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BEHAVIOR AT INFINITY OF ψ-EVANESCENT SOLUTIONS TO
LINEAR DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

Abstract. In this article we present some necessary and sufficient conditions
for the existence of ψ-evanescent solution of the nonhomogeneous linear differ-

ential equation x′ = A(t)x+ f(t), which is related to the notion of ψ-ordinary

dichotomy for the equation x′ = A(t)x. We associate that with the condi-
tion of ψ-ordinary dichotomy for the homogeneous linear differential equation

x′ = A(t)x.

1. Introduction

The existence of ψ-bounded and ψ-stable solutions on R+ for systems of ordi-
nary differential equations has been studied by many authors; such as Akinyele
[1], Avramescu [2], Boi [4, 5], Constantin [6], Diamandescu [9, 10, 11]. Also, in
[5, 9, 10, 11] the authors prove several sufficient conditions of the ψ-evanescence at
∞, −∞ for the solutions of linear differential equations.

The purpose of this paper is to provide a condition for the existence of ψ- evanes-
cent solution of the equations x′ = A(t)x+f(t), which is concerned with the notion
of ψ-ordinary dichotomy for the equation x′ = A(t)x. We shall deal with the ex-
istence of ψ-evanescent solution of nonhomogeneous equations, which have been
studied in recent works, such as [5, 9, 11].

Denote by Rd the d-dimensional Euclidean space. Elements in this space are
denoted by x = (x1, x2, . . . , xd)T and their norm by ‖x‖ = max{|x1|, |x2|, . . . , |xd|}.
For real d×dmatrices A, we define the norm |A| = sup‖x‖61 ‖Ax‖. Let R+ = [0,∞),
R− = (−∞, 0], J = R−,J = R+ or J = R. Let ψi : J → (0,∞), i = 1, 2, . . . , d be
continuous functions and let

ψ = diag{ψ1, ψ2, . . . , ψd}.

Definition 1.1. A function f : J → Rd is said to be

• ψ-bounded on J if ψf is bounded on J .
• ψ-integrable on J if f is measurable and ψf is Lebesgue integrable on J .
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In Rd, consider the following equations on J .

x′ = A(t)x+ f(t), (1.1)

x′ = A(t)x. (1.2)

where A(t) is a continuous d× d matrix function and f(t) is a continuous function
for t ∈ J .

By a solution of (1.1), we mean a continuous function satisfying (1.1) for almost
t in J . Let Y (t) be the fundamental matrix of (1.2) with Y (0) = Id, the identity
d× d matrix. A d× d matrix P is said to be a projection matrix if P 2 = P . If P is
a projection, then so is Id−P . Two projections P, Id−P are called supplementary.

Definition 1.2. Equation (1.2) is said to have a ψ-ordinary dichotomy on J if
there exist positive constants K,L and two supplementary projections P1, P2 such
that

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)| 6 K for s 6 t; s, t ∈ J, (1.3)

|ψ(t)Y (t)P2Y
−1(s)ψ−1(s)| 6 L for t 6 s; s, t ∈ J. (1.4)

Also we say that (1.2) has a ψ-ordinary dichotomy on J with two supplementary
projections P1, P2.

Remark 1.3. It is easily verified that if (1.2) has a ψ-ordinary dichotomy on R+

and on R− with two supplementary projections P1, P2 then (1.2) has a ψ-ordinary
dichotomy on R with two supplementary projections P1, P2. Note that for ψ = Id,
we obtain the notion of ordinary dichotomy (see [7, 8])

Theorem 1.4 ([4, 9]). (a) Equation (1.1) has at least one ψ-bounded solution on
R+ for every ψ-integrable function f on R+ if and only if (1.2) has a ψ-ordinary
dichotomy on R+.

(b) Suppose that (1.2) has a ψ-ordinary dichotomy and limt→∞|ψ(t)Y (t)P1| = 0.
Let f be a ψ-integrable function on R+. Then every ψ-bounded solution x(t) of (1.1)
on R+ is such that limt→∞‖ψ(t)x(t)‖ = 0.

2. Preliminaries

Lemma 2.1. Equation (1.2) has a ψ-ordinary dichotomy on J with two supple-
mentary projections P1, P2 if and only if two following conditions are satisfied for
all ξ ∈ Rd:

‖ψ(t)Y (t)P1ξ‖ 6 K‖ψ(s)Y (s)ξ‖ for s 6 t; s, t ∈ J (2.1)

‖ψ(t)Y (t)P2ξ‖ 6 L‖ψ(s)Y (s)ξ‖ for t 6 s; s, t ∈ J (2.2)

Proof. If (1.2) has a ψ-ordinary dichotomy on J then

‖ψ(t)Y (t)P1Y
−1(s)ψ−1(s)y‖ 6 K‖y‖ for s 6 t; s, t ∈ J (2.3)

‖ψ(t)Y (t)P2Y
−1(s)ψ−1(s)y‖ 6 L‖y‖ for t 6 s; s, t ∈ J (2.4)

for any vector y ∈ Rd. Choose y = ψ(s)Y (s)ξ, we obtain (2.1), (2.2). Conversely,
if (2.1) (2.2) are true, for any vector y ∈ Rd, putting ξ = Y −1(s)ψ−1(s)y we get
(2.3), (2.4). This implies that (1.2) has a ψ-ordinary dichotomy on J . The proof is
complete. �
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Remark 2.2. If (1.2) has a ψ-ordinary dichotomy on R+ with two supplementary
projections P1, P2 then there exist positive constants KP , LP such that

‖ψ(t)Y (t)P1ξ‖ 6 KP ‖ξ‖, ‖ψ(t)Y (t)ξ‖ > LP ‖P2ξ‖

for all ξ ∈ Rd, all t > 0.

Indeed, let s = 0, we deduce from (2.1) that ‖ψ(t)Y (t)P1ξ‖ 6 K‖ψ(0)ξ‖ 6
KP ‖ξ‖ for all t > 0, where KP = K|ψ(0)|. Let t = 0, we deduce from (2.2) that
‖ψ(0)P2ξ‖ 6 L‖ψ(s)Y (s)ξ‖, for all s > 0. Then ‖ψ(s)Y (s)ξ‖ > LP ‖P2ξ‖, for all
s > 0, where LP = [L|ψ−1(0)|]−1.

Now, let X1 = {u ∈ Rd|u = x(0), x(t) is a ψ-bounded solution of (1.2) on R+}
and let X0 = {u ∈ Rd|u = x(0), x(t) is a solution of (1.2) on R+ such that
ψ(t)x(t) → 0, as t→∞ }.

Lemma 2.3. If (1.2) has a ψ-ordinary dichotomy on R+ and Q1, Q2 are two
supplementary projections, then (1.2) has a ψ-ordinary dichotomy on R+ with two
supplementary projections Q1, Q2 if and only if

X0 ⊂ Q1Rd ⊂ X1 (2.5)

Proof. The “only if” part. Suppose that (1.2) has a ψ-dichotomy with two supple-
mentary projections Q1, Q2, we show that (2.5) holds. First, we prove Q1Rd ⊂ X1.
For any u ∈ Q1Rd, there exists v ∈ Rd such that u = Q1v. Let y(t) be a solution
of (1.2) such that y(0) = u. It follows from Remark 2.2 that

‖ψ(t)y(t)‖ = ‖ψ(t)Y (t)u‖ = ‖ψ(t)Y (t)Q1v‖ 6 KQ‖v‖ for t > 0,

where KQ is a positive constant. This implies that u ∈ X1. Hence Q1Rd ⊂ X1. We
prove X0 ⊂ Q1Rd. For u ∈ X0, let x(t) be a solutions of (1.2) such that x(0) = u.
It implies that

‖ψ(t)x(t)‖ → 0, as t→∞ (2.6)

From Remark 2.2, we have

‖ψ(t)x(t)‖ = ‖ψ(t)Y (t)u‖ > LQ‖Q2u‖, for t > 0 (2.7)

where LQ is a positive constant. The relations (2.6) and (2.7) imply Q2u = 0, then
u ∈ Q1Rd. Thus (2.5) holds.

We prove the “if” part. Suppose that (1.2) has a ψ-ordinary dichotomy on
R+ with two supplementary projections P1, P2. Let Q1, Q2 be two supplementary
projections such that (2.5) holds. We will prove that (1.2) has a ψ-ordinary di-
chotomy on R+ with two supplementary projections Q1, Q2. Let Q̃1, Q̃2 be two
supplementary projections such that Q̃1Rd = X0. Applying (2.5) to P1, P2 we get
Q̃1Rd = X0 ⊂ P1Rd ⊂ X1. The set X ′

0 = (P1 − Q̃1)Rd is a subset of P1Rd, supple-
mentary to X0. We will show that there exists a positive constant number N such
that

‖ψ(t)Y (t)u‖ > N‖u‖, for all u ∈ X ′
0, t > 0 (2.8)

In fact, otherwise there exists a sequence of unit vectors {vn} ⊂ X ′
0, n = 1, 2, . . . and

a sequence of numbers tn > 0 such that ‖ψ(tn)Y (tn)vn‖ → 0. By the compactness
of the unit sphere in X ′

0, we may assume that vn → v ∈ X ′
0 as n→∞, where v is

a unit vector. By Remark 2.2 and (v − vn) ∈ X ′
0 ⊂ P1Rd, we obtain

‖ψ(tn)Y (tn)(v − vn)‖ = ‖ψ(tn)Y (tn)P1(v − vn)‖ 6 KP ‖v − vn‖
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Letting n → ∞, we obtain ‖ψ(tn)Y (tn)(v − vn)‖ → 0. Then ‖ψ(tn)Y (tn)vn‖ +
‖ψ(tn)Y (tn)(v − vn)‖ → 0 as tn → ∞. Then ‖ψ(tn)Y (tn)v‖ → 0 as tn → ∞.
Hence v ∈ X0. On the other hand, v ∈ X ′

0, we have v = 0, which is a contradiction
to the unit of v. Thus (2.8) holds.

From (2.8) and (2.1) we obtain

N‖(P1 − Q̃1)u‖ 6 ‖ψ(t)Y (t)(P1 − Q̃1)u‖

6 ‖ψ(t)Y (t)P1u‖+ ‖ψ(t)Y (t)Q̃1u‖

6 K‖ψ(s)Y (s)u‖+ ‖ψ(t)Y (t)Q̃1u‖

(2.9)

for u ∈ Rd, 0 6 s 6 t. Let t → ∞, we get ‖ψ(t)Y (t)Q̃1u‖ → 0. From (2.9), we
have

N‖(P1 − Q̃1)u‖ 6 ‖ψ(s)Y (s)u‖ for s > 0 (2.10)

From Remark 2.2 and (2.10), we have

‖ψ(t)Y (t)(P1 − Q̃1)u‖ 6 KP ‖(P1 − Q̃1)u‖ 6 KPN
−1‖ψ(s)Y (s)u‖ for t, s > 0

(2.11)
Consequently,

‖ψ(t)Y (t)Q̃1u‖ 6 ‖ψ(t)Y (t)P1u‖+ ‖ψ(t)Y (t)(P1 − Q̃1)u‖
6 (K +KPN

−1)‖ψ(s)Y (s)u‖ for 0 6 s 6 t
(2.12)

From Q̃2 = P2 + P1 − Q̃1 and (2.11), we obtain

‖ψ(t)Y (t)Q̃2u‖ 6 ‖ψ(t)Y (t)P2u‖+ ‖ψ(t)Y (t)(P1 − Q̃1)u‖
6 (L+KPN

−1)‖ψ(s)Y (s)u‖ for 0 6 t 6 s
(2.13)

From Q̃1Rd = X0 ⊂ Q1Rd ⊂ X1, we obtain Q2Q̃1Rd ⊂ Q2Q1Rd = 0 then Q1Q̃1 =
(Id −Q2)Q̃1 = Q̃1. Thus

Q1Q̃2 = Q1(Id − Q̃1) = Q1 − Q̃1 (2.14)

By the definition of X1, there exists N ′ > 0 such that

‖ψ(t)Y (t)u‖ 6 N ′‖u‖, for t > 0 (2.15)

It follows from Lemma 2.1, (2.12), (2.13) that (2.2) has a ψ-ordinary dichotomy on
R+ with two supplementary projections Q̃1, Q̃2. By Remark 2.2 we have

‖ψ(s)Y (s)u‖ > L̃Q‖Q̃2u‖ for s > 0 .

Combining this inequality, (2.14) and (2.15) we obtain

‖ψ(t)Y (t)(Q1 − Q̃1)u‖ 6 N ′‖(Q1 − Q̃1)u‖

6 N ′‖Q1Q̃2u‖ 6 N ′|Q1|‖Q̃2u‖
6 K2‖ψ(s)Y (s)u‖, for t, s > 0

(2.16)

where K2 is a positive constant. From (2.12), (2.16), we have

‖ψ(t)Y (t)Q1u‖ 6 ‖ψ(t)Y (t)Q̃1u‖+ ‖ψ(t)Y (t)(Q1 − Q̃1)u‖
6 (K +KPN

−1 +K2)‖ψ(s)Y (s)u‖, for 0 6 s 6 t
(2.17)
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From Q2 = Q̃2 + Q̃1 −Q1, (2.13) and (2.16), we obtain

‖ψ(t)Y (t)Q2u‖ 6 ‖ψ(t)Y (t)Q̃2u‖+ ‖ψ(t)Y (t)(Q̃1 −Q1)u‖
6 (L+KPN

−1 +K2)‖ψ(s)Y (s)u‖, for 0 6 t 6 s
(2.18)

Lemma 2.1 and (2.17), (2.18) follow that (1.2) has a ψ-ordinary dichotomy on R+

with two supplementary projections Q1, Q2. The proof is complete. �

Let X̃1 = {u ∈ Rd|u = x(0), x(t) is a ψ-bounded solution of (1.2) on R− }, and
let X̃0 = {u ∈ Rd|u = x(0), x(t) is a solution of (1.2) on R− such that ψ(t)x(t) → 0,
as t → −∞ }. From Theorem 1.4 and Lemma 2.3, we obtain the following results
on half-line R−.

Lemma 2.4. (a) Equation (1.1) has at least one ψ-bounded solution on R− for
every ψ-integrable function f on R− if and only if (1.2) has a ψ-ordinary dichotomy
on R−.

(b) If (1.2) has a ψ-ordinary dichotomy on R− and Q̃1, Q̃2 are two supplementary
projections, then (1.2) has a ψ-ordinary dichotomy on R− with two supplementary
projections Q̃1, Q̃2 if and only if

X̃0 ⊂ Q̃2Rd ⊂ X̃1 (2.19)

Proof. The proof of this Lemma is similar to that of Theorem 1.4 and Lemma 2.3
with the corresponding replacement (t > s > 0 with 0 > s > t, P1 with −P2, P2

with −P1, ∞ with −∞, −∞ with ∞ . . . ). �

Definition 2.5. A function x(t) is said to be
• ψ-evanescent at ∞ if limt→∞ ‖ψ(t)x(t)‖ = 0.
• ψ-evanescent at −∞ if limt→−∞ ‖ψ(t)x(t)‖ = 0.
• ψ-evanescent at ±∞ if limt→±∞ ‖ψ(t)x(t)‖ = 0.

Note that for ψ = Id, we obtain the notion of evanescent solution of (1.1) at ±∞
(see [3])

Lemma 2.6. If (1.1) has at least one solution on R, ψ-evanescent at ∞ for every
ψ-integrable function f on R then every solution of (1.2) is the sum of two solution
of (1.2), one of which is ψ-bounded on R−, and the other is defined on R+, ψ-
evanescent at ∞.

Proof. Set

h(t) =


0 for |t| > 1
1 for t = 0
linear for t ∈ [−1, 0], t ∈ [0, 1]

Fix a solution x(t) of (1.2). Then h(t)x(t) is a ψ-integrable function on R. Set
y(t) = x(t)

∫ t

0
h(s)ds , we have

y′(t) = A(t)x(t)
∫ t

0

h(s)ds+ h(t)x(t) = A(t)y(t) + h(t)x(t).

By hypothesis, the equation

y′(t) = A(t)y(t) + h(t)x(t)

has a solution ỹ(t) on R, ψ-evanescent at ∞. Set x1(t) = ỹ(t) − y(t) + 1
2x(t) and

x2(t) = −ỹ(t) + y(t) + 1
2x(t). It follows from

∫ 0

−1
h(t)dt =

∫ 1

0
h(t)dt = 1

2 that
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x1(t) = ỹ(t) for t > 1; x2(t) = −ỹ(t) for t 6 −1. Then x2 is the solution of (1.2),
ψ-bounded on R−, x1 is the solution of (1.2) on R+, ψ-evanescent at ∞. The
solution x(t) is the sum of two solutions x1(t) and x2(t) of (1.2), these solutions
satisfy the conditions of Lemma. The proof is complete. �

3. the main results

Theorem 3.1. Suppose that f is a ψ-integrable function on R+. Then (1.1) has at
least one solution on R+, ψ-evanescent at ∞ if and only if (1.2) has a ψ-ordinary
dichotomy on R+.

Proof. First, we prove the “if” part. By Lemma 2.3, we can consider (1.2) has a
ψ-ordinary dichotomy on R+ with two supplementary projections P1, P2 such that
P1Rd = Xo. Let

g(t) =
∫ t

0

Y (t)P1Y
−1(s)f(s)ds−

∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds.

It is easy to see that g(x) is a solution of (1.1) on R+. We shall prove that g(x)
is ψ-evanescent at ∞ on R+. Since f is ψ-integrable on R+, it follows that for a
given ε > 0, there exists T > 0 such that

(K + L)
∫ ∞

T

‖ψ(s)f(s)‖ds < ε/2.

By P1Rd = Xo, there exists t1 > T such that, for t > t1,

|ψ(t)Y (t)P1|
∫ T

0

‖Y −1(s)f(s)‖ds < ε/2.

Then for t > t1, we have

‖ψ(t)g(t)‖ 6
∫ T

0

|ψ(t)Y (t)P1|.‖Y −1(s)f(s)‖ds

+
∫ t

T

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)|.‖ψ(s)f(s)‖ds

+
∫ ∞

t

|ψ(t)Y (t)P2Y
−1(s)ψ−1(s)|.‖ψ(s)f(s)‖ds

6 |ψ(t)Y (t)P1|
∫ T

0

‖Y −1(s)f(s)‖ds+ (K + L)
∫ ∞

T

‖ψ(s)f(s)‖ds

< ε/2 + ε/2 = ε

This shows that g(x) is ψ-evanescent at ∞. The “only if” part evidently holds, by
Theorem 1.4(a). �

Similarly, we have the following Theorem.

Theorem 3.2. Suppose that f is a ψ-integrable function on R−. Then (1.1) has at
least one solution on R−, ψ-evanescent at −∞ if and only if (1.2) has a ψ-ordinary
dichotomy on R−.

Theorem 3.3. Suppose that (1.2) has a ψ-ordinary dichotomy on R+ and f is a
ψ-integrable function on R+. Then following statements are equivalent

(a) every ψ-bounded solution of (1.2) on R+ is ψ- evanescent at ∞.
(b) every ψ-bounded solution of (1.1) on R+ is ψ-evanescent at ∞.
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Proof. By Lemma 2.3, we consider (1.2) has a ψ-ordinary dichotomy on R+ with
two supplementary projections P1, P2 such that P1Rd = Xo. Let S1 be the set
of all ψ-bounded solutions of (1.1) on R+ and let S2 be the set of all ψ-bounded
solutions of (1.2) on R+. We establish a mapping h from S2 to S1:

(hx)(t) = x(t) + g(t),

where g(t) as in the proof of Theorem 3.1. We obtain

lim
t→∞

‖ψ(t)(hx)(t)− ψ(t)x(t)‖ = lim
t→∞

‖ψ(t)g(t)‖ = 0

Thus h(x) is ψ-bounded on R+. Hence h(x) belongs to S1. It is easily to verify
that h is one-to-one mapping between S2 and S1.

Suppose that statement (a) is satisfied. Let z be arbitrary ψ-bounded solution of
(1.1) on R+. The foregoing follow that there exists ψ-bounded solution x of (1.2)
on R+ such that h(x) = z and

lim
t→∞

‖ψ(t)z(t)− ψ(t)x(t)‖ = 0

By hypothesis, x is ψ-evanescent at ∞. Thus z is ψ-evanescent at ∞. Suppose that
statement (b) is satisfied, the proof is similarly. The proof is complete. �

Note that the above Theorem is a supplement to Theorem 1.4(b). Similarly, we
have the following Theorem.

Theorem 3.4. Suppose that (1.2) has a ψ-ordinary dichotomy on R− and f is a
ψ-integrable function on R−. Then following statements are equivalent

(a) every ψ-bounded solution of (1.2) on R− is ψ- evanescent at −∞.
(b) every ψ-bounded solution of (1.1) on R− is ψ-evanescent at −∞.

Corollary 3.5. Suppose that (1.2) has a ψ-ordinary dichotomy on R and f is a
ψ-integrable function on R. Then following statements are equivalent

(a) every ψ-bounded solution of (1.2) on R+ is ψ- evanescent at ∞ and every
ψ-bounded solution of (1.2) on R− is ψ- evanescent at −∞.

(b) every ψ-bounded solution of (1.1) on R is ψ-evanescent at ±∞.

Note that the above corollary is a supplement to [11, Theorem 3.3].

Theorem 3.6. Suppose that (1.2) has no non-trivial solution on R, ψ-evanescent
at ∞. Then (1.1) has a unique solution on R, ψ-evanescent at ∞ for every ψ-
integrable function f on R if and only if (1.2) has a ψ-ordinary dichotomy on R.

Proof. First, we prove the “if” part. By Lemma 2.3, we can consider (1.2) has a
ψ-ordinary dichotomy on R+ with two supplementary projections P1, P2 such that
P1Rd = Xo. Let

x(t) =
∫ t

−∞
Y (t)P1Y

−1(s)f(s)ds−
∫ ∞

t

Y (t)P2Y
−1(s)f(s)

Then the function x(t) is a ψ-bounded solution of (1.1) on R. We shall prove that
x(t) is ψ-evanescent at ∞. We have, for t > 0,

ψ(t)x(t) = ψ(t)Y (t)P1

∫ 0

−∞
P1Y

−1(s)f(s)ds+ ψ(t)g(t),

where g(t) as in the proof of Theorem 3.1. Since

‖P1Y
−1(s)f(s)‖ 6 |Y −1(0)|.|ψ−1(0)|.|ψ(0)Y (0)P1Y

−1(s)ψ−1(s)|.‖ψ(s)f(s)‖
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and f is ψ-integrable on R, we have that P1Y
−1(s)f(s) is integrable on R−. Let

a =
∫ 0

−∞ P1Y
−1(s)f(s)ds. It follows from P1Rd = X0 that

lim
t→∞

‖ψ(t)Y (t)P1a‖ = 0.

On the other hand, as in the proof of Theorem 3.1, we have

lim
t→∞

‖ψ(t)g(t)‖ = 0.

Consequently x(t) is defined on R, ψ-evanescent at ∞. The uniqueness of solution
x(t) result from (1.2) has no non-trivial on R, ψ-evanescent solution at ∞. Indeed,
suppose that y is a solution on R of (1.1), ψ-evanescent at ∞ then x−y is a solution
solution on R of (1.2), ψ-evanescent at ∞. We conclude x = y since x − y is the
trivial solution of (1.2).

Now, we prove the “only if” part. Suppose that (1.1) has a unique ψ-bounded
solution on R for every ψ- integrable function f on R. For each u ∈ Rd, denote
by x = x(t) the solution of (1.2), x(0) = u. By Lemma 2.6, we get x = x1 + x2,
where x2 is a ψ-bounded solution of (1.2) on R−, x1 is a solutions of (1.2) on
R+ and ψ-evanescent at ∞. Thus x1(0) ∈ X0 and x2(0) ∈ X̃1. It follows from
u = x1(0) + x2(0) that

Rd = X0 + X̃1. (3.1)

For any v ∈ X0∩X̃1 , denote by x(t) the solution of (1.2) such that x(0) = v. Thus
x(t) is a solution on R of (1.2), ψ-evanescent at ∞. By hypothesis, (1.2) has no
non-trivial solution on R, ψ-evanescent at ∞, then x(t) is the trivial solution. This
implies v = 0. Consequently

X0 ∩ X̃1 = 0 (3.2)

The relations (3.1) and (3.2) imply that Rd is the direct sum of X0 and X̃1. Every
ψ-integrable function f on R+, or on R− is the restriction of a ψ-integrable function
f on R, it follows that (1.2) satisfies Theorem 1.4(a) and Lemma 2.4(a). Hence (1.2)
has a ψ-ordinary dichotomy on R+ and has a ψ-ordinary dichotomy on R−. Let
P1, P2 be two projections such that ImP1 = X0, ImP2 = X̃1. Lemmas 2.3 and
2.4(b) follow that (1.2) has a ψ-ordinary dichotomy on R+ and has a ψ-ordinary
dichotomy on R− with two supplementary projections P1, P2. Remark 1.3 follows
that (1.2) has a ψ-ordinary dichotomy on R with two supplementary projections
P1, P2. The proof is complete. �

Similarly, we have the following Theorem.

Theorem 3.7. Suppose that (1.2) has no non-trivial solution on R, ψ-evanescent
at −∞. Then (1.1) has a unique solution on R, ψ-evanescent at −∞ for every
ψ-integrable function f on R if and only if (1.2) has a ψ-ordinary dichotomy on R.

Now, consider the equations

x′(t) = [A(t) +B(t)]x(t), (3.3)

x′(t) = [A(t) +B(t)]x(t) + f(t) (3.4)

where B(t) is a d × d continuous matrix function on R+ and f is a ψ-integrable
function on R+. We have the following result.

Theorem 3.8. Suppose that (1.2) has a ψ-ordinary dichotomy on R+. If δ =
supt>0 |ψ(t)B(t)ψ−1(t)| is sufficiently small, then following statements are equiva-
lent
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(a) every ψ-bounded solution of (3.3) on R+ is ψ- evanescent at +∞.
(b) every ψ-bounded solution of (3.4) on R+ is ψ-evanescent at +∞.

Proof. By [4, Theorem 3.7], equation (3.3) has a ψ-ordinary dichotomy on R+. By
Theorem 3.3, we have the conclusion. �

With similar proof, we can conclude that J = R−.

Theorem 3.9. Suppose that (1.2) has a ψ-ordinary dichotomy on R− and δ =
supt60 |ψ(t)B(t)ψ−1(t)| is sufficiently small. Then the following statements are
equivalent

(a) every ψ-bounded solution of (3.3) on R− is ψ- evanescent at −∞.
(b) every ψ-bounded solution of (3.4) on R− is ψ-evanescent at −∞.
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