Electronic Journal of Differential Equations, Vol. 2010(2010), No. 102, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BEHAVIOR AT INFINITY OF ψ -EVANESCENT SOLUTIONS TO LINEAR DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

ABSTRACT. In this article we present some necessary and sufficient conditions for the existence of ψ -evanescent solution of the nonhomogeneous linear differential equation x' = A(t)x + f(t), which is related to the notion of ψ -ordinary dichotomy for the equation x' = A(t)x. We associate that with the condition of ψ -ordinary dichotomy for the homogeneous linear differential equation x' = A(t)x.

1. INTRODUCTION

The existence of ψ -bounded and ψ -stable solutions on \mathbb{R}_+ for systems of ordinary differential equations has been studied by many authors; such as Akinyele [1], Avramescu [2], Boi [4, 5], Constantin [6], Diamandescu [9, 10, 11]. Also, in [5, 9, 10, 11] the authors prove several sufficient conditions of the ψ -evanescence at ∞ , $-\infty$ for the solutions of linear differential equations.

The purpose of this paper is to provide a condition for the existence of ψ - evanescent solution of the equations x' = A(t)x + f(t), which is concerned with the notion of ψ -ordinary dichotomy for the equation x' = A(t)x. We shall deal with the existence of ψ -evanescent solution of nonhomogeneous equations, which have been studied in recent works, such as [5, 9, 11].

Denote by \mathbb{R}^d the *d*-dimensional Euclidean space. Elements in this space are denoted by $x = (x_1, x_2, \ldots, x_d)^T$ and their norm by $||x|| = \max\{|x_1|, |x_2|, \ldots, |x_d|\}$. For real $d \times d$ matrices A, we define the norm $|A| = \sup_{||x|| \leq 1} ||Ax||$. Let $\mathbb{R}_+ = [0, \infty)$, $\mathbb{R}_- = (-\infty, 0], J = \mathbb{R}_-, J = \mathbb{R}_+$ or $J = \mathbb{R}$. Let $\psi_i : J \to (0, \infty), i = 1, 2, \ldots, d$ be continuous functions and let

$$\psi = \operatorname{diag}\{\psi_1, \psi_2, \dots, \psi_d\}.$$

Definition 1.1. A function $f: J \to \mathbb{R}^d$ is said to be

- ψ -bounded on J if ψf is bounded on J.
- ψ -integrable on J if f is measurable and ψf is Lebesgue integrable on J.

²⁰⁰⁰ Mathematics Subject Classification. 34A12, 34C11, 34D05.

Key words and phrases. ψ -bounded solutions; ψ -ordinary dichotomy; ψ -evanescent solutions. ©2010 Texas State University - San Marcos.

Submitted April 29, 2010. Published July 28, 2010.

In \mathbb{R}^d , consider the following equations on J.

$$x' = A(t)x + f(t),$$
 (1.1)

$$x' = A(t)x. \tag{1.2}$$

where A(t) is a continuous $d \times d$ matrix function and f(t) is a continuous function for $t \in J$.

P. N. BOI

By a solution of (1.1), we mean a continuous function satisfying (1.1) for almost t in J. Let Y(t) be the fundamental matrix of (1.2) with $Y(0) = I_d$, the identity $d \times d$ matrix. A $d \times d$ matrix P is said to be a projection matrix if $P^2 = P$. If P is a projection, then so is $I_d - P$. Two projections $P, I_d - P$ are called supplementary.

Definition 1.2. Equation (1.2) is said to have a ψ -ordinary dichotomy on J if there exist positive constants K, L and two supplementary projections P_1, P_2 such that

$$|\psi(t)Y(t)P_1Y^{-1}(s)\psi^{-1}(s)| \leqslant K \quad \text{for } s \leqslant t; s, t \in J,$$

$$(1.3)$$

$$|\psi(t)Y(t)P_2Y^{-1}(s)\psi^{-1}(s)| \leq L \quad \text{for } t \leq s; s, t \in J.$$
(1.4)

Also we say that (1.2) has a ψ -ordinary dichotomy on J with two supplementary projections P_1, P_2 .

Remark 1.3. It is easily verified that if (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ and on \mathbb{R}_- with two supplementary projections P_1, P_2 then (1.2) has a ψ -ordinary dichotomy on \mathbb{R} with two supplementary projections P_1, P_2 . Note that for $\psi = I_d$, we obtain the notion of ordinary dichotomy (see [7, 8])

Theorem 1.4 ([4, 9]). (a) Equation (1.1) has at least one ψ -bounded solution on \mathbb{R}_+ for every ψ -integrable function f on \mathbb{R}_+ if and only if (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ .

(b) Suppose that (1.2) has a ψ -ordinary dichotomy and $\lim_{t\to\infty} |\psi(t)Y(t)P_1| = 0$. Let f be a ψ -integrable function on \mathbb{R}_+ . Then every ψ -bounded solution x(t) of (1.1) on \mathbb{R}_+ is such that $\lim_{t\to\infty} ||\psi(t)x(t)|| = 0$.

2. Preliminaries

Lemma 2.1. Equation (1.2) has a ψ -ordinary dichotomy on J with two supplementary projections P_1, P_2 if and only if two following conditions are satisfied for all $\xi \in \mathbb{R}^d$:

$$\|\psi(t)Y(t)P_1\xi\| \leqslant K \|\psi(s)Y(s)\xi\| \quad \text{for } s \leqslant t; s, t \in J$$

$$(2.1)$$

$$\|\psi(t)Y(t)P_2\xi\| \leq L\|\psi(s)Y(s)\xi\| \quad \text{for } t \leq s; s, t \in J$$

$$(2.2)$$

Proof. If (1.2) has a ψ -ordinary dichotomy on J then

$$\|\psi(t)Y(t)P_{1}Y^{-1}(s)\psi^{-1}(s)y\| \leq K\|y\| \quad \text{for } s \leq t; s, t \in J$$
(2.3)

$$\|\psi(t)Y(t)P_2Y^{-1}(s)\psi^{-1}(s)y\| \le L\|y\|$$
 for $t \le s; s, t \in J$ (2.4)

for any vector $y \in \mathbb{R}^d$. Choose $y = \psi(s)Y(s)\xi$, we obtain (2.1), (2.2). Conversely, if (2.1) (2.2) are true, for any vector $y \in \mathbb{R}^d$, putting $\xi = Y^{-1}(s)\psi^{-1}(s)y$ we get (2.3), (2.4). This implies that (1.2) has a ψ -ordinary dichotomy on J. The proof is complete.

Remark 2.2. If (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections P_1, P_2 then there exist positive constants K_P, L_P such that

$$\|\psi(t)Y(t)P_{1}\xi\| \leq K_{P}\|\xi\|, \quad \|\psi(t)Y(t)\xi\| \geq L_{P}\|P_{2}\xi\|$$

for all $\xi \in \mathbb{R}^d$, all $t \ge 0$.

Indeed, let s = 0, we deduce from (2.1) that $\|\psi(t)Y(t)P_1\xi\| \leq K\|\psi(0)\xi\| \leq K_P\|\xi\|$ for all $t \geq 0$, where $K_P = K|\psi(0)|$. Let t = 0, we deduce from (2.2) that $\|\psi(0)P_2\xi\| \leq L\|\psi(s)Y(s)\xi\|$, for all $s \geq 0$. Then $\|\psi(s)Y(s)\xi\| \geq L_P\|P_2\xi\|$, for all $s \geq 0$, where $L_P = [L|\psi^{-1}(0)|]^{-1}$.

Now, let $X_1 = \{u \in \mathbb{R}^d | u = x(0), x(t) \text{ is a } \psi\text{-bounded solution of } (1.2) \text{ on } \mathbb{R}_+\}$ and let $X_0 = \{u \in \mathbb{R}^d | u = x(0), x(t) \text{ is a solution of } (1.2) \text{ on } \mathbb{R}_+ \text{ such that } \psi(t)x(t) \to 0, \text{ as } t \to \infty \}.$

Lemma 2.3. If (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ and Q_1, Q_2 are two supplementary projections, then (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections Q_1, Q_2 if and only if

$$X_0 \subset Q_1 \mathbb{R}^d \subset X_1 \tag{2.5}$$

Proof. The "only if" part. Suppose that (1.2) has a ψ -dichotomy with two supplementary projections Q_1, Q_2 , we show that (2.5) holds. First, we prove $Q_1 \mathbb{R}^d \subset X_1$. For any $u \in Q_1 \mathbb{R}^d$, there exists $v \in \mathbb{R}^d$ such that $u = Q_1 v$. Let y(t) be a solution of (1.2) such that y(0) = u. It follows from Remark 2.2 that

$$\|\psi(t)y(t)\| = \|\psi(t)Y(t)u\| = \|\psi(t)Y(t)Q_1v\| \leq K_Q\|v\|$$
 for $t \ge 0$,

where K_Q is a positive constant. This implies that $u \in X_1$. Hence $Q_1 \mathbb{R}^d \subset X_1$. We prove $X_0 \subset Q_1 \mathbb{R}^d$. For $u \in X_0$, let x(t) be a solutions of (1.2) such that x(0) = u. It implies that

$$\|\psi(t)x(t)\| \to 0$$
, as $t \to \infty$ (2.6)

From Remark 2.2, we have

$$\|\psi(t)x(t)\| = \|\psi(t)Y(t)u\| \ge L_Q \|Q_2u\|, \quad \text{for } t \ge 0$$

$$(2.7)$$

where L_Q is a positive constant. The relations (2.6) and (2.7) imply $Q_2 u = 0$, then $u \in Q_1 \mathbb{R}^d$. Thus (2.5) holds.

We prove the "if" part. Suppose that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections P_1, P_2 . Let Q_1, Q_2 be two supplementary projections such that (2.5) holds. We will prove that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections Q_1, Q_2 . Let $\widetilde{Q}_1, \widetilde{Q}_2$ be two supplementary projections such that $\widetilde{Q}_1 \mathbb{R}^d = X_0$. Applying (2.5) to P_1, P_2 we get $\widetilde{Q}_1 \mathbb{R}^d = X_0 \subset P_1 \mathbb{R}^d \subset X_1$. The set $X'_0 = (P_1 - \widetilde{Q}_1) \mathbb{R}^d$ is a subset of $P_1 \mathbb{R}^d$, supplementary to X_0 . We will show that there exists a positive constant number N such that

$$\|\psi(t)Y(t)u\| \ge N\|u\|, \quad \text{for all } u \in X'_0, \ t \ge 0$$

$$(2.8)$$

In fact, otherwise there exists a sequence of unit vectors $\{v_n\} \subset X'_0, n = 1, 2, ...$ and a sequence of numbers $t_n \ge 0$ such that $\|\psi(t_n)Y(t_n)v_n\| \to 0$. By the compactness of the unit sphere in X'_0 , we may assume that $v_n \to v \in X'_0$ as $n \to \infty$, where v is a unit vector. By Remark 2.2 and $(v - v_n) \in X'_0 \subset P_1 \mathbb{R}^d$, we obtain

$$\|\psi(t_n)Y(t_n)(v-v_n)\| = \|\psi(t_n)Y(t_n)P_1(v-v_n)\| \le K_P \|v-v_n\|$$

Letting $n \to \infty$, we obtain $\|\psi(t_n)Y(t_n)(v-v_n)\| \to 0$. Then $\|\psi(t_n)Y(t_n)v_n\| + \|\psi(t_n)Y(t_n)(v-v_n)\| \to 0$ as $t_n \to \infty$. Then $\|\psi(t_n)Y(t_n)v\| \to 0$ as $t_n \to \infty$. Hence $v \in X_0$. On the other hand, $v \in X'_0$, we have v = 0, which is a contradiction to the unit of v. Thus (2.8) holds.

From (2.8) and (2.1) we obtain

$$N\|(P_1 - \widetilde{Q}_1)u\| \leq \|\psi(t)Y(t)(P_1 - \widetilde{Q}_1)u\|$$

$$\leq \|\psi(t)Y(t)P_1u\| + \|\psi(t)Y(t)\widetilde{Q}_1u\|$$

$$\leq K\|\psi(s)Y(s)u\| + \|\psi(t)Y(t)\widetilde{Q}_1u\|$$
(2.9)

for $u \in \mathbb{R}^d$, $0 \leq s \leq t$. Let $t \to \infty$, we get $\|\psi(t)Y(t)\widetilde{Q}_1u\| \to 0$. From (2.9), we have

$$N \| (P_1 - \hat{Q}_1) u \| \le \| \psi(s) Y(s) u \| \quad \text{for } s \ge 0$$
(2.10)

From Remark 2.2 and (2.10), we have

$$\|\psi(t)Y(t)(P_1 - \tilde{Q}_1)u\| \leq K_P \|(P_1 - \tilde{Q}_1)u\| \leq K_P N^{-1} \|\psi(s)Y(s)u\| \quad \text{for } t, s \geq 0$$
(2.11)

Consequently,

$$\begin{aligned} \|\psi(t)Y(t)\widetilde{Q}_{1}u\| &\leq \|\psi(t)Y(t)P_{1}u\| + \|\psi(t)Y(t)(P_{1} - \widetilde{Q}_{1})u\| \\ &\leq (K + K_{P}N^{-1})\|\psi(s)Y(s)u\| \quad \text{for } 0 \leq s \leq t \end{aligned}$$
(2.12)

From $\widetilde{Q}_2 = P_2 + P_1 - \widetilde{Q}_1$ and (2.11), we obtain

$$\|\psi(t)Y(t)\widetilde{Q}_{2}u\| \leq \|\psi(t)Y(t)P_{2}u\| + \|\psi(t)Y(t)(P_{1} - \widetilde{Q}_{1})u\| \\ \leq (L + K_{P}N^{-1})\|\psi(s)Y(s)u\| \quad \text{for } 0 \leq t \leq s$$
(2.13)

From $\widetilde{Q}_1 \mathbb{R}^d = X_0 \subset \mathbb{Q}_1 \mathbb{R}^d \subset X_1$, we obtain $Q_2 \widetilde{Q}_1 \mathbb{R}^d \subset Q_2 Q_1 \mathbb{R}^d = 0$ then $Q_1 \widetilde{Q}_1 = (I_d - Q_2)\widetilde{Q}_1 = \widetilde{Q}_1$. Thus

$$Q_1 \tilde{Q}_2 = Q_1 (I_d - \tilde{Q}_1) = Q_1 - \tilde{Q}_1$$
(2.14)

By the definition of X_1 , there exists N' > 0 such that

$$\|\psi(t)Y(t)u\| \leqslant N'\|u\|, \text{ for } t \ge 0$$

$$(2.15)$$

It follows from Lemma 2.1, (2.12), (2.13) that (2.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections $\widetilde{Q}_1, \widetilde{Q}_2$. By Remark 2.2 we have

$$\|\psi(s)Y(s)u\| \geqslant \widetilde{L}_Q \|\widetilde{Q}_2 u\| \quad \text{for } s \geqslant 0 \,.$$

Combining this inequality, (2.14) and (2.15) we obtain

$$\begin{aligned} \|\psi(t)Y(t)(Q_1 - \widetilde{Q}_1)u\| &\leq N' \|(Q_1 - \widetilde{Q}_1)u\| \\ &\leq N' \|Q_1\widetilde{Q}_2u\| \leq N' |Q_1| \|\widetilde{Q}_2u\| \\ &\leq K_2 \|\psi(s)Y(s)u\|, \quad \text{for } t, s \geq 0 \end{aligned}$$

$$(2.16)$$

where K_2 is a positive constant. From (2.12), (2.16), we have

$$\begin{aligned} |\psi(t)Y(t)Q_{1}u|| &\leq \|\psi(t)Y(t)\widetilde{Q}_{1}u\| + \|\psi(t)Y(t)(Q_{1} - \widetilde{Q}_{1})u\| \\ &\leq (K + K_{P}N^{-1} + K_{2})\|\psi(s)Y(s)u\|, \quad \text{for } 0 \leq s \leq t \end{aligned}$$
(2.17)

From $Q_2 = \tilde{Q}_2 + \tilde{Q}_1 - Q_1$, (2.13) and (2.16), we obtain

$$\begin{aligned} \|\psi(t)Y(t)Q_{2}u\| &\leq \|\psi(t)Y(t)\dot{Q}_{2}u\| + \|\psi(t)Y(t)(\dot{Q}_{1} - Q_{1})u\| \\ &\leq (L + K_{P}N^{-1} + K_{2})\|\psi(s)Y(s)u\|, \quad \text{for } 0 \leq t \leq s \end{aligned}$$
(2.18)

Lemma 2.1 and (2.17), (2.18) follow that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections Q_1, Q_2 . The proof is complete.

Let $\widetilde{X}_1 = \{u \in \mathbb{R}^d | u = x(0), x(t) \text{ is a } \psi\text{-bounded solution of } (1.2) \text{ on } \mathbb{R}_- \}$, and let $\widetilde{X}_0 = \{u \in \mathbb{R}^d | u = x(0), x(t) \text{ is a solution of } (1.2) \text{ on } \mathbb{R}_- \text{ such that } \psi(t)x(t) \to 0,$ as $t \to -\infty$ }. From Theorem 1.4 and Lemma 2.3, we obtain the following results on half-line \mathbb{R}_- .

Lemma 2.4. (a) Equation (1.1) has at least one ψ -bounded solution on \mathbb{R}_{-} for every ψ -integrable function f on \mathbb{R}_{-} if and only if (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_{-} .

(b) If (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_- and \hat{Q}_1, \hat{Q}_2 are two supplementary projections, then (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_- with two supplementary projections \tilde{Q}_1, \tilde{Q}_2 if and only if

$$\widetilde{X}_0 \subset \widetilde{Q}_2 \mathbb{R}^d \subset \widetilde{X}_1 \tag{2.19}$$

Proof. The proof of this Lemma is similar to that of Theorem 1.4 and Lemma 2.3 with the corresponding replacement $(t \ge s \ge 0 \text{ with } 0 \ge s \ge t, P_1 \text{ with } -P_2, P_2 \text{ with } -P_1, \infty \text{ with } -\infty, -\infty \text{ with } \infty \dots).$

Definition 2.5. A function x(t) is said to be

- ψ -evanescent at ∞ if $\lim_{t\to\infty} \|\psi(t)x(t)\| = 0$.
- ψ -evanescent at $-\infty$ if $\lim_{t \to -\infty} \|\psi(t)x(t)\| = 0$.
- ψ -evanescent at $\pm \infty$ if $\lim_{t \to \pm \infty} \|\psi(t)x(t)\| = 0$.

Note that for $\psi = I_d$, we obtain the notion of evanescent solution of (1.1) at $\pm \infty$ (see [3])

Lemma 2.6. If (1.1) has at least one solution on \mathbb{R} , ψ -evanescent at ∞ for every ψ -integrable function f on \mathbb{R} then every solution of (1.2) is the sum of two solution of (1.2), one of which is ψ -bounded on \mathbb{R}_- , and the other is defined on \mathbb{R}_+ , ψ -evanescent at ∞ .

Proof. Set

$$h(t) = \begin{cases} 0 & \text{for } |t| \ge 1\\ 1 & \text{for } t = 0\\ \text{linear} & \text{for } t \in [-1, 0], \ t \in [0, 1] \end{cases}$$

Fix a solution x(t) of (1.2). Then h(t)x(t) is a ψ -integrable function on \mathbb{R} . Set $y(t) = x(t) \int_0^t h(s) ds$, we have

$$y'(t) = A(t)x(t) \int_0^t h(s)ds + h(t)x(t) = A(t)y(t) + h(t)x(t).$$

By hypothesis, the equation

$$y'(t) = A(t)y(t) + h(t)x(t)$$

has a solution $\widetilde{y}(t)$ on \mathbb{R} , ψ -evanescent at ∞ . Set $x_1(t) = \widetilde{y}(t) - y(t) + \frac{1}{2}x(t)$ and $x_2(t) = -\widetilde{y}(t) + y(t) + \frac{1}{2}x(t)$. It follows from $\int_{-1}^0 h(t)dt = \int_0^1 h(t)dt = \frac{1}{2}$ that

 $x_1(t) = \widetilde{y}(t)$ for $t \ge 1$; $x_2(t) = -\widetilde{y}(t)$ for $t \le -1$. Then x_2 is the solution of (1.2), ψ -bounded on \mathbb{R}_- , x_1 is the solution of (1.2) on \mathbb{R}_+ , ψ -evanescent at ∞ . The solution x(t) is the sum of two solutions $x_1(t)$ and $x_2(t)$ of (1.2), these solutions satisfy the conditions of Lemma. The proof is complete.

3. The main results

Theorem 3.1. Suppose that f is a ψ -integrable function on \mathbb{R}_+ . Then (1.1) has at least one solution on \mathbb{R}_+ , ψ -evanescent at ∞ if and only if (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ .

Proof. First, we prove the "if" part. By Lemma 2.3, we can consider (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections P_1, P_2 such that $P_1\mathbb{R}^d = X_o$. Let

$$g(t) = \int_0^t Y(t) P_1 Y^{-1}(s) f(s) ds - \int_t^\infty Y(t) P_2 Y^{-1}(s) f(s) ds.$$

It is easy to see that g(x) is a solution of (1.1) on \mathbb{R}_+ . We shall prove that g(x) is ψ -evanescent at ∞ on \mathbb{R}_+ . Since f is ψ -integrable on \mathbb{R}_+ , it follows that for a given $\varepsilon > 0$, there exists T > 0 such that

$$(K+L)\int_T^\infty \|\psi(s)f(s)\|ds < \varepsilon/2.$$

By $P_1 \mathbb{R}^d = X_o$, there exists $t_1 > T$ such that, for $t \ge t_1$,

$$|\psi(t)Y(t)P_1| \int_0^T ||Y^{-1}(s)f(s)|| ds < \varepsilon/2.$$

Then for $t \ge t_1$, we have

$$\begin{split} \|\psi(t)g(t)\| &\leqslant \int_{0}^{T} |\psi(t)Y(t)P_{1}|.\|Y^{-1}(s)f(s)\|ds \\ &+ \int_{T}^{t} |\psi(t)Y(t)P_{1}Y^{-1}(s)\psi^{-1}(s)|.\|\psi(s)f(s)\|ds \\ &+ \int_{t}^{\infty} |\psi(t)Y(t)P_{2}Y^{-1}(s)\psi^{-1}(s)|.\|\psi(s)f(s)\|ds \\ &\leqslant |\psi(t)Y(t)P_{1}| \int_{0}^{T} \|Y^{-1}(s)f(s)\|ds + (K+L) \int_{T}^{\infty} \|\psi(s)f(s)\|ds \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon \end{split}$$

This shows that g(x) is ψ -evanescent at ∞ . The "only if" part evidently holds, by Theorem 1.4(a).

Similarly, we have the following Theorem.

Theorem 3.2. Suppose that f is a ψ -integrable function on \mathbb{R}_- . Then (1.1) has at least one solution on \mathbb{R}_- , ψ -evanescent at $-\infty$ if and only if (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_- .

Theorem 3.3. Suppose that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ and f is a ψ -integrable function on \mathbb{R}_+ . Then following statements are equivalent

- (a) every ψ -bounded solution of (1.2) on \mathbb{R}_+ is ψ evanescent at ∞ .
- (b) every ψ -bounded solution of (1.1) on \mathbb{R}_+ is ψ -evanescent at ∞ .

Proof. By Lemma 2.3, we consider (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections P_1, P_2 such that $P_1\mathbb{R}^d = X_o$. Let S_1 be the set of all ψ -bounded solutions of (1.1) on \mathbb{R}_+ and let S_2 be the set of all ψ -bounded solutions of (1.2) on \mathbb{R}_+ . We establish a mapping h from S_2 to S_1 :

$$(hx)(t) = x(t) + g(t),$$

where g(t) as in the proof of Theorem 3.1. We obtain

$$\lim_{t \to \infty} \|\psi(t)(hx)(t) - \psi(t)x(t)\| = \lim_{t \to \infty} \|\psi(t)g(t)\| = 0$$

Thus h(x) is ψ -bounded on \mathbb{R}_+ . Hence h(x) belongs to S_1 . It is easily to verify that h is one-to-one mapping between S_2 and S_1 .

Suppose that statement (a) is satisfied. Let z be arbitrary ψ -bounded solution of (1.1) on \mathbb{R}_+ . The foregoing follow that there exists ψ -bounded solution x of (1.2) on \mathbb{R}_+ such that h(x) = z and

$$\lim_{t \to \infty} \|\psi(t)z(t) - \psi(t)x(t)\| = 0$$

By hypothesis, x is ψ -evanescent at ∞ . Thus z is ψ -evanescent at ∞ . Suppose that statement (b) is satisfied, the proof is similarly. The proof is complete.

Note that the above Theorem is a supplement to Theorem 1.4(b). Similarly, we have the following Theorem.

Theorem 3.4. Suppose that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_{-} and f is a ψ -integrable function on \mathbb{R}_{-} . Then following statements are equivalent

- (a) every ψ -bounded solution of (1.2) on \mathbb{R}_{-} is ψ evanescent at $-\infty$.
- (b) every ψ -bounded solution of (1.1) on \mathbb{R}_{-} is ψ -evanescent at $-\infty$.

Corollary 3.5. Suppose that (1.2) has a ψ -ordinary dichotomy on \mathbb{R} and f is a ψ -integrable function on \mathbb{R} . Then following statements are equivalent

- (a) every ψ -bounded solution of (1.2) on \mathbb{R}_+ is ψ evanescent at ∞ and every ψ -bounded solution of (1.2) on \mathbb{R}_- is ψ evanescent at $-\infty$.
- (b) every ψ -bounded solution of (1.1) on \mathbb{R} is ψ -evanescent at $\pm \infty$.

Note that the above corollary is a supplement to [11, Theorem 3.3].

Theorem 3.6. Suppose that (1.2) has no non-trivial solution on \mathbb{R} , ψ -evanescent at ∞ . Then (1.1) has a unique solution on \mathbb{R} , ψ -evanescent at ∞ for every ψ -integrable function f on \mathbb{R} if and only if (1.2) has a ψ -ordinary dichotomy on \mathbb{R} .

Proof. First, we prove the "if" part. By Lemma 2.3, we can consider (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ with two supplementary projections P_1, P_2 such that $P_1\mathbb{R}^d = X_o$. Let

$$x(t) = \int_{-\infty}^{t} Y(t) P_1 Y^{-1}(s) f(s) ds - \int_{t}^{\infty} Y(t) P_2 Y^{-1}(s) f(s) ds$$

Then the function x(t) is a ψ -bounded solution of (1.1) on \mathbb{R} . We shall prove that x(t) is ψ -evanescent at ∞ . We have, for t > 0,

$$\psi(t)x(t) = \psi(t)Y(t)P_1 \int_{-\infty}^0 P_1 Y^{-1}(s)f(s)ds + \psi(t)g(t),$$

where g(t) as in the proof of Theorem 3.1. Since

 $\|P_1Y^{-1}(s)f(s)\| \leqslant |Y^{-1}(0)|.|\psi^{-1}(0)|.|\psi(0)Y(0)P_1Y^{-1}(s)\psi^{-1}(s)|.\|\psi(s)f(s)\|$

P. N. BOI

and f is ψ -integrable on \mathbb{R} , we have that $P_1Y^{-1}(s)f(s)$ is integrable on \mathbb{R}_- . Let $a = \int_{-\infty}^0 P_1Y^{-1}(s)f(s)ds$. It follows from $P_1\mathbb{R}^d = X_0$ that

$$\lim \|\psi(t)Y(t)P_1a\| = 0$$

On the other hand, as in the proof of Theorem 3.1, we have

$$\lim_{t \to \infty} \|\psi(t)g(t)\| = 0.$$

Consequently x(t) is defined on \mathbb{R} , ψ -evanescent at ∞ . The uniqueness of solution x(t) result from (1.2) has no non-trivial on \mathbb{R} , ψ -evanescent solution at ∞ . Indeed, suppose that y is a solution on \mathbb{R} of (1.1), ψ -evanescent at ∞ then x-y is a solution solution on \mathbb{R} of (1.2), ψ -evanescent at ∞ . We conclude x = y since x - y is the trivial solution of (1.2).

Now, we prove the "only if" part. Suppose that (1.1) has a unique ψ -bounded solution on \mathbb{R} for every ψ - integrable function f on \mathbb{R} . For each $u \in \mathbb{R}^d$, denote by x = x(t) the solution of (1.2), x(0) = u. By Lemma 2.6, we get $x = x_1 + x_2$, where x_2 is a ψ -bounded solution of (1.2) on \mathbb{R}_- , x_1 is a solutions of (1.2) on \mathbb{R}_+ and ψ -evanescent at ∞ . Thus $x_1(0) \in X_0$ and $x_2(0) \in \widetilde{X}_1$. It follows from $u = x_1(0) + x_2(0)$ that

$$\mathbb{R}^d = X_0 + X_1. \tag{3.1}$$

For any $v \in X_0 \cap \widetilde{X}_1$, denote by x(t) the solution of (1.2) such that x(0) = v. Thus x(t) is a solution on \mathbb{R} of (1.2), ψ -evanescent at ∞ . By hypothesis, (1.2) has no non-trivial solution on \mathbb{R} , ψ -evanescent at ∞ , then x(t) is the trivial solution. This implies v = 0. Consequently

$$X_0 \cap \widetilde{X}_1 = 0 \tag{3.2}$$

The relations (3.1) and (3.2) imply that \mathbb{R}^d is the direct sum of X_0 and \widetilde{X}_1 . Every ψ -integrable function f on \mathbb{R}_+ , or on \mathbb{R}_- is the restriction of a ψ -integrable function f on \mathbb{R} , it follows that (1.2) satisfies Theorem 1.4(a) and Lemma 2.4(a). Hence (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ and has a ψ -ordinary dichotomy on \mathbb{R}_- . Let P_1, P_2 be two projections such that $\operatorname{Im} P_1 = X_0$, $\operatorname{Im} P_2 = \widetilde{X}_1$. Lemmas 2.3 and 2.4(b) follow that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ and has a ψ -ordinary dichotomy on \mathbb{R}_+ .

Similarly, we have the following Theorem.

Theorem 3.7. Suppose that (1.2) has no non-trivial solution on \mathbb{R} , ψ -evanescent at $-\infty$. Then (1.1) has a unique solution on \mathbb{R} , ψ -evanescent at $-\infty$ for every ψ -integrable function f on \mathbb{R} if and only if (1.2) has a ψ -ordinary dichotomy on \mathbb{R} .

Now, consider the equations

$$x'(t) = [A(t) + B(t)]x(t),$$
(3.3)

$$x'(t) = [A(t) + B(t)]x(t) + f(t)$$
(3.4)

where B(t) is a $d \times d$ continuous matrix function on \mathbb{R}_+ and f is a ψ -integrable function on \mathbb{R}_+ . We have the following result.

Theorem 3.8. Suppose that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_+ . If $\delta = \sup_{t \ge 0} |\psi(t)B(t)\psi^{-1}(t)|$ is sufficiently small, then following statements are equivalent

- (a) every ψ -bounded solution of (3.3) on \mathbb{R}_+ is ψ evanescent at $+\infty$.
- (b) every ψ -bounded solution of (3.4) on \mathbb{R}_+ is ψ -evanescent at $+\infty$.

Proof. By [4, Theorem 3.7], equation (3.3) has a ψ -ordinary dichotomy on \mathbb{R}_+ . By Theorem 3.3, we have the conclusion.

With similar proof, we can conclude that $J = \mathbb{R}_{-}$.

Theorem 3.9. Suppose that (1.2) has a ψ -ordinary dichotomy on \mathbb{R}_{-} and $\delta = \sup_{t \leq 0} |\psi(t)B(t)\psi^{-1}(t)|$ is sufficiently small. Then the following statements are equivalent

- (a) every ψ -bounded solution of (3.3) on \mathbb{R}_{-} is ψ evanescent at $-\infty$.
- (b) every ψ -bounded solution of (3.4) on \mathbb{R}_{-} is ψ -evanescent at $-\infty$.

References

- O. Akinyele; On partial stability and boundedness of degree k, Atti. Acad. Naz. LinceiRend. Cl. Sei. Fis. Mat. Natur., Vol. (8), No 65 (1978), pp. 259-264.
- [2] C. Avramescu; Asupra comportării asimptotice a solutiilor unor ecuatii funcionable, Analele Universității din Timisoara, Seria Stiinte Matamatice-Fizice, Vol. VI, 1968, pp. 41-55.
- [3] C. Avramescu; Evanescent solutions for linear ordinary differential equations, Electronic Journal Qualytative Theory of Differential Equations, Vol 2002, No 9, pp. 1-11.
- [4] Pham Ngoc Boi; On the ψ- dichotomy for homogeneous linear differential equations. Electronic Journal of Differential Equations, Vol. 2006 (2006), No. 40, pp. 1-12.
- [5] Pham Ngoc Boi; Existence of ψ-bounded solution on ℝ for nonhomogeneous linear differential equations. Electronic Journal of Differential Equations, Vol. 2007 (2007). No. 52, pp. 1-10.
- [6] A. Constantin; Asymptotic properties of solution of differential equation, Analele Universității din Timisoara, Seria Stiinte Matamatice, Vol. XXX, fasc. 2-3,1992, pp. 183-225.
- [7] W. A. Coppel; Dichotomies in Stability Theory Springer-Verlag Berlin Heidelberg New York, 1978.
- [8] J. L. Daletskii; M. G. Krein; Stability of solutions of differential equations in Banach spaces, American Mathematical Society Providence, Rhode Island 1974.
- [9] A. Diamandescu; Existence of ψ-bounded solutions for a system of differential equations, Electronic Journal of Differential Equations, Vol. 2004 (2004), No. 63, pp. 1-6.
- [10] A. Dimandescu; A note on the existence of ψ-bounded solutions for a system of differential equations on ℝ, Electronic Journal of Differential Equations, Vol. 2008 (2008), No. 128, pp. 1-11.
- [11] A. Dimandescu; ψ-bounded solutions for linear differential systems with Lebesgue ψ-integrable functions on R as right-hand sides, Electronic Journal of Differential Equations, Vol. 2009 (2009), No. 05, pp. 1-12.

Pham Ngoc Boi

DEPARTMENT OF MATHEMATICS, VINH UNIVERSITY, VINH CITY, VIETNAM *E-mail address:* pnboi_vn@yahoo.com