2, 2) and ζ ≡ 1 on
the interval [−1, 1]. For each T > 0, we define ζT (t) = ζ(t/T ).

Lemma 2.3. Let s ∈ R, b ∈ (1/2, 1) and T ∈ (0, 1]. Then,
(i) ‖ζTU(t)v‖Xs,b

≤ c‖v‖Hs
per

,

(ii)
∥∥ζT ∫ t0 U(t−t′)f(t′)dt′

∥∥
Xs,b

≤ cT γ‖f‖Xs,b−1 , where γ is a positive constant.

For a proof of the above lemma, see for example Kenig, Ponce, and Vega [15, 16].
Next, we have a trilinear estimate, which may be proved following similar arguments
as the ones in Bourgain [6]; see also [5, 7].

Lemma 2.4. Let s ≥ 0 and b ∈ (3/8, 5/8). Then,

‖uα1uα2wα3wα4‖Xs,b−1 ≤ c‖u‖α1+α2
Xs,b

‖w‖α3+α4
Xs,b

,

where α1, α2, α3, α4 ∈ {0, 1, 2, 3} with α1 + α2 + α3 + α4 = 3.

With the above lemmas in hand, we are able to prove our local well-posedness
result.

Theorem 2.5 (Local well-posedness). Let s ≥ 0 and b ∈ (1/2, 5/8). For any
(u0, w0) ∈ Hs

per([0, L]) × Hs
per([0, L]), there exist T = T (‖(u0, w0)‖Hs

per×Hs
per

) > 0
and a unique solution (u(t), w(t)) of the initial-value problem (2.1) satisfying

(u,w) ∈ C([−T, T ];Hs
per([0, L])×Hs

per([0, L])),

(ζTu, ζTw) ∈ Xs,b ×Xs,b.

Moreover, given T ′ ∈ (0, T ), there exists a neighborhood W of (u0, w0) in Hs
per ×

Hs
per such that the map (u0, w0) 7→ (u(t), w(t)) from W into C([−T ′, T ′];Hs

per ×
Hs

per) is Lipschitz continuous.
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Sketch of the proof. We define the metric space of functions

XM = {(u,w) ∈ Xs,b ×Xs,b; ‖(u,w)‖Xs,b×Xs,b
:= ‖u‖Xs,b

+ ‖w‖Xs,b
≤M},

and the map Φ = (Φ1,Φ2), where

Φ1(u,w)(t) = ζT (t)U(t)u0 + iζT (t)
∫ t

0

U(t− t′)
(
η|u|2u+ σ|w|2u

)
(t′)dt′,

Φ2(u,w)(t) = ζT (t)U(t)w0 + iζT (t)
∫ t

0

U(t− t′)
(1
η
|w|2w + σ|u|2w

)
(t′)dt′,

(2.2)

where M > 0 and T ∈ (0, 1]. By choosing M and T suitably, and using Lemmas 2.3
and 2.4, we can prove that Φ : XM → XM is a contraction. Hence, the contraction
principle implies the existence of a unique fixed point for the integral equations
(2.2), which solves our problem. The rest of the proof follows standard arguments,
which will be omitted. �

Finally, we can establish our global well-posedness result.

Theorem 2.6 (Global well-posedness). For s ≥ 0 and (u0, w0) ∈ Hs
per([0, L]) ×

Hs
per([0, L]), the solution (u(t), w(t)) given in Theorem 2.5 can be extend to any

interval of time.

Proof. This follows from the conserved quantity∫
(|u(x, t)|2 + |w(x, t)|2)dx =

∫
(|u0(x)|2 + |w0(x)|2)dx,

and a priori estimates (see e.g. [7]). �

Remark 2.7. The same ideas used to prove Theorems 2.5 and 2.6 can be applied
to show local and global well-posedness results for the system (1.2) (see [5]).

3. Existence of smooth curves of dnoidal waves

This section is devoted to establishing the existence of smooth curves of periodic
travelling-wave solutions for the system (1.4) having the form

u(x, t) = eiγtφγ(x), w(x, t) = eiγtψγ(x), (3.1)

where φγ , ψγ : R → R are smooth periodic functions with the same fixed period
L > 0 and γ is a real parameter. Thus, ψγ = ψ and φγ = φ must satisfy the system
of ordinary differential equations

φ′′ − γφ+
(
ηφ2 + σψ2

)
φ = 0

ψ′′ − γψ +
(1
η
ψ2 + σφ2

)
ψ = 0.

(3.2)

To solve this system, we consider ψ = bφ, for some real constant b, and analyze two
cases.
Case 1 (semitrivial solutions): b = 0. In this case, (3.2) reduces to the differ-
ential equation

φ′′ − γφ+ ηφ3 = 0. (3.3)
It is well known that this equation has a positive solution of the form

φ(x) = η1dn
(√η
√

2
η1x; k

)
, k2 =

η2
1 − η2

2

η2
1

, (3.4)
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where η1, η2 are real constants satisfying η1 > η2 > 0.
In the sequel, we prove that the parameters η1, η2 can be chosen such that

the function φ in (3.4) has fundamental period L (here we give only the main
ingredients, for details see [3],[5]). Indeed, it is easy to see that parameters η1, η2
must satisfy

η2
1 + η2

2 =
2γ
η

= 2ω

−η2
1η

2
2 =

4
η
Bφ,

(3.5)

where ω := γ/η and Bφ is an integration constant. Therefore, for a fixed ω > 0, we
get from (3.5) that 0 < η2 <

√
ω < η1 <

√
2ω. Since dn has fundamental period

2K(k), it follows that the function φ in (3.4) has fundamental period

Tφ =
2
√

2
η1
√
η
K(k).

From (3.5), we can see Tφ as a function depending only on η2 (since ω > 0 is fixed),
namely,

Tφ(η2) =
2
√

2
√
η
√

2ω − η2
2

K(k(η2)), k2(η2) =
2ω − 2η2

2

2ω − η2
2

.

But, since Tψ(η2) →∞ as η2 → 0+, Tψ(η2) → π
√

2√
ωη as η2 →

√
ω, and the function

η2 ∈ (0,
√
ω) 7→ Tφ(η2) is strictly decreasing, we conclude that Tφ > π

√
2√

ωη .

Hence, given L > 0, by fixing ω > 0 such that
√
ω > π

√
2

L
√
η , there is a unique

η2 = η2(ω) ∈ (0,
√
ω) such that the dnoidal wave φ in (3.4) has fundamental period

L = Tφ.
In addition, we can construct, for each L > 0 fixed, a smooth curve of dnoidal-

wave solutions depending on the parameter ω (and hence on γ) such that each
element of the curve has fundamental period L. More precisely, we prove the
following.

Theorem 3.1. Let L > 0 be fixed. The following statements hold.
(i) There is a smooth function Γ :

(
2π2

ηL2 ,+∞
)
→ R such that

2
√

2
√
η
√

2ω − η2
2

K(k) = L,

where η2 = Γ(ω) and k2 = k2(ω) = 2ω−2η2
2

2ω−η2
2

.
(ii) The function Γ in (i) is strictly decreasing and the modulus k = k(ω) sat-

isfies dk
dω > 0.

(iii) For every γ ∈
(

2π2

L2 ,+∞
)

and ω = ω(γ) = γ/η, the dnoidal wave defined in
(3.4),

φγ(x) := φω(γ)(x) =
√

2ω − η2
2 dn

(√η(2ω − η2
2)√

2
x; k
)

has fundamental period L and satisfies (3.3). Moreover, the mapping

γ ∈
(2π2

L2
,+∞

)
7→ φγ ∈ Hn

per([0, L])

is a smooth function.
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Proof. The proof is an application of the Implicit Function Theorem. We refer to
[3] or [5] for the details. �

Case 2 (non-semitrivial solutions): b 6= 0. In this case, from (3.2), we get the
system

φ′′ − γφ+
(
η + σb2

)
φ3 = 0

φ′′ − γφ+
(b2
η

+ σ
)
φ3 = 0.

(3.6)

To solve this system, we make the following assumptions:

(H1) η + σb2 = b2

η + σ,
(H2) (σ − η)(σ − 1

η ) > 0.

These two assumptions allows us to reduce (3.6) to the single equation

φ′′ − γφ+ θφ3 = 0, (3.7)

where θ = η + σb2 > 0 is a real constant. As in Case 1, the equation (3.7) admits
a dnoidal-wave solution

φ(x) = θ1dn
(θ1√θ√

2
x; k
)
, k2 =

θ21 − θ22
θ21

, (3.8)

where θ1, θ2 are real constants and satisfy θ21 + θ22 = 2ω, where in this case we have
written ω = γ/θ.

By similar arguments as in Case 1, we may verify that for every L > 0 and
ω > 0 such that

√
ω > π

√
2√
θL

, there exists a unique θ2 = θ2(ω) ∈ (0,
√
ω) such

that the dnoidal wave φ = φ(·; θ1(ω); θ2(ω)), given in (3.8), has fundamental period
L = Tφ.

Remark 3.2. Formally, the periodic-wave solution (3.8) contains the solitary-
wave solution (1.8). Indeed, as θ2 → 0+ it follows that θ1 →

√
2γ/(η + σb2)

and dn(·; 1−) ∼ sech(·). Thus,

φ(x) ∼
√

2γ
η + σb2

sech(
√
γx),

As in Theorem 3.1, we can prove the following.

Theorem 3.3. Let L > 0 be fixed. The following statements hold.

(i) There exists a smooth function Λ :
(

2π2

θL2 ,+∞
)
→ R such that

2
√

2√
θ
√

2ω − θ22
K(k) = L,

where θ2 = Λ(ω) and k2 = k2(ω) = 2ω−2θ22
2ω−θ22

.
(ii) The function Λ in (i) is strictly decreasing and the modulus k = k(ω)

satisfies dk
dω > 0.

(iii) For every γ ∈
(

2π2

L2 ,+∞
)

and ω = ω(γ) = γ/θ, the dnoidal wave defined in
(3.8),

φγ(x) = φω(γ)(x) =
√

2ω − θ22 dn
(√θ(2ω − θ22)√

2
x; k
)
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has fundamental period L and satisfies (3.7). Moreover, the mapping

γ ∈
(2π2

L2
,+∞

)
7→ φγ ∈ Hn

per([0, L])

is a smooth function.

4. Orbital Stability/Instability of semitrivial solutions

In this section, we prove our results concerning the orbital stability/instability
of the semitrivial solutions given in Theorem 3.1. First, we note that the system
(1.4) may be written as a Hamiltonian system. Indeed, by writing u = P + iQ,
w = R+ iS, and U = (P,R,Q, S), we rewrite (1.4) as

∂U

∂t
(t) = JH′(U(t)), (4.1)

where J is the skew-symmetric matrix

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , (4.2)

and H is the energy functional

H(P,R,Q, S) =
1
2

∫ {
(P 2
x +Q2

x) + (R2
x + S2

x)−
η

2
(P 2 +Q2)2 − 1

2η
(R2 + S2)2

− σ(P 2 +Q2)(R2 + S2)
}
dx.

(4.3)
In (4.1), H′ denotes the Fréchet derivative of H.

Recall that by using this notation, the functional F in (1.13) reads as

F(P,R,Q, S) =
1
2

∫ {
(P 2 +Q2) + (R2 + S2)

}
dx.

4.1. Spectral Analysis. We consider L > 0 fixed and define Φ = (φγ , 0, 0, 0),
where φ = φγ is the dnoidal wave given by Theorem 3.1. Next, we consider the
linearized operator

Lγ = H′′(Φ) + γF ′′(Φ) =
(
LR 0
0 LI

)
, (4.4)

where LR and LI are 2× 2 matrix operators defined by

LR =
(
L1 0
0 L3

)
, LI =

(
L2 0
0 L3

)
, (4.5)

with

L1 = − d2

dx2
+ γ − 3ηφ2, L2 = − d2

dx2
+ γ − ηφ2, L3 = − d2

dx2
+ γ − σφ2. (4.6)

In the sequel, we study the spectrum of the diagonal operator Lγ .

Theorem 4.1. Let φ = φγ be the dnoidal wave given by Theorem 3.1. Consider the
operator Lγ in (4.4) defined in L2

per([0, L]) with domain H2
per([0, L]). The following

statements hold.
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(i) If n(Lγ) denotes the number of negative eigenvalues of Lγ (counting mul-
tiplicities), then n(Lγ) = 2k + 1, for some k ∈ N ∪ {0}. Moreover, the
remainder of the spectrum is constituted by a discrete set of eigenvalues.

(ii) The kernel of Lγ , ker(Lγ), is at least two-dimensional and contains the
space spanned by (φ′, 0, 0, 0) and (0, 0, φ, 0).

To prove Theorem 4.1, the following lemma is fundamental.

Lemma 4.2. Let φ = φγ be the dnoidal wave given by Theorem 3.1. Then the
following spectral properties hold.

(i) The operator L1 in (4.6) defined in L2
per([0, L]) with domain H2

per([0, L]) has
exactly one negative eigenvalue which is simple; zero is an eigenvalue which
is simple with eigenfunction φ′. Moreover, the remainder of the spectrum
is constituted by a discrete set of eigenvalues.

(ii) The operator L2 in (4.6) defined in L2
per([0, L]) with domain H2

per([0, L])
has no negative eigenvalues; zero is a simple eigenvalue with eigenfunction
φ. Moreover, the remainder of the spectrum is constituted by a discrete set
of eigenvalues.

Proof. The proof is essentially the same one as in [3, Theorems 3.1 and 3.2] and
[5, Theorem 4.1], with obvious modifications. Note that part (ii) is an immediate
consequence of the Floquet theory (see e.g. [21]), since L2φ = 0 and φ has no zeros
in [0, L]. �

Proof of Theorem 4.1. Part (ii) follows immediately from Lemma 4.2. To prove
part (i), we first note that, from Lemma 4.2, Lγ always has a negative eigenvalue
(which comes from the operator L1). Moreover, from the definition of Lγ , we see
that if λ is an eigenvalue of L3 (defined in L2

per([0, L]) with domain H2
per([0, L]))

then it is a double eigenvalue of Lγ . Therefore, since L2 has no negative eigenvalues,
we have proved the theorem. �

Corollary 4.3. Let φ = φγ be the dnoidal wave given by Theorem 3.1. Consider
the operator Lγ in (4.4) defined in L2

per([0, L]) with domain H2
per([0, L]) and suppose

that η > σ. Then,
(i) n(Lγ) = 1.
(ii) ker(Lγ) is two-dimensional and spanned by (φ′, 0, 0, 0) and (0, 0, φ, 0).

Proof. Since η > σ, we have γ − ηφ2(x) < γ − σφ2(x) in [0, L]. Thus, because zero
is the first eigenvalue of L2, an application of the Comparison Theorem (see e.g.
[10]) gives us that L3 is a strictly positive operator. Hence, Theorem 4.1 yields the
desired result. �

Remarks.
(1) If σ = η then n(Lγ) = 1 but ker(Lγ) is 4-dimensional.
(2) If σ > η then, from Lemma 4.2 and the Comparison Theorem, we obtain

that n(Lγ) ≥ 3. Moreover, if 3η > σ > η then n(Lγ) = 3, and ker(Lγ) is
spanned by (φ′, 0, 0, 0) and (0, 0, φ, 0).

With the goal of proving a stability/instability result by periodic perturbation
having twice the wavelength of φγ , we now prove the following.

Theorem 4.4. Let φγ = φ be the dnoidal wave given by Theorem 3.1.
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(i) Consider the operator LR in (4.5) defined in L2
per([0, 2L]) with domain

H2
per([0, 2L]). If ñ(LR) denotes the number of negative eigenvalues of LR

(counting multiplicities), then ñ(LR) = k0 + 3 for some k0 ∈ N. Moreover,
there exist k0+2 eigenvalues such that the corresponding eigenfunctions are
orthogonal to ker(LI).

(ii) Consider the operator LI in (4.5) defined in L2
per([0, 2L]) with domain

H2
per([0, 2L]). If ñ(LI) denotes the number of negative eigenvalues of LI

(counting multiplicities), then ñ(LI) = k0. Moreover, all the eigenfunc-
tions corresponding to negative eigenvalues are orthogonal to ker(LR).

Proof. (i) Let k0 be the number of negative eigenvalues of the operator L3 (defined
in L2

per([0, 2L]) with domain H2
per([0, 2L])). So, for the first part, it suffices to

show that the operator L1 (defined in L2
per([0, 2L]) with domain H2

per([0, 2L])) has
exactly 3 negative eigenvalues. To do this, we consider the semi-periodic eigenvalue
problem

L1χ = µχ

χ(0) = −χ(L), χ′(0) = −χ′(L).
(4.7)

which is equivalent (under the transformation Λ(x) = χ(αx), α =
√

2
η1
√
η ) to the

following semi-periodic eigenvalue problem associated to the Lamé equation:

Λ′′ + [µ̃− 6k2sn2(x; k)]Λ = 0

Λ(0) = −Λ(2K), Λ′(0) = −Λ′(2K),
(4.8)

where

µ̃ =
2
ηη2

1

[µ− γ + 3ηη2
1 ]. (4.9)

Now, a straightforward calculation shows us that µ̃0 = 1 + k2 and µ̃1 = 1 + 4k2 are
the first two eigenvalues to (4.8) (see [14]), which are simple with eigenfunctions
given, respectively, by

Λ1,sm(x) = cn(x; k)dn(x; k), Λ2,sm(x) = sn(x; k)dn(x; k).

Thus, from (4.9) and the Floquet theory, we obtain the first part.
For the second part, we note that if µ1, µ2 denote the corresponding negative

eigenvalues for (4.7), via (4.9), then the unique (up to a constant) eigenfunction
for L1 associated to µi, i = 1, 2 is given by χi(x) = Λi,sm( 1

αx), and so (χi, 0) is
an eigenfunction for LR associated to µi, i = 1, 2. Next, let (u, v) ∈ ker(LI), with
u 6= 0. It follows from Lemma 4.2 that u = cφ for some real constant c. Since∫ 4K

0

dn2(x; k)cn(x; k)dx =
∫ 4K

0

dn2(x; k)sn(x; k)dx = 0,

it is easy to see, from the explicit form of φ and χi, that

〈(χi, 0), (u, v)〉L2
per([0,2L]) = c

∫ 2L

0

χi(x)φ(x)dx = 0, i = 1, 2.

Furthermore, since L3 is a self-adjoint operator all its eigenfunctions are two-to-
two orthogonal, and so, all the eigenfunctions of LR corresponding to negative
eigenvalues, which come from L3 (if they exist) are orthogonal to ker(LI).

(ii) Since L2 has no negative eigenvalues, all the negative eigenvalues of LI
come from the operator L3 (if there exists any negative eigenvalue). Therefore, the
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statement follows because L3 is a self-adjoint operator. This completes the proof
of the theorem. �

4.2. Orbital Stability. In this subsection, we establish the stability result for
the periodic travelling waves (eiγtφγ(x), 0), where φγ is a dnoidal wave given by
Theorem 3.1. To make clear our notion of orbital stability, we note that the system
(1.1) has phase and translation symmetries, i.e., if (u(x, t), w(x, t)) is a solution of
(1.1) so are

(eisu(x, t), eisw(x, t)) and (u(x+ r, t), w(x+ r, t)),

for any r, s ∈ R (we denote these symmetries by Tp(s) and Ttr(r), respectively).
Therefore, by orbital stability we mean stability modulo phase and space transla-
tion. More precisely.

Definition 4.5. Let X1 = H1
per([0, L]) × H1

per([0, L]). A travelling-wave solution
for (1.1), Φ(x, t) = (eiγtφγ(x), eiγtψγ(x)), is said to be orbitally stable in X1 (or
X1-stable) if for every ε > 0 there exists a δ > 0 such that if z0 ∈ X1 and ‖z0 −
(φγ , ψγ)‖X1 < δ, then the solution z(t) = (u(t), w(t)) of (1.1) with z(0) = z0 exists
for all t and satisfies

sup
t∈R

inf
s,r∈R

‖z(t)− Tp(s)Ttr(r)(φγ , ψγ)‖X1 < ε.

Otherwise, we say that Φ(x, t) is orbitally unstable in X1 (or X1-unstable).

Our stability result is as follows.

Theorem 4.6. Let γ ∈
(

2π2

L2 ,∞
)
, and assume that σ, η > 0 satisfy η > σ. Then,

for φγ given by Theorem 3.1, the periodic travelling waves Φγ(x, t) = (eiγtφγ(x), 0)
are orbitally stable in X1.

Proof. The idea is to apply the theory developed by Grillakis, Shatah, and Strauss
[13] for abstract Hamiltonian system. To do so, we first note that from Corollary
4.3, the real Hilbert space XR := [H1

per([0, L])]4 can be orthogonally decomposed as

XR = N ⊕ ker(Lγ)⊕ P,

where N denotes the negative eigenspace of Lγ and P is a closed subspace such
that 〈Lγp, p〉 ≥ ϑ0‖p‖2X1

, for all p ∈ P and some ϑ0 > 0.
Next, for γ ∈ I =

(
2π2

L2 ,∞
)

and Φγ = (φγ , 0, 0, 0), we define the real function

d(γ) = H(Φγ) + γF(Φγ), (4.10)

Hence, since Φγ is a critical point of the functional H + γF , ker(Lγ) is two-
dimensional, and N is one-dimensional, from the abstract Stability Theorem in
[13], we just need to prove that d′′(γ) > 0. To this end, from (4.10), we immedi-
ately obtain

d′(γ) = F(Φγ) =
1
2
‖φγ‖2L2

per([0,L]). (4.11)

But, from the explicit form of φγ , we calculate

‖φγ‖2L2
per([0,L]) =

8
L
K(k)

∫ K(k)

0

dn2(x; k)dx =
8
L
K(k)E(k), (4.12)
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where in the last equality we have used that
∫K(k)

0
dn2(x; k)dx = E(k) (see [8, pg.

10], here E(k) denotes the complete elliptic integral of the second kind). So, from
(4.11) and (4.12), we deduce that

d′′(γ) =
4
L

d

dk
[K(k)E(k)]

dk

dω

1
η
.

Since the mapping k ∈ (0, 1) 7→ K(k)E(k) is a strictly increasing function, and
because from Theorem 3.1 we have dk

dω > 0, the theorem follows. �

Remark. Note that our stability result includes the case of two waves of different
polarizations and the case for two waves of different frequencies ω1 and ω2 with
ω2 � ω1 (see the Introduction).

4.3. Orbital Instability. In Subsection 4.2, we established a orbital stability re-
sult for the periodic waves Φγ(x, t) = (eiγtφγ(x), 0), where φγ is given by Theorem
3.1, by periodic perturbations which have the same fundamental period of φγ . In
this subsection, we ask ourselves if such waves are stable/unstable when we consider
periodic perturbations which have twice the fundamental period of φγ . As we will
see below, in this case the waves Φγ(x, t) are orbitally unstable but in a weaker
sense than in Definition 4.5. Actually, here our notion of orbital stability is slightly
different from that in Subsection 4.2 and does not include space translations.

Definition 4.7. Let X2 = H1
per([0, 2L])×H1

per([0, 2L]). The orbit generated mod-
ulo phase, {Tp(γs)(φγ , ψγ); s ∈ R}, is said to be orbitally stable inX2 (orX2-stable)
if for every ε > 0 there exists a δ > 0 such that if z0 ∈ X2 and ‖z0−(φγ , ψγ)‖X2 < δ,
then the solution z(t) = (u(t), w(t)) of (1.1) with z(0) = z0 exists for all t and sa-
tisfies

sup
t∈R

inf
s∈R

‖z(t)− Tp(s)(φγ , ψγ)‖X2 < ε.

Otherwise, the orbit is said to be orbitally unstable in X2 (or X2-unstable).

Here, we follow the approach introduced by Grillakis in [11], [12] (see also [4],
[5]), which get orbital instability from the linear instability of the zero solution for
the linearization of (1.4) around the orbit {Tp(γs)(φγ , ψγ); s ∈ R}.

To start, we define the orbit O to be

O = {Tp(γs)(φγ , 0, 0, 0); s ∈ R},
where φγ = φ is the dnoidal wave given by Theorem 3.1. Next, for Φ = (φγ , 0, 0, 0)
and U = (P,R,Q, S) (recall that we have written u = P + iQ, w = R + iS), we
define V = V (t) to be

V = Tp(−γt)U − Φ.
By using the group properties of Tp(s) together with the fact that Φ is a critical
point of the functional H + γF , it is easy to see, from the Taylor expansion and
(4.1), that V (t) satisfies

dV

dt
= JLγV +O(‖V ‖2), (4.13)

where J and Lγ are the operators defined in (4.2) and (4.4), respectively.
To prove that the linearized equation (4.13) has zero as an unstable solution, it is

well known that it suffices to show that JLγ has one and finitely many eigenvalues
with strictly positive real part. Moreover, this implies that the orbit O is orbitally
unstable (see [11], [13], [29]). Keeping this in mind, we prove the following result.
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Theorem 4.8. Let γ ∈
(

2π2

L2 ,∞
)

and σ, η > 0. Then, for φ = φγ given by Theorem
3.1, the orbit

O = {Tp(γt)(φ, 0, 0, 0); t ∈ R}
is X2-unstable by the periodic flow of the system (1.4).

Proof. As we have already pointed out, we only have to prove that the operator
JLγ has one and finitely many eigenvalues with strictly positive real part. But,
from Lemma 5.6 and Theorem 5.8 in [13], we know that JLγ has finitely many
eigenvalues with strictly positive real part. Now, to prove that JLγ has at least
one eigenvalue with strictly positive real part, in light of Theorem 2.6 in [12], we
define

Y = [ker(LR) ∪ ker(LI)]⊥,

L̂R = restriction of LR on Y ∩H2
per([0, 2L]),

L̂−1
I = restriction of L−1

I on Y ∩H2
per([0, 2L]).

With these notation, Theorem 2.6 in [12] states that JLγ has exactly

max{n(L̂R), n(L̂−1
I )} − d(C(L̂R) ∩ C(L̂−1

I )) (4.14)

± pairs of real eigenvalues, where C(L) = {y ∈ Y ; 〈Ly, y〉 < 0} denotes the negative
cone of the operator L and d(C(L)) denotes the dimension of a maximal linear
subspace that is contained in C(L).

Therefore, we have proved the theorem if we show that the number in (4.14) is
strictly positive. Since LR is a self-adjoint operator on L2

per([0, 2L]), its negative
eigenspace is orthogonal to its kernel (the same conclusion holds for the operator
LI). Thus, from Theorem 4.4, we have n(L̂R) = k0 + 2 and n(L̂I) = k0. Moreover,
from the structure of the operators LR and LI , we see that the negative cone
C(L̂R) ∩ C(L̂−1

I ) is k0-dimensional; that is,

d(C(L̂R) ∩ C(L̂−1
I )) = k0.

Hence,

max{n(L̂R), n(L̂−1
I )} − d(C(L̂R) ∩ C(L̂−1

I )) = k0 + 2− k0 = 2.

This completes the proof of the theorem. �

5. Orbital Instability of the non-semitrivial solutions

This section is mainly devoted to prove the instability results concerning the
dnoidal-wave solutions given in Theorem 3.3. For the sake of simplicity, throughout
this section we take η = 1. So, the coupled system (1.4) admits the solutions in
Theorem 3.3 for σ 6= 1 and b2 = 1. We assume throughout that b = 1, but a similar
analysis can be performed if b = −1.

5.1. Spectral Analysis and Stability/Instability. Fix L > 0 and let Φ̃ =
(φγ , φγ , 0, 0), where φ = φγ is the dnoidal wave given by Theorem 3.3 (with η =
b = 1). Consider the linearized operator

Tγ = H′′(Φ̃) + γF ′′(Φ̃) =
(
TR 0
0 TI

)
, (5.1)
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where

TR =

(
− d2

dx2 + γ − (3 + σ)φ2
γ −2σφ2

γ

−2σφ2
γ − d2

dx2 + γ − (3 + σ)φ2
γ

)
, (5.2)

TI =

(
− d2

dx2 + γ − (1 + σ)φ2
γ 0

0 − d2

dx2 + γ − (1 + σ)φ2
γ

)
. (5.3)

Our first result is about the study of the spectra of the operators TR and TI .

Theorem 5.1. Let φ = φγ be the dnoidal wave given by Theorem 3.3 and assume
that σ > 0. Then the following spectral properties hold.

(i) If σ > 1 then the operator TR in (5.2) defined in L2
per([0, L]) with domain

H2
per([0, L]) has exactly one negative eigenvalue which is simple; zero is a

simple eigenvalue. Moreover, the remainder of the spectrum is constituted
by a discrete set of eigenvalues.

(ii) If 0 < σ < 1 then the operator TR in (5.2) defined in L2
per([0, L]) with

domain H2
per([0, L]) has exactly two negative eigenvalue which are simple;

zero is a simple eigenvalue. Moreover the remainder of the spectrum is
constituted by a discrete set of eigenvalues.

(iii) The operator TI in (5.3) defined in L2
per([0, L]) with domain H2

per([0, L])
has no negative eigenvalues; its kernel is two-dimensional and spanned by
(0, φ) and (φ, 0). Moreover, the remainder of the spectrum is constituted by
a discrete set of eigenvalues.

Proof. Let

T1 = − d2

dx2
+ γ − 3(1 + σ)φ2

γ , T2 = − d2

dx2
+ γ − (1 + σ)φ2

γ . (5.4)

It is not difficult to check that the same results as in Lemma 4.2 hold for the
operators T1 and T2 replacing L1 and L2, respectively. So, since T2 has no negative
eigenvalues and zero is a simple eigenvalue we have proved part (iii).

To show parts (i) and (ii), we note that the operator TR can be diagonalized
under a similarity transformation. Indeed, let

AR =
(

1 1
− 1

2
1
2

)
(5.5)

Then

TDR := ARTRA−1
R =

(
T1 0
0 T3

)
(5.6)

where T1 is defined in (5.4) and

T3 = T1 + 4σφ2
γ . (5.7)

Since T1 has exactly one negative eigenvalue, zero is the second eigenvalue and
σ > 0, the Comparison Theorem implies that T3 has at most one negative eigenvalue
and the second eigenvalue is strictly positive.

Now, note that from (5.7), we can also write

T3 = T2 + 2(σ − 1)φ2
γ . (5.8)

Because T2 has no negative eigenvalues, it follows from (5.8), the above observation,
and the Comparison Theorem that T3 is a strictly positive operator if σ > 1, and
it has a unique negative eigenvalue if 0 < σ < 1. This proves the theorem. �
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Remark 5.2. It follows from Theorem 5.1 that the kernel of the operator Tγ is
3-dimensional. Hence, the Grillakis, Shatah, and Strauss theory cannot be applied
to get a stability result as in Theorem 4.6.

In view of Remark 5.2, we propose in proving an instability result (modulo
phase) in the same spirit of Subsection 4.3. First, we linearize (1.4) around the
orbit Õ = {Tp(γs)(φγ , φγ , 0, 0); s ∈ R}. Defining W = W (t) to be

W = Tp(−γt)U − (φγ , φγ , 0, 0),

we get the linearized equation
dW

dt
= JTγW, (5.9)

where J is the matrix in (4.2) and Tγ is defined in (5.1).
The first natural question is the following: is the orbit Õ unstable with regard to

periodic perturbations which have the same fundamental period as φγ? In this case,
the method of proof employed in Theorem 4.8 does not give a result concerning the
orbital instability as in Subsection 4.3, and we can only prove a spectral stability
result. More precisely, we prove the following.

Theorem 5.3. Let φ = φγ be the dnoidal wave given by Theorem 3.3. Then the
orbit

Õ = {Tp(γs)(φγ , φγ , 0, 0); s ∈ R}
is spectrally stable, which is to say, the spectrum of the linearized operator JTγ , in
the space L2

per([0, L]), entirely lies on the imaginary axis.

Proof. As in the proof of Theorem 4.8, we already know that the operator JTγ has
finitely many eigenvalues with strictly positive real part. Moreover, since n(TI) = 0
(see Theorem 5.1), we deduce that the unstable eigenvalues of JTγ , that is, those
with a strictly positive real part, may occur only as real positive eigenvalues (see
e.g. [11] or [26]). Thus, since JTγ has exactly

max{n(T̂R), n(T̂ −1
I )} − d(C(T̂R) ∩ C(T̂ −1

I )) (5.10)

± pairs of real eigenvalues (see Subsection 4.3 for the definitions), we only have
to prove that such a number is zero. But, since n(TI) = 0, the number in (5.10)
reduces to n(T̂R). So, our task is to show that no eigenfunctions of TR, associated
to negative eigenvalues, are orthogonal to ker(TI). To do this, let −→u = (u1, u2) 6= 0
and λ < 0 such that TR−→u = λ−→u . From (5.6), we see that

AR−→u =
(

u1 + u2

− 1
2u1 + 1

2u2

)
is an eigenfunction of TDR associated to the negative eigenvalue λ. As a conse-
quence, either T1u = λu or T3v = λv, where u = u1 +u2 and v = 1

2 (u2−u1). Now,
from Theorem 5.1, it follows that u ≡ 0 or v ≡ 0. This means that either

(i) −→u = (−u2, u2) and T3u2 = λu2; or
(ii) −→u = (u1, u1) and T1u1 = λu1.

Because T1 and T3 have at most one negative eigenvalue, it follows from the Floquet
theory that if (i) occurs then u2 > 0 and if (ii) occurs then u1 > 0. Hence, for
any

−→
φ = (α1φγ , α2φγ) ∈ ker(TI) with α1 6= α2, we have 〈−→u ,

−→
φ 〉L2

per
6= 0. In

consequence, −→u /∈ [ker(TI)]⊥. This completes the proof of the theorem. �
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In analogy to Theorem 4.8, we can also prove that the orbit Õ is orbitally
unstable with regard to periodic perturbations which have twice the fundamental
period of φγ .

Theorem 5.4. Let φ = φγ be the dnoidal wave given by Theorem 3.3. Then the
orbit

Õ = {Tp(γs)(φγ , φγ , 0, 0); s ∈ R}
is X2-unstable, in the sense of Definition 4.7, by the periodic flow of system (1.4).

Proof. The proof follows the same arguments as in Theorem 4.8. Actually, similarly
to the proof of Theorem 4.4, we can prove that the operator T1, with domain
H2

per([0, 2L]) has exactly three negative eigenvalues, for which, the eigenfunctions
corresponding to the second and third eigenvalues are orthogonal to φγ . Therefore,

max{n(T̂R), n(T̂ −1
I )} − d(C(T̂R) ∩ C(T̂ −1

I )) = n(T̂R) ≥ 2,

and the theorem is proved. �

Finally, we observe that the solutions in Theorem 3.3 also make sense when
−1 < σ < 0. In this case, Theorem 5.1, (5.7), and the Comparison Theorem imply
that the operator T3, defined in L2

per([0, L]) with domain H2
per([0, L]), has at least

two negative eigenvalues and so TR has at least three negative eigenvalues. Thus,
we can establish the following.

Theorem 5.5. Let φ = φγ be the dnoidal wave given by Theorem 3.3 and −1 <
σ < 0. Then the orbit

Õ = {Tp(γs)(φγ , φγ , 0, 0); s ∈ R}

is X1-unstable, in the sense of Definition 4.7, by the periodic flow of system (1.4).

Proof. As we have already pointed out, the advantage in using the Grillakis ap-
proach is that we do not need to know the exact number of negative eigenvalues
of the operator Tγ , but only to have an estimate of the number in (5.10). In the
present case, since

max{n(T̂R), n(T̂ −1
I )} − d(C(T̂R) ∩ C(T̂ −1

I )) = n(T̂R)

we can use the estimate (see e.g. [5] or [26])

n(T̂R) ≥ n(TR)− dim(ker(TI)) (5.11)

to conclude that

max{n(T̂R), n(T̂ −1
I )} − d(C(T̂R) ∩ C(T̂ −1

I )) ≥ 3− 2 = 1.

This proves the theorem. �

Remark 5.6. The estimate (5.11) may be proved following similar arguments as
in the proof of [11, Theorem 3.2] (see also [31]).
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