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DEPENDENCE RESULTS ON ALMOST PERIODIC AND
ALMOST AUTOMORPHIC SOLUTIONS OF EVOLUTION

EQUATIONS

JOËL BLOT, PHILIPPE CIEUTAT, GASTON M. N’GUÉRÉKATA

Abstract. We consider the semilinear evolution equations x′(t) = A(t)x(t)+

f(x(t), u(t), t) and x′(t) = A(t)x(t) + f(x(t), ζ, t) where A(t) is a unbounded
linear operator on a Banach space X and f is a nonlinear operator. We study

the dependence of solutions x with respect to the function u in three cases: the

continuous almost periodic functions, the differentiable almost periodic func-
tions, and the almost automorphic functions. We give results on the continuous

dependence and on the differentiable dependence.

1. Introduction

We consider the differential equations

x′(t) = A(t)x(t) + f(x(t), u(t), t), (1.1)

x′(t) = A(t)x(t) + f(x(t), ζ, t), (1.2)

where t ∈ R, A(t) is a unbounded linear operator on a Banach space and f is a non-
linear operator. The function u can be seen as a perturbation or as a control term;
the term ζ is a general abstract parameter. Our aim is to study the dependence
of solutions x of (1.1) with respect to the function u and the dependence of the
solutions x of (1.2) with respect to ζ. We consider three classes of functions: the
continuous almost periodic functions, the differentiable almost periodic functions,
and the almost automorphic functions. In our method we use the following linear
inhomogeneous differential equation.

x′(t) = A(t)x(t) + b(t). (1.3)

In the special case where A is independent of t, A(t) = A, the previous equations
become the following equation, respectively,

x′(t) = Ax(t) + f(x(t), u(t), t), (1.4)

x′(t) = Ax(t) + f(x(t), ζ, t), (1.5)

x′(t) = Ax(t) + b(t). (1.6)
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Now we describe the contents of this article. In Section 2 we fix our notations,
the various spaces of functions considered, and assumptions used later. In Section
3 we establish preliminary results for the linear case. In Section 4 we treat the
continuous dependence of the solutions of (1.1) and of (1.4) with respect to u
and the continuous dependence of the solutions of (1.2) and of (1.5) with respect
to ζ; we use a fixed point theorem to realize that. In Section 5 we treat the
differentiable dependence of the solutions of (1.1) and of (1.4) with respect to u
and the differentiable dependence of the solutions of (1.2) and of (1.5) with respect
to ζ; we use an implicit function theorem to reach our goal.

2. Notation

WhenX is a Banach space, AP (X) denotes the space of the Bohr almost periodic
functions from R into X, [11], [12, 16, 17, 21, 23]. When n is a non negative
integer number, AP (n)(X) denotes the space of the functions in AP (X) which are
of class Cn on R such that the derivative of order k belongs to AP (X) for all k
between 0 and n, [3]. AA(X) denotes the space of the Bochner almost automorphic
functions from R into X, [16]. Endowed with the norm of the uniform convergence,
‖x‖∞ := supt∈R |x(t)|, AP (X) and AA(X) are Banach spaces. Endowed with the
norm

‖x‖Cn := ‖x‖∞ +
∑

1≤k≤n

‖d
kx

dtk
‖∞,

the space AP (n)(X) is a Banach space.

Definition 2.1 ([21, p. 5-6], [6, p. 45]). When X is a Banach space, a continuous
mapping f : Y × R → X is so-called almost periodic in t uniformly in y when
the following condition holds: for all compact K ⊂ Y and for all ε > 0, there
exists ` = `(K, ε) > 0 such that, for all r ∈ R, there exists τ ∈ [r, r + `] satisfying
|f(y, t+ τ)− f(y, t)| ≤ ε for all (y, t) ∈ K ×R. We denote by APU(Y ×R, X) the
space of such mappings.

Definition 2.2 ([6, p. 45]). A mapping f : Y × R → X is so-called almost
automorphic in t uniformly in y when f(y, .) ∈ AA(X) for all y ∈ Y and when,
for all compact K ⊂ Y and for all ε > 0, there exists δ = δ(K, ε) > 0 satisfying
|f(y, t) − f(z, t)| ≤ ε for all t ∈ R and for all y, z ∈ K such that |y − z| ≤ δ. We
denote by AAU(Y × R, X) the space of such mappings.

About the continuous almost periodic functions we consider the following con-
ditions, where U is a Banach space.

f ∈ APU((X × U)× R, X). (2.1)

f ∈ APU((X × U)× R, X),

∀(ξ, ζ, t) ∈ X × U × R, D1f(ξ, ζ, t) and D2f(ξ, ζ, t) exist ,

D1f ∈ APU((X × U)× R,L(X,X)),

D2f ∈ APU((X × U)× R,L(U,X)),

(2.2)

where D1f(ξ, ζ, t) is the differential of f(., ζ, t), D2f(ξ, ζ, t) is the differential of
f(ξ, ., t) and L(Y,X) denotes the space of the linear bounded mappings from Y
into X.
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About the differentiable almost periodic functions we consider the following con-
ditions.

f ∈ APU((X × U)× R, X) ∩ Cn((X × U)× R, X),

∀k = 0, . . . , n, Dkf ∈ APU((X × U)× R,Lk(((X × U)× R)k, X),
(2.3)

where Dkf denotes the differential of order k of f and where Lk(Y k, X) denotes
the space of the k-linear continuous mappings from Y k into X.

f ∈ APU((X × U)× R, X) ∩ Cn+1((X × U)× R, X),

∀k = 0, . . . , n+ 1, Dkf ∈ APU((X × U)× R,Lk(((X × U)× R)k, X))).
(2.4)

About almost automorphic functions we consider the following conditions.

f ∈ AAU((X × U)× R, X). (2.5)

f ∈ AAU((X × U)× R, X),

∀(ξ, ζ, t) ∈ X × U × R, D1f(ξ, ζ, t) and D2f(ξ, ζ, t) exist,

D1f ∈ AAU((X × U)× R,L(X,X)),

D2f ∈ AAU((X × U)× R,L(U,X)).

(2.6)

For a linear operator A on X, not necessarily bounded, we denote by D(A) its
domain, by %(A) its resolvent set and by R(λ;A) its resolvent operators (cf. [18, p.
8]).

Definition 2.3. A family (F (t, s))t≥s of bounded linear operators on X is called
an evolution family when F (t, t) = I (the identity operator on X) for all t ∈ R,
F (t, s)F (s, r) = F (t, r) for all t ≥ s ≥ r and (t, s) 7→ F (t, s)x is continuous for all
x ∈ X.

Definition 2.4. We say that the evolution family (F (t, s))t≥s in L(X,X) is expo-
nentially stable when there exist c > 0 and ω > 0 such that ‖F (t, s)‖ ≤ c · e−ω(t−s)

for all t ≥ s.

For all t ∈ R, let A(t) : D(A(t)) ⊂ X → X be a unbounded linear operator.

Definition 2.5 ([2], [3, p. 269]). We say that (A(t))t satisfies the Acquistapace-
Terrini conditions when there exist λ0 ≥ 0, θ ∈ (π

2 , π), L ≥ 0, K ≥ 0, α ∈ (0, 1],
β ∈ (0, 1], such that α + β > 1, satisfying Σθ ∪ {0} ⊂ %(A(t) − λ0I) (where
Σθ := {λ ∈ C \ {0} : | arg λ| ≤ θ}) for all t ∈ R, ‖R(λ;A(t)− λ0I)‖ ≤ K

1+|λ| for all
t ∈ R, and ‖(A(t)−λ0I)R(λ;A(t)−λ0I)[R(λ0;A(t))−R(λ0;A(s))]‖ ≤ L|t−s|α|λ|−β

for all t, s ∈ R, for all λ ∈ Σθ.

Remark 2.6. Under these Acquistapace-Terrini conditions, the family (A(t))t gen-
erates a unique evolution family (F (t, s))t≥s in L(X,X) such that, for all s ∈ R
and for all x0 ∈ D(A(s)), the function t 7→ F (t, s)x0 is continuous at t = s and
it is the unique solution in C([s,∞), X) ∩ C1((s,∞), X) of the following Cauchy
problem: x′(t) = A(t)x(t) for t > s and x(s) = x0 (cf. [2]).

We consider the following condition.
(A(t))t satisfies the Acquistapace-Terrini conditions R(λ0, A(.)) ∈
AP (L(X,X)) for λ0 given in Definition 2.5 and the evolution fam-
ily (F (t, s)t≥s is exponentially stable.

(2.7)

We also consider the following condition which are the assumptions [9, (A1)-(A2)].
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Definition 2.7. We say that (A(t))t satisfies the Ding-Long-N’Guérékata con-
ditions when (A(t))t generates an evolution family (F (t, s))t≥s and there exists
P ∈ C(R,L(X,X)) such that P (t) is a projection for all t ∈ R, there exist
c ≥ 0, ω > 0 such that F (t, s)P (s) = P (t)F (t, s) for all t ≥ s, and denoting
Q := I − P , the restriction FQ(t, s) : Q(s)X → Q(t)X is invertible for all t ≥ s,
and ‖F (t, s)P (s)‖ ≤ c.e−ω.(t−s), ‖FQ(t, s)Q(t)‖ ≤ c.e−ω.(t−s) for all t ≥ s. Set-
ting Γ(t, s) := F (t, s)P (s) when t ≥ s and Γ(t, s) := −FQ(t, s)Q(s) when t < s,
for all real sequence (s′m)m, there exists a subsequence (sm)m of (s′m)m such that
Λ(t, s)x := limm→∞ Γ(t + sm, s + sm)x is well defined for all x ∈ X and for all
t, s ∈ R, and moreover limm→∞ Λ(t− sm, s− sm)x = Γ(t, s)x for all x ∈ X and for
all t, s ∈ R.

Note that

(A(t))t satisfies the Ding-Long-N’Guérékata conditions. (2.8)

In the special case where A(t) = A is constant with respect to t, we consider the
following notion, see [16, p. 56].

Definition 2.8. We say that the linear unbounded operator A : D(A) ⊂ X → X
generates a C0-semigroup (T (t))t≥0 in L(X,X) which is exponentially stable when
there exist c > 0 and ω > 0 such that ‖T (t)‖ ≤ c · e−ωt for all t ≥ 0.

Note that

A : D(A) ⊂ X → X generates an exponentially stable C0-semigroup. (2.9)

Definition 2.9 ([18, pp. 106, 146, 184]). When x : R → X is a continuous func-
tion, x is so-called a mild solution of (1.1) (respectively of (1.3) respectively of
(1.2), respectively of (1.4), respectively of (1.6), respectively of (1.5)) when the
following condition holds for all t ≥ s:
x(t) = F (t, s)x(s) +

∫ t

s
F (t, r)f(x(r), u(r), r)dr (respectively x(t) = F (t, s)x(s) +∫ t

s
F (t, r)b(r)dr, respectively x(t) = F (t, s)x(s) +

∫ t

s
F (t, r)f(x(r), ζ, r)dr, respec-

tively x(t) = T (t− s)x(s) +
∫ t

s
T (t− r)f(x(r), u(r), r)dr, respectively x(t) = T (t−

s)x(s)+
∫ t

s
T (t−r)b(r)dr, respectively x(t) = T (t−s)x(s)+

∫ t

s
T (t−r)f(x(r), ζ, r)dr).

Definition 2.10 ([18, pp. 105, 146, 184]). A function x : R → X is so-called
a classical solution of (1.4) (respectively of (1.6), respectively of (1.5))) if x is
continuously differentiable on R, x(t) ∈ D(A) for all t ∈ R, and (1.4) (respectively
of (1.6), respectively of (1.5))) is satisfied on R.

3. The linear case

About the linear equations, we consider the following conditions.

For all b ∈ AP (X), (1.3) has a unique mild solution in AP (X), (3.1)

For all b ∈ AP (n), (1.3) has a unique mild solution in AP (n)(X), (3.2)

For all b ∈ AA(X), (1.3) has a unique mild solution in AA(X). (3.3)

In [3, Theorem 3.6] it is shown that (3.1) and (3.2) are fulfilled when (2.7) is satisfied.
In [9, Theorem 2.2] it is shown that (3.3) is fulfilled when (2.8) is satisfied.
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Theorem 3.1. Under (2.7) (respectively under (2.8)) we define the operators Tap :
AP (X) → AP (X) and Tapn : AP (n)(X) → AP (n)(X) (respectively Taa : AA(X) →
AA(X)) in the following way: Tap(b) (respectively Tapn(b), respectively Taa(b)) is
the unique mild solution of (1.3) in AP (X) (respectively AP (n)(X), respectively
AA(X)) for all b ∈ AP (X) (respectively AP (n)(X), respectively AA(X)). Then
Tap, Tapn and Taa are linear bounded operators.

Proof. The conditions (3.1)-(3.3) ensure that the operators Tap, Tapn and Taa are
well defined and their linearity is clear. We prove that the graph of Tap, G(Tap),
is closed in AP (X)× AP (X). Let (bm, xm)m be a sequence in G(Tap) which (uni-
formly) converges to (b, x) ∈ AP (X) × AP (X). And so, for all m ∈ N, and for
t ≥ s, the following equality holds.

xm(t) = F (t, s)xm(s) +
∫ t

s

F (t, r)bm(r)dr.

Since the uniform convergence implies the pointwise converge, limm→∞ xm(t) =
x(t) and limm→∞ xm(s) = x(s). Since F (t, s) is a bounded linear operator, we
have limm→∞ F (t, s)xm(s) = F (t, s)x(s). Note that, for all r ∈ [s, t], we have

|F (t, r)bm(r)− F (t, r)b(r)| ≤ ‖F (t, r)‖.|bm(r)− b(r)|

≤ ce−ω(t−s)‖bm − b‖∞ ≤ c‖bm − b‖∞,

and consequently we obtain that the sequence (F (t, .)bm)m converges uniformly to
F (t, .)b on [s, t], and then, [8], we have

lim
m→∞

∫ t

s

F (t, r)bm(r)dr =
∫ t

s

F (t, r)b(r)dr.

Then, when m→∞, we obtain the equality

x(t) = F (t, s)x(s) +
∫ t

s

F (t, r)b(r)dr

for all t ≥ s. This proves that (b, x) ∈ G(Tap). Since Tap is closed and since
D(Tap) = AP (X), by using the Closed Graph Theorem (Theorem II.1.9 in [10, p.
45] ), we deduce that Tap is bounded. The reasoning is similar for Tapn and Taa. �

Now we treat the autonomous case. We need some lemmas. We consider the
following conditions.

For all b ∈ AP (X), (1.6) has a unique mild solution in AP (X), (3.4)

For all b ∈ AP (n), (1.6) has a unique mild solution in AP (n)(X), (3.5)

For all b ∈ AA(X), (1.6) has a unique mild solution in AA(X). (3.6)

Lemma 3.2 ([22, p. 332 ]). Under assumption (2.9), if b : R → X is bounded and
continuous, if x1 : R → X and x2 : R → X are bounded continuous mild solutions
of (1.6) then we have x1 = x2.

Lemma 3.3. Under assumption (2.9), for all b ∈ AP (n)(X) there exists a unique
mild solution of (1.6) in AP (n)(X). And moreover, for n ≥ 1, the mild solution is
a classical solution.
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Proof. The uniqueness is a consequence of Lemma 3.2. To prove the existence, we
consider the function x : R → X defined by x(t) :=

∫ t

−∞ T (t−r)b(r)dr for all t ∈ R.
First, we note that |T (t− r)b(r)− T (t− s)b(s)| ≤ |T (t− r)(b(r)− b(s))|+ |(T (t−
r)−T (t−s))b(s)| ≤ c ·e−ω.(t−r)|b(r)−b(s)|+ |(T (t−r)−T (t−s))b(s)|; when r → s
the first term converges to zero by using the continuity of b, and the second term
converges to zero by using [18, Corollary 2.3]. And so the function r 7→ T (t−r)b(r)
is continuous on (−∞, t], and consequently it is Lebesgue measurable.

We note that |T (t−r)b(r)| ≤ c.e−ω.(t−r)‖b‖∞ for all r ∈ (−∞, t]. It is well-known
that the function r 7→ ce−ω.(t−r) is Lebesgue integrable on (−∞, t] and consequently
r 7→ T (t−r)b(r) is Lebesgue integrable on (−∞, t], see [14, Proposition 2.4.8]. And
so the function x is well defined on R. By using the change of variable formula,
[14, Proposition 8.4.10], since r 7→ t − r is a C1-diffeomorphism from (−∞, t) on
(0,∞), we obtain x(t) =

∫∞
0
T (s)b(t− s)ds.

Reasoning as at the beginning of this proof we verify that the function s 7→
T (s)b(t − s) is continuous on R+, and therefore it is Lebesgue measurable on R+.
Since it is well-known that the function s 7→ ce−ωs‖b‖∞ is Lebesgue integrable on
R+, and since the inequality |T (s)b(t− s)| ≤ c · e−ωs‖b‖∞ holds when s ∈ R+, we
can use the first part of [14, Proposition 2.4.10] that permits us to say that x is
continuous on R.

From the last formula of x it is easy to obtain the inequalities |x(t+ τ)−x(t)| ≤∫∞
0
‖T (s)‖.|b(t + τ − s) − b(t − s)|ds ≤

∫∞
0
c · e−ωs|b(t + τ − s) − b(t − s)|ds from

which we easily verify that x ∈ AP (X) by using the definition of the Bohr almost
periodicity or the Bochner criterion, [12, p. 4.]. When b ∈ AP (n) with n ≥ 1,
since T (s) is bounded and consequently it is differentiable, and so the function
t 7→ T (s)b(t − s) is of class C1 on R, and its derivative satisfies the inequality
|T (s)b′(t − s)| ≤ ce−ωs‖b′‖∞ where the function s 7→ ce−ωs‖b′‖∞ is Lebesgue
integrable on R, that permits us to use the second part of [14, Proposition 2.4.10],
and then to say that the function x is differentiable on R, and that its derivative
is x′(t) =

∫∞
0
T (s)b′(t− s)ds for all t ∈ R. From the inequality |x′(t+ τ)− x′(t)| ≤∫∞

0
ce−ωs|b′(t + τ − s) − b′(t − s)|ds it is easy to see that x′ ∈ AP (X) when b′ ∈

AP (X). Iterating this reasoning we obtain that x(k) ∈ AP (X) when b(k) ∈ AP (X)
for all k = 1, . . . , n. And so we obtain x ∈ AP (n)(X) when b ∈ AP (n)(X).

To verify that x is a mild solution of (1.6), the reasoning is similar to this one
given in [22]. To prove that the mild solution is a classical solution when n ≥ 1, it
remains to prove that x(t) ∈ D(A) and x satisfies (1.6) when t ∈ R. Recall that the
mild solution x of (1.6) is given by x(t) =

∫ t

−∞ T (t − r)b(r)dr. It is easy to verify
the following equality, for h > 0:

T (h)x(t)− x(t)
h

=
x(t+ h)− x(t)

h
− 1
h

∫ t+h

t

T (t+ h− r)b(r)dr. (3.7)

From the continuity of b it is clear that the second term of the right-hand of (3.7)
has the limit b(t) when h → 0. Since x is differentiable on R, it follows from (3.7)
that x(t) ∈ D(A) and Ax(t) = x′(t)− b(t) for all t ∈ R; consequently x is a classical
solution of (1.6). �

Remark 3.4. The proof of Lemma 3.3 is an extension at the cases n ≥ 1 of the
proof of a theorem in [22] done when n = 0. This proof in [22] is itself an extension
of the proof of the Neugebauer-Bohr theorem, for the finite-dimensional systems,
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for instance given in [19] p. 206-207. In [22] or in [19], the authors use the Riemann
improper integral; in the previous proof we only use the Lebesgue integral.

Remark 3.5. When A(t) = A is constant with respect to t, the condition (2.7) is
reduced to the following condition:

∃λ0 ∈ R+,∃θ ∈ (
π

2
, π),∃K ∈ R+,

Σθ ∪ {0} ⊂ ρ(A− λ0I),

∀λ ∈ Σθ, ‖R(λ+ λ0;A)‖ ≤ K

1 + |λ|
.

(3.8)

If an infinitesimal generator of a C0-semigroup (T (t))t≥0 satisfies this last condi-
tion, then (T (t))t≥0 is differentiable (and even it can be extended to an analytic
semigroup), see [18, Theorem 5.2]; therefore condition (3.8) is not a consequence of
(2.9) and it is not necessary to obtain the conclusion of Lemma 3.3.

Lemma 3.6 ([16, Theorem 2.17], [15, Theorem 3.1]). Under assumption (2.9), for
all b ∈ AA(X) there exists a unique mild solution of (1.6).

Theorem 3.7. Under assumption (2.9) we can define the operators T c
ap, T

c
apn, and

T c
aa as follows: for all b ∈ AP (X) (respectively AP (n)(X), respectively AA(X))
T c

ap(b) (respectively T c
apn(b), respectively T c

aa(b)) is the unique mild solution of (1.6)
in AP (X) (respectively AP (n)(X), respectively AA(X)). Then T c

ap : AP (X) →
AP (X), T c

apn : AP (n)(X) → AP (n)(X) and T c
aa : AA(X) → AA(X) are linear and

bounded.

Proof. Theorem in [22] ensures that (2.9) implies (3.4). Lemma 3.3 ensures that
(2.9) implies (3.5). Lemma 3.6 ensures that (2.9) implies (3.6). And so the three
operators T c

ap, T
c
apn, and T c

aa are well defined. The rest of the proof is similar to
this one of Theorem 3.1. �

Notation. ‖Tap‖L (respectively ‖Tapn‖L, respectively ‖Taa‖L, respectively ‖T c
ap‖L,

respectively ‖T c
apn‖L, respectively ‖T c

aa‖L) denotes the norm of the linear bounded
operator Tap (respectively Tapn, respectively Taa, respectively T c

ap, respectively
T c

apn, respectively T c
aa).

4. The continuous dependence

4.1. Solutions of equations (1.1) and (1.2). First we formulate the following
conditions:

∃cap ∈ (0, ‖Tap‖L−1),∀t ∈ R,∀ξ, ξ1 ∈ X,∀ζ ∈ U,
|f(ξ, ζ, t)− f(ξ1, ζ, t)| ≤ cap|ξ − ξ1|.

(4.1)

∃capn ∈ (0, ‖Tapn‖L−1),∀t ∈ R,∀ξ, ξ1 ∈ X,∀ζ ∈ U,
|f(ξ, ζ, t)− f(ξ1, ζ, t)| ≤ capn|ξ − ξ1|.

(4.2)

∃caa ∈ (0, ‖Taa‖L−1),∀t ∈ R,∀ξ, ξ1 ∈ X,∀ζ ∈ U,
|f(ξ, ζ, t)− f(ξ1, ζ, t)| ≤ caa|ξ − ξ1|.

(4.3)

We recall the following parametrized fixed point theorem.
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Theorem 4.1 ([20, Théorème 46-bis ]). Let (Z, d) be a complete metric space and
let W be a topological space. Let Φ : Z × W → Z be a mapping such that the
partial mappings w 7→ Φ(z, w) are continuous for all z ∈ Z, and such that there
exists c ∈ [0, 1) satisfying d(Φ(z, w),Φ(z1, w)) ≤ c.d(z, z1) for all z, z1 ∈ Z and
for all w ∈ W . Then, for all w ∈ W , there exists a unique z(w) ∈ Z such that
Φ(z(w), w) = z(w), and moreover the mapping w 7→ z(w) is continuous from W
into Z.

Now we state the result on the continuous dependence for (1.1).

Theorem 4.2. Under assumptions (2.1), (2.7) and (4.1) (respectively (2.3), (2.7)
and (4.2), respectively (2.5), (2.8) and (4.3)), for all u ∈ AP (U) (respectively
AP (n)(U), respectively AA(U)) there exists a unique x(u) ∈ AP (X) (respectively
AP (n)(X), respectively AA(X)) which is a mild solution of (1.1). Moreover the
mapping u 7→ x(u) is continuous from AP (U) (respectively AP (n)(U), respectively
AA(U)) into AP (X) (respectively AP (n)(X), respectively AA(X)).

Proof. First we treat the case of the continuous almost periodic functions. When
u ∈ AP (U), note that x ∈ AP (X) is a mild solution of (1.1) if and only if we have
x = Tap ◦Nf (x, u), where Nf : AP (X)×AP (U) → AP (X) is the superposition op-
erator (or the Nemytskii operator) built on f ; i.e., Nf (x, u) := [t 7→ f(x(t), u(t), t)].
By using [6, Lemma 3.4] we know that Nf is well defined. From (4.1) it is easy to
verify that we have ‖Nf (x, u)−Nf (x1, u)‖∞ ≤ cap‖x−x1‖∞ for all x, x1 ∈ AP (X)
and for all u ∈ AP (U).

We set Φap := Tap ◦ Nf : AP (X) × AP (U) → AP (X). For all x, x1 ∈ AP (X)
and for all u ∈ AP (U), we have

‖Φap(x, u)− Φap(x1, u)‖∞ ≤ ‖Tap‖Lcap‖x− x1‖∞ = dap‖x− x1‖∞,

where dap := ‖Tap‖Lcap ∈ [0, 1). Moreover, by using Theorem 3.5 in [6] we know
that Nf is continuous and consequently the partial mapping u 7→ Φap(x, u) is con-
tinuous (as a composition of continuous mappings) on AP (U) for all x ∈ AP (X).
And so we can use Theorem 4.1 and we obtain the announced result for the continu-
ous almost periodic case. For the mild solution in AP (n)(X) (respectively AA(X)),
the reasoning is similar by using Theorem 7.2 (respectively [6, Lemma 9.4 and
Theorem 9.6 ]) instead of [6, Lemma 3.4 and Theorem 3.5]. �

Now we establish the theorem on the continuous dependence for (1.2).

Theorem 4.3. Under assumptions (2.1), (2.7) and (4.1) (respectively (2.3), (2.7)
and (4.2), respectively (2.5), (2.8) and (4.3)), for all ζ ∈ U there exists a unique
x(ζ) ∈ AP (X) (respectively AP (n)(X), respectively AA(X)) which is a mild solu-
tion of (1.2). Moreover the mapping ζ 7→ x(ζ) is continuous from U into AP (X)
(respectively AP (n)(X), respectively AA(X)).

Proof. Let φ be the operator from AP (U) into AP (X) defined as follows: φ(u) is
the unique mild solution of (1.1) in AP (X) provided by Theorem 4.2. By using
Theorem 4.2 we obtain that φ is well defined and continuous. We consider U as
the Banach subspace of the constant functions in AP (U). And so we define the
operator ψ : U → AP (X) as the restriction of φ at U . Then ψ(ζ) is the unique
mild solution of (1.2) in AP (X) and ψ is continuous. The reasoning is similar for
the other cases. �
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4.2. Solutions of equations (1.4) and (1.5). When A(t) = A does not depend
on t, we consider the following conditions.

∃c1ap ∈ (0, ‖T c
ap‖L−1),∀t ∈ R,∀ξ, ξ1 ∈ X,∀ζ ∈ U,

|f(ξ, ζ, t)− f(ξ1, ζ, t)| ≤ c1ap|ξ − ξ1|.
(4.4)

∃c1apn ∈ (0, ‖T c
apn‖L−1),∀t ∈ R,∀ξ, ξ1 ∈ X,∀ζ ∈ U,

|f(ξ, ζ, t)− f(ξ1, ζ, t)| ≤ c1apn|ξ − ξ1|.
(4.5)

∃c1aa ∈ (0, ‖T c
aa‖L−1),∀t ∈ R,∀ξ, ξ1 ∈ X,∀ζ ∈ U,

|f(ξ, ζ, t)− f(ξ1, ζ, t)| ≤ c1aa|ξ − ξ1|.
(4.6)

Theorem 4.4. We assume (2.9) fulfilled. Under (2.1) and (4.4) (respectively (2.3)
and (4.5), respectively (2.5) and (4.6)), for all u ∈ AP (U) (respectively AP (n)(U),
respectively AA(U)) there exists a unique x(u) ∈ AP (X) (respectively AP (n)(X),
respectively AA(X)) which is a mild solution of (1.4). Moreover the mapping u 7→
x(u) is continuous from AP (U) (respectively AP (n)(U), respectively AA(U)) into
AP (X) (respectively AP (n)(X), respectively AA(X)). Moreover, for n ≥ 1, the
mild solution x(u) ∈ AP (n)(X) is a classical solution.

Proof. For the mild solution the proof is similar to this one of Theorem 4.2. Remark
that x(u) is a mild solution of (1.6) with b(t) := f(x(u)(t), u(t), t). If f satisfies (2.3)
and if u ∈ AP (n)(X), then we have x(u) ∈ AP (n)(X) and by using [6, Theorem
7.2], we obtain that b ∈ AP (n)(X). In this case, by help of Lemma 3.3, we deduce
that x(u) is a classical solution. �

Theorem 4.5. We assume (2.9) fulfilled. Under (2.1) and (4.4) (respectively
(2.3) and (4.5), respectively (2.5) and (4.6)), for all ζ ∈ U there exists a unique
x(ζ) ∈ AP (X) (respectively AP (n)(X), respectively AA(X)) which is a mild solu-
tion of (1.5). Moreover the mapping ζ 7→ x(ζ) is continuous from U into AP (X)
(respectively AP (n)(X), respectively AA(X)). Moreover, for n ≥ 1, the mild solu-
tion x(u) ∈ AP (n)(X) is a classical solution.

The proof of Theorem 4.5 is similar to the proof of Theorem 4.3 and it is omitted.

5. The differentiable dependence

5.1. Solutions of equations (1.1) and (1.2). In this subsection, first we provide
conditions to ensure the differentiability of the dependence of the solution x with
respect to u for (1.1).

Theorem 5.1. Under assumption (2.2) and (2.7) (respectively (2.4) and (2.7),
respectively (2.6) and (2.8)) we assume that there exist u0 ∈ AP (U) (respectively
AP (n)(U),respectively AA(U)) and x0 ∈ AP (X) (respectively AP (n)(X), respec-
tively AA(X)) which is a mild solution of (E, u0). We also assume that the follow-
ing inequality hold:

sup
t∈R

‖D1f(x0(t), u0(t), t)‖ < ‖Tap‖L−1

(respectively sup
t∈R

‖D1f(x0(t), u0(t), t)‖ < ‖Tapn‖L−1 ,

respectively sup
t∈R

‖D1f(x0(t), u0(t), t)‖ < ‖Taa‖L−1).
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Then there exist an open neighborhood U of u0 in AP (U) (respectively AP (n)(U), re-
spectively AA(U)), an open neighborhood X of x0 in AP (X) (respectively AP (n)(X),
respectively AA(X)), and a C1-mapping u 7→ x(u) from U into X such that, for all
u ∈ U , x(u) is a mild solution of (1.1). Moreover x(u) is the unique mild solution
of (1.1) in X ; notably we have x(u0) = x0.

Proof. We do the proof for the almost periodic case. The proofs of the other cases
are similar. In the proof of Theorem 3.7, we have seen that, when u ∈ AP (U),
x ∈ AP (X) is a mild solution of (1.1) if and only if we have x = Tap ◦ Nf (x, u).
We denote by π1 : AP (X) × AP (U) → AP (X) the first projection, π1(x, u) := x.
Clearly π1 is a linear bounded operator.

We introduce the nonlinear operator Ψap : AP (X)×AP (U) → AP (X) by setting
Ψap(x, u) := π1(x, u) − Tap ◦ Nf (x, u). And so, x ∈ AP (X) is a mild solution of
(1.1) if and only if we have Ψap(x, u) = 0. By using (2.2) and [6, Theorem 5.1],
we know that Nf is of class C1 from AP (X)×AP (U) into AP (X). Since Tap and
π1 are linear bounded, they are of class C1. Consequently Ψap is of class C1 as
a composition of operators of class C1. Since x0 is a mild solution of (E, u0) we
have Ψap(x0, u0) = 0. By using the chain rule, the partial differential of Ψap with
respect to the first variable at (x0, u0) is DxΨap(x0, u0) = I − Tap ◦DxNf (x0, u0)
where I is the identity operator of L(AP (X), AP (X)). After Theorem 5.1 in [6]
we know that, for all h ∈ AP (X), DxNf (x0, u0).h = [t 7→ D1f(x0(t), u0(t), t).h(t)],
and then by using the assumption on D1f we obtain

‖DxNf (x0, u0)‖L ≤ sup
t∈R

‖D1f(x0(t), u0(t), t)‖ < ‖Tap‖L−1 .

Consequently we have ‖Tap◦DxNf (x0, u0)‖ < 1. Then by using a classical argument
on the Neumann series (Proof of [1, Lemma 2.5.4], or [7, Théorème 1.7.2]) we know
that I − Tap ◦DxNf (x0, u0) is invertible. And so we can use the implicit function
theorem ([7, Théorème 4.7.1], or [1, Théorème 2.5.7]) and we can assert that there
exist a neighborhood U of u0 in AP (U), a neighborhood X of x0 in AP (X) and
a C1-mapping u 7→ x(u), from U into X , such that x(u0) = x0, and such that
{(x, u) ∈ X × U : Ψap(x, u) = 0} = {(x(u), u) : u ∈ U}. The conclusion of the
theorem is just a translation of these properties. �

The following theorem treats the differentiable dependence for the equations
(1.2).

Theorem 5.2. Under assumptions (2.2) and (2.7) (respectively (2.4) and (2.7),
respectively (2.6) and (2.8)) we assume that there exist ζ0 ∈ U , and x0 ∈ AP (X)
(respectively AP (n)(X), respectively AA(X)) which is a mild solution of (1.2) with
ζ = ζ0. We also assume that the following inequality holds:

sup
t∈R

‖D1f(x0(t), ζ0, t)‖ < ‖Tap‖L−1

(respectively sup
t∈R

‖D1f(x0(t), ζ0), t)‖ < ‖Tapn‖L−1 ,

respectively sup
t∈R

‖D1f(x0(t), ζ0, t)‖ < ‖Taa‖L−1).

Then there exist an open neighborhood Z of ζ0 in AP (U), an open neighborhood X
of x0 in AP (X) (respectively AP (n)(X), respectively AA(X)), and a C1-mapping
ζ 7→ x(ζ) from Z into X such that, for all ζ ∈ Z, x(ζ) is a mild solution of
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(1.2). Moreover x(ζ) is the unique mild solution of (1.2) in X ; notably we have
x(ζ0) = x0.

Proof. Let Φ be the operator from U into X defined as follows: Φ(u) is the unique
mild solution of (1.1) in X ∩AP (X) provided by Theorem 5.1. By using Theorem
5.1 we obtain Φ is of class C1. We consider U as the Banach subspace of the
constant functions in AP (U). And so we define the operator Ψ : U ∩U → X ∩U as
the restriction of Φ to U . Then Ψ(ζ) is the unique mild solution of (1.2) in AP (X)
and Ψ is of class C1. The reasoning is similar for the other cases. �

5.2. Solutions of equations (1.4) and (1.5). Now we establish a result of differ-
entiability in the special case where A(t) = A is constant with respect to t; i.e., for
the equations (1.4).

Theorem 5.3. We assume (2.9) fulfilled. Under assumption (2.2) (respectively
(2.4), respectively (2.6)) we assume that there exist u0 ∈ AP (U) (respectively
AP (n)(U), respectively AA(U)), and x0 ∈ AP (X) (respectively AP (n)(X), respec-
tively AA(X)) which is a mild solution of (Ec, u0). We also assume that the fol-
lowing inequality holds

sup
t∈R

‖D1f(x0(t), u0(t), t)‖ < ‖T c
ap‖L−1

(respectively sup
t∈R

‖D1f(x0(t), u0(t), t)‖ < ‖T c
apn‖L−1 ,

respectively sup
t∈R

‖D1f(x0(t), u0(t), t)‖ < ‖T c
aa‖L−1).

Then there exist an open neighborhood U of u0 in AP (U) (respectively AP (n)(U),
respectively AA(U)), an open neighborhood X in AP (X) (respectively AP (n)(X),
respectively AA(X)), and a C1-mapping u 7→ x(u) from U into X such that, for all
u ∈ U , x(u) is a mild solution of (1.4). Moreover x(u) is the unique mild solution
of (1.4) in X ; notably we have x(u0) = x0.

The proof of Theorem 5.3 is similar to the proof of Theorem 5.1 and it is omitted.
One of the main tools used in the proofs of Theorem 5.1 and Theorem 5.3 is the
implicit function theorem. The use of the implicit function theorem in a functional
analytic framework was done in [4] for periodic solutions of ordinary differential
equations, and in [5] for almost periodic solutions of ordinary differential equations.

The following theorem is a differentiability result for (1.5).

Theorem 5.4. We assume (2.9) fulfilled. Under (2.2) (respectively (2.4), respec-
tively (2.6)) we assume that there exist ζ0 ∈ U , and x0 ∈ AP (X) (respectively
AP (n)(X), respectively AA(X)) which is a mild solution of (1.5) with ζ = ζ0. We
also assume that the following inequality holds:

sup
t∈R

‖D1f(x0(t), ζ0, t)‖ < ‖T c
ap‖L−1

(respectively sup
t∈R

‖D1f(x0(t), ζ0), t)‖ < ‖T c
apn‖L−1 ,

respectively sup
t∈R

‖D1f(x0(t), ζ0, t)‖ < ‖T c
aa‖L−1).

Then there exist an open neighborhood Z of ζ0 in AP (U), an open neighborhood X
of x0 in AP (X) (respectively AP (n)(X), respectively AA(X)), and a C1-mapping
ζ 7→ x(ζ) from Z into X such that, for all ζ ∈ Z, x(ζ) is a mild solution of
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(1.5). Moreover x(ζ) is the unique mild solution of (1.5) in X ; notably we have
x(ζ0) = x0.

The proof of Theorem 5.4 is similar to the proof of Theorem 5.2 and it is omitted.

Remark 5.5. For reasons similar to these ones used about Theorem 4.4, the mild
solution x(u) of (1.4) (respectively (1.5)) in AP (n)(X), for n ≥ 1, provided by
Theorem 5.3 (respectively Theorem 5.4) is a classical solution.

References

[1] R. Abraham, J. E. Marsden, and T. Ratiu; Manifolds, tensor analysis, and applications,
Addison-Wesley Publishing Company, Inc., Reading, Massachussets, 1983.

[2] P. Acquistapace and B. Terrini; A unified approach to abstract linear nonaotonomous para-
bolic equations, Rend. Sem. Mat. Univ. Padova 78, 1987, 47-107.
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