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ILL-POSEDNESS FOR PERIODIC NONLINEAR DISPERSIVE
EQUATIONS

JAIME ANGULO PAVA, SEVDZHAN HAKKAEV

Abstract. In this article, we establish new results about the ill-posedness of
the Cauchy problem for the modified Korteweg-de Vries and the defocusing

modified Korteweg-de Vries equations, in the periodic case. The lack of local

well-posedness is in the sense that the dependence of solutions upon initial data
fails to be continuous. We also develop a method for obtaining ill-posedness re-

sults in the periodic and non-periodic cases for the equations in the hierarchies

of these equations and also in the case of the Benjamin-Ono equation.

1. Introduction

The purpose of this article is to investigate ill-posedness of the periodic Cauchy
problem for some models of Korteweg-de Vries type in the periodic Sobolev space
Hs

per. The models that we are interested are, the modified Korteweg-de Vries
(mKdV) in (3.1), the defocusing modified Korteweg-de Vries (dmKdV) in (6.1)
and the Benjamin-Ono (BO) in (1.3). Also, we develop a new technique to obtain
ill-posedness of the periodic and non periodic Cauchy problem associated with the
higher order equations in the hierarchies of these models.

Before describing our results, it is convenient to define the notion of well-posed-
ness (and consequently ill-posedness) related to a general evolution equation

ut = ∂xI
′(u(t)) (1.1)

where I(u) is a generic conservation law for the flow generated by (1.1), namely,
I(u(t1)) = I(u(t2)) for all times t1, t2. Here I ′ represents the gradient of I, defined
by

〈I ′(u), v〉 ≡ 〈δI(u)
δu

, v〉 ≡ d

dε
I(u+ εv)

∣∣
ε=0

, (1.2)

where 〈·, ·〉 denotes the inner product on L2.
Throughout this paper we shall say that a Cauchy problem associated to (1.1) is

locally well-posed (also called C0-well-posed) in some normed function space X if,
for any initial data u0 ∈ X there exist a time T = T (‖u0‖X ) > 0, a function space
Y continuously embedded in C([−T, T ];X ) and a unique solution u(t) such that

(1) u ∈ C([−T, T ];X ) ∩ Y ≡ ZT
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(2) the mapping data-solution u0 → u from X to ZT is continuous.

A Cauchy problem associated to (1.1) is globally well-posed in X if T above can
be chosen as T = +∞. Finally, a Cauchy problem will be said to be ill-posed if it
is not C0-well-posed.

Here is a more precise description of the problems of local well-posedness and
global well-posedness in the periodic case for the models mKdV, dmKdV and BO.
In [27] the local well-posedness for the mKdV (and defocusing mKdV) was obtained
for s ≥ 1

2 , and in [21, 22] it was shown that it is globally well posed for s ≥ 1
2 . If one

strengthens our notion of well-posedness, requiring that the mapping data-solution
is smooth, Bourgain showed in [17] that the known results on mKdV (s > 1

4 in the
line, s ≥ 1

2 in the periodic case) are optimal in the sense of this map to be of class
C3. In Christ, Colliander and Tao [20], ill-posedness for the defocusing mKdV is
obtained for s ∈ (−1, 1/2). Regarding the BO equation, L. Molinet in [33] proved
global well-posedness in Hs

per for s ≥ 0 and also showed that the mapping data-
solution can not be of class C1+α, α > 0, from Ḣs

per into Ḣs
per for s < 0 where

Ḣs
per = (−4)−s/2L2

per.
In the non-periodic case the ill-posedness for some classical non-linear disper-

sive equations (for instance, Korteweg-de Vries equation (KdV), cubic Schrödinger
equation, complex KdV, mKdV, and BO equations) is studied in [12, 14, 16, 17,
13, 20, 21, 27, 28]. The approach in [12], [13], and [14] uses the existence and good
properties of the solitary wave solutions associated to the equations. In particular,
a good behavior of its Fourier transforms is required.

In this paper we extend the technique developed in [14] to the periodic case and
to higher order evolutions equations. Our approach is based on the theory of Jaco-
bian elliptic functions, the Poisson summation formula, the Floquet theory and on
techniques coming from integrable systems. Our method can be used for studying
the ill-posedness of the periodic and non periodic Cauchy problem associated with
higher order equations.

The first objective of this work is to apply our approach to the study of the ill-
posedness for the mKdV, dmKdV and BO equations and to show that the solutions
cannot depend continuously on their initial data in the Sobolev spaces Hs

per for
s < −1/2. In other words, we construct a sequence converging (strongly) to a
specific data in Hs

per and then we show that the corresponding sequence of solutions
does not converge (strongly) in Hs

per. The specific data will be the Dirac delta
periodic distribution. The main point in the analysis is the construction of explicit
smooth curves of periodic traveling waves solutions for the mKdV, dmKdV and
BO equations with a fixed minimal period and a specific behavior of the associated
Fourier transform. To construct such solutions we shall use the theory of elliptic
functions, the Poisson summation formula and the implicit function theorem. To
obtain the ill-posedness results we shall use the ideas in Birnir, Ponce and Svenstedt
[14]. Our results extend the ill-posed results of Christ, Colliander and Tao [20]
concerning to the mKdV and dmKdV in the periodic case.

The second objective of this paper is to show that the approach for obtaining
ill-posedness for the mKdV, dmKdV and BO equations can be applied to the higher
order evolution equations in the hierarchies of these models. So we obtain similar
results of local ill-posedness in the spaces Hs

per for s < −1/2. Indeed, from the ideas
of Lax in [30] we develop a general scheme which will imply that the profile given
by the periodic (or solitary) travelling wave solutions associated with the mKdV,
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dmKdV and BO equations, and with a specific speed-wave will be a periodic (or
solitary) travelling wave solutions for every equation from the mKdV, dmKdV and
BO hierarchies respectively. For instance, we consider the BO equation

ut + uux −Huxx = 0, u = u(x, t) ∈ R, (1.3)

where H denotes the Hilbert transform on 2l-periodic functions, f , defined by

Hf(x) =
1
2l
p.v.

∫ l

−l
cot[

π(x− y)
2l

]f(y) dy.

So, we obtain via the Fourier transform that Ĥf(k) = −i sgn(k)f̂(k), k ∈ Z. Next,
let I(u) be a generic conserved quantity for the BO equation and consider the
associated hierarchy equation (1.1), then there is a spectral parameter λI,c such
that uc(x, t) = χc(x + λI,ct) is a periodic travelling wave for (1.1), provided that
χc(x − ct) is a periodic travelling wave for (1.3). The existence of the speed-wave
λI,c is deduced from the property that the kernel of the pseudo-differential operator

LBO =
d

dx
H− χc + c.

is one-dimensional and generated by d
dxχc.

In general, to determine the exact value of λI,c can be difficult and tedious.
Naturally, our general scheme is applicable to the case of travelling waves of solitary
wave type and so we can also obtain ill-posedness results for higher order evolution
equations in the hierarchies of the models above in Sobolev space Hs(R). We do
not find an effective algorithm which give the parameter λI,c for every conserved
quantity I given. Here we calculate it explicitly only in the cases of the second
equation from the mKdV, dmKdV and BO hierarchies (see (5.1), (6.2) and (5.2),
respectively). Of course, with a little more of work, one can yield an ill-posedness
result for the third equation from the hierarchy of these models and so on (see [19],
[32] and Remarks after Theorem 5.2 below).

2. Notation

For s ∈ R, the Sobolev space Hs
per([0, `]) consists of all periodic distributions

f such that ‖f‖2Hs = `
∑∞
k=−∞

∑
(1 + k2)s|f̂(k)|2 < ∞. For simplicity, we will

use the notation Hs
per in several places and H0

per = L2
per. We denote ‖f‖L2 =

‖f‖ and 〈f, g〉L2 =
∫ `
0
f(x)g(x)dx = 〈f, g〉. [Hs

per]
′, the topological dual of Hs

per,
is isometrically isomorphic to H−s

per for all s ∈ R. The duality is implemented
concretely by the pairing

(f, g) = `
∞∑

k=−∞

f̂(k)ĝ(k), for f ∈ H−s
per, g ∈ Hs

per.

Thus, if f ∈ L2
per and g ∈ Hs

per with s ≥ 0, it follows that (f, g) = 〈f, g〉. The
normal elliptic integral of first type is defined by∫ y

0

dt√
(1− t2)(1− k2t2)

=
∫ ϕ

0

dθ√
1− k2 sin2 θ

= F (ϕ, k)

where y = sinϕ and k ∈ (0, 1). k is called the modulus and ϕ the argument.
When y = 1, we denote F (π/2, k) by K = K(k). The three basic Jacobian elliptic
functions are denoted by sn(u; k), cn(u; k) and dn(u; k) (called; snoidal, cnoidal
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and dnoidal, respectively), and are defined via the previous elliptic integral. More
precisely, let

u(y; k) := u = F (ϕ, k) (2.1)
then y = sinϕ := sn(u; k) = sn(u) and

cn(u; k) :=
√

1− y2 =
√

1− sn2(u; k)

dn(u; k) :=
√

1− k2y2 =
√

1− k2 sn2(u; k).
(2.2)

The following asymptotic formulas are obtained: sn(x; 1) = tanh(x), cn(x; 1) =
sech(x) and dn(x; 1) = sech(x).

3. Ill-posedness for the mKdV

We start this section by presenting some results about periodic travelling wave
solutions associated to the mKdV equation,

ut + 3u2ux + uxxx = 0, u = u(x, t) ∈ R, (3.1)

which are essential in our analysis. Let uc(x, t) = ϕc(x−ct) be a periodic travelling
wave solution for (3.1), so after integration and by choosing the integration constant
being zero we have that ϕc needs to satisfy the nonlinear differential equation

ϕ′′c + ϕ3
c − cϕc = 0. (3.2)

Next, by following the ideas in Angulo [6] and Angulo & Natali [8] (see also
Angulo [7]) will obtain an explicit family of periodic solution, c→ ϕc, for (3.2) via
the Poisson summation formula. The method is as follows: for ω > 0 we consider
the positive solitary wave solution for the mKdV equation on R, namely,

φω(x) =
√

2ω sech(
√
ωx). (3.3)

Then φω satisfies the elliptic equation φ′′ω + φ3
ω − ωφω = 0. Now, since the Fourier

transform of φω is given by

φ̂ω(ξ) =
√

2π sech
( πξ

2
√
ω

)
,

we obtain from Poisson summation formula the following periodic function ψω with
a minimal period L,

ψω(ξ) =
∑
n∈Z

φω(ξ + nL) =
√

2π
L

∞∑
n=0

εn sech
( πn

2
√
ωL

)
cos

(2πnξ
L

)
, (3.4)

where

εn =

{
1, n = 0
2, n = 1, 2, 3, . . .

(3.5)

Next, we consider the Fourier expansion of the Jacobi elliptic dnoidal function with
minimal period L,

2K
L

dn
(2Kξ
L

; k
)

=
π

L
+

4π
L

∞∑
n=1

qn

1 + q2n
cos

(2nπξ
L

)
,

where K(k) is the complete elliptic integral of the first kind, q = e−
πK′

K , K ′(k) =
K(
√

1− k2), k ∈ (0, 1). From here we conclude that

qn

1 + q2n
=

1
2

sech
(nπK ′

K

)
.
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Therefore,

2K
L

dn
(2Kξ
L

; k
)

=
π

L
+

2π
L

∞∑
n=1

sech
(nπK ′

K

)
cos

(2nπξ
L

)
. (3.6)

So, from (3.4)-(3.6) let ϕc(ξ) = η dn
(
ηξ√

2
; k

)
be a periodic solution of (3.2) for c > 0

with minimal period L and η > 0. Then the following identities should be satisfied

c =
η2

√
2
(1 + k

′2), k
′2 = 1− k2

η = 2
√

2
K(k)
L

, k ∈ (0, 1), η ∈ (
√
c,
√

2c).

(3.7)

Therefore, from the asymptotic properties ofK, we need to have c ∈ I = ( 2π2

L2 ,+∞).
In this point we are ready to build a solution of (3.2) from the formula (3.4). Indeed,
for c ∈ I and by choosing the speed-wave, ω, of the solitary wave φω as being

ω(c) =
c

16(2− k2)K ′2(k)
,

we obtain from (3.4), (3.6) and (3.7) that

ϕc(ξ) = ψω(c)(ξ). (3.8)

Finally, from [6, 8] we obtain by using the implicit function theorem that for
every c > 2π2

L2 there is a unique η = η(c) ∈ (
√
c,
√

2c) such that the fundamental
period of the solution ϕc in (3.8) is L and the mapping c ∈ I → ϕc ∈ Hn

per([0, L])
is a smooth function.

From (3.2), ϕc satisfies the first-order equation

[ϕ′c]
2 =

1
2
[−ϕ4

c + 2cϕ2
c + 4Bϕc

] (3.9)

where Bϕc
is an integration constant determined uniquely as follows: For c ∈

( 2π2

L2 ,∞) there is a unique η = η(c) ∈ (
√
c,
√

2c) such that for β2 ≡ 2c− η2 and

4Bϕc = −η2β2,

we have that η and β are the positive zeros of the even polynomial Fϕc
(t) =

−t4 + 2ct2 + 4Bϕc
.

We also note from the first and third relations in (3.7) that η(c) → +∞ and
K(k) → +∞, as c → +∞. Hence k(c) → 1, as c → +∞. From here we conclude
that ω(c) → +∞, as c→ +∞.

Next we have the following lemmas for obtaining our ill-posed result associated
with the mKdV.

Lemma 3.1. The Hs
per norms of u0(x) = ϕc(x) and uc(x, t) = ϕc(x−ct) are finite

for s < −1/2, and

lim
c→+∞

‖u0‖s =
√

2π‖δL‖s

lim
c→+∞

‖uc(·, t)‖s =
√

2π‖δL‖s,

where δL represents the Dirac periodic distribution centered in zero, namely, for
f ∈ C∞per([0, L]) we have δL(f) = (δL, f) = f(0) (see [24]).
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Proof. From the Parseval identity and (3.4)-(3.8) we obtain

‖ϕc‖2s =
2π2

L

+∞∑
n=−∞

(1 + n2)s sech2
( nπ

2
√
ωL

)
≤ 2π2

L

+∞∑
n=−∞

(1 + n2)s.

Hence, if s < −1/2, then the series on the right-hand side of the above inequality
is uniformly convergent. Therefore, from above analysis we obtain

lim
c→+∞

‖ϕc‖2s =
2π2

L

+∞∑
n=−∞

(1 + n2)s = 2π2‖δL‖2s,

since δ̂L(n) = 1/L.
Now, for the solution uc(x, t) = ϕc(x− ct) = τctϕc (where τctf(x) = f(x− ct)),

we have from (3.4)-(3.8),

‖uc(·, t)‖2s = L

+∞∑
n=−∞

1
(1 + n2)−s

|ûc(n)|2 = L

+∞∑
n=−∞

1
(1 + n2)−s

|τ̂ctϕc(n)|2

= L
+∞∑

n=−∞

1
(1 + n2)−s

|ϕ̂c(n)|2 < +∞,

and so
‖uc(·, t)‖2s → 2π2‖δL‖2s, as c→ +∞.

This completes the proof of the lemma. �

Lemma 3.2. The initial data u0(x) ≡ ϕc(x) converges weakly to
√

2πδL as c →
+∞.

Proof. Let φ ∈ C∞per([0, L]) (where C∞per([0, L]) denotes the space of smooth periodic
function with period L). Then we have (see [24])

(u0, φ) = L

√
2π
L

+∞∑
n=−∞

sech
( nπ

2
√
ωL

)
φ̂(n). (3.10)

Since ∣∣ sech
( nπ

2
√
ωL

)
φ̂(n)

∣∣ ≤ |φ̂(n)|

and the series
∑+∞
n=−∞ |φ̂(n)| converges, it follows from the M-Weierstrass Theorem

that

lim
c→+∞

(u0, φ) =
√

2π
+∞∑

n=−∞
φ̂(n) lim

c→+∞
sech

( nπ

2
√
ωL

)
=
√

2π
+∞∑

n=−∞
φ̂(n) =

√
2πφ(0) = (

√
2πδL, φ).

This shows that u0 converges weakly to
√

2πδL in Hs
per (s < −1/2). �

We can now prove the main result of this section.

Theorem 3.1. The initial value problem for the mKdV is locally ill-posed in Hs
per

for s < −12.
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Proof. From Lemma 3.1 the Hs
per-norm of uc(x, 0) = ϕc(x) converges to the Hs

per-
norm of

√
2πδL and by Lemma 3.2, uc(x, 0) converges weakly to

√
2πδL. Conse-

quently uc(x, 0) converges strongly to
√

2πδL in Hs
per. Next, from (3.4)-(3.8) we

have that

ûc(x, 0)(n) = ϕ̂c(n) =
√

2π
L

sech
( nπ

2
√
ωL

)
→

√
2π
L

as c→ +∞.

On the other hand, we have that ûc(x, t)(n) = τ̂ctϕc(n) = eictnϕ̂c(n), which not
converge as c → +∞ for all n 6= 0. This shows that uc(x, t) can not converge
weakly in Hs

per. �

4. Ill-posedness for the BO equation

In this section we consider the ill-posedness for the Benjamin-Ono equation (1.3).
As in the previous section, first we will obtain a periodic solution with minimal
period 2L for the BO equation by using the Poisson summation formula. So,
we consider the family of solitary wave solutions for the BO equation, u(x, t) =
φω(x− ωt), where φω satisfies the nonlocal differential equation

Hφ′ω + ωφω −
1
2
φ2
ω = 0

with a profile given by

φω(x) =
4ω

1 + ω2x2
, ω > 0. (4.1)

So, we obtain that the Fourier transform of φω is given by

φ̂ω(ξ) = 4πe−2π|ξ|/ω.

By the Poisson summation formula, we obtain the following periodic function ρω
with a minimal period 2L (see [10, 6, 7, 8])

ρω(x) =
+∞∑

n=−∞
φω(x+ 2Ln) =

2π
L

+∞∑
n=−∞

e−
π|n|
ωL e

iπnx
L

=
2π
L

+∞∑
n=0

εne
−π|n|

ωL cos
(nπx
L

)
=

2π
L

Re
[
coth

( π

2ωL
+
iπx

2L

)]
=

2π
L

sinh
(
π
ωL

)
cosh

(
π
ωL

)
− cos

(
πx
L

) ,
(4.2)

where εn is defined in (3.5). Now, let χc(x − ct) be a smooth periodic travelling
wave solution of the BO equation, with c > 0 and minimal period 2L. Then by
considering the Fourier expansion series

χc(x) =
+∞∑

n=−∞
ane

iπnx
L

and by substituting this expression in

Hχ′c + cχc −
1
2
χ2
c = 0,
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we obtain (π|n|
L

+ c
)

=
1
2

+∞∑
m=−∞

an−man. (4.3)

By (4.2), we define an = 2π
L e

−γ|n| with n ∈ Z and γ ∈ R to be chosen. So, from
equality (4.3) we have the basic relation

c+
π|n|
L

=
2π
2L

(|n|+ coth γ),

which implies
c =

π

L
coth γ.

Then, for γ ≡ π
ωL and c > π

L we chose the speed-wave for the solitary wave solution
φω in (4.1), ω = ω(c), such that tanh(γ) = π

cL . Therefore, from (4.2) we have

χc(x) = ρω(c)(x) =
2π
L

( sinh γ
cosh γ − cos πxL

)
(4.4)

is a periodic solution of the BO equation, with period 2L and Fourier coefficients
given by

χ̂c(n) =
2π
L
e−γ|n|.

Note that γ → 0 as c → +∞. So we have our ill-posedness result for the BO
equation.

Theorem 4.1. The initial value problem for the BO equation is locally ill-posed in
Hs

per for s < −1/2.

Proof. As in the case of the mKdV we have

‖χc‖2s =
8π2

L

+∞∑
n=0

(1 + n2)se−2γ|n| ≤ 8π2

L

+∞∑
n=0

(1 + n2)s.

If s < −1/2, then the series on the right-hand side of the above inequality converges
uniformly and therefore

‖χc‖2s → 16π2‖δ2L‖2s, as c→ +∞.

This shows that the Hs
per norm of u0(x) = χc(x) converges to the Hs

per norm of
4πδ2L.

Now, for φ ∈ C∞per([0, 2L]), we have

〈u0, φ〉 =
∫ L

0

χc(x)φ(x)dx = 4π
+∞∑

n=−∞
e−γ|n|φ̂(n) → 4πφ(0), as c→ +∞.

From the above, we obtain that u0(x) converges strongly to 4πδ2L in Hs
per for

s < −1/2. On the other hand, for uc(x, t) = χc(x− ct), we have

‖uc(·, t)‖2s = 2L
+∞∑

n=−∞
(1 + n2)s|χ̂c(n)|2 < +∞,

and so
‖uc(·, t)‖2s → 16π2‖δ2L‖2s.

Moreover, since ûc(x, t)(n) = τ̂ctχc(n) = eictnχ̂c(n) we get that the rest of the proof
is the same as the one for Theorem 3.1. This completes the proof. �
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We remark that recently Molinet [34] showed ill-posedness of the BO equation
in Hs

per for s < 0.

5. Ill-posedness for higher order evolution equations

In this section we develop a general scheme which shows that every travelling
wave solution (periodic or solitary wave) for the mKdV and BO equations (3.1) and
(1.3), respectively, is also a travelling wave solution (with a different speed wave) of
every equation belonging to the hierarchy generated by these two basic equations.
So, we can deduce ill-posedness results in the periodic and non-periodic cases, for
instance, for the fifth order modified Korteweg-de Vries equation (5-mKdV)

ut − uxxxxx − 30u4ux − 10u2uxxx − 10(ux)3 − 40uuxuxx = 0, (5.1)

and for the third order Benjamin-Ono equation (3-BO)

ut − 4uxxx + 3u2ux − 3(uHux)x − 3H(uux)x = 0. (5.2)

5.1. The Method. Initially we set an abstract hamiltonian system of the form

ut = ∂xE
′(u(t)), (5.3)

where E is a conserved quantity for (5.3) with E′′(u) being a self-adjoint linear
operator. We assume that (5.3) is invariant under the symmetry of translation.
More specifically, let {T (γ)}γ∈R be the one-paramenter group of unitary operators
on L2 defined for γ ∈ R as

T (γ)f(x) = f(x+ γ).

So, for u(·, t) being a solution of (5.3) with initial data u(x, 0) = u0(x) we ob-
tain that for γ ∈ R, T (γ)u(·, t) = u(· + γ, t) is solution of (5.3) with initial data
T (γ)u(x, 0) = u0(x + γ). Next we denote by T ′(0) the infinitesimal generator of
the group of translations, then T ′(0) = d

dx .
Now, we suppose that F (u) = 1

2‖u‖
2 is also a conserved quantity for (5.3) and

E is invariant under translation. So, we have our first hypothesis:
(H1) (Existence of travelling wave) Suppose the existence of travelling wave type

solutions uc(x, t) = φc(x− ct) of (5.3) such that the mapping c ∈ I ⊂ R →
φc is smooth and for every c ∈ I, the profile φc is a critical point for the
functional H ≡ E + cF , namely,

H ′(φc) = E′(φc) + cφc = 0. (5.4)

Let us call the set Ωφc
= {T (γ)φc : γ ∈ R} the φc-orbit. Then from the invariance

of H under translation and from (5.4) we obtain that every point of Ωφc is a critical
point of H, H ′(T (γ)φc) = 0 for all γ ∈ R. Therefore,

0 =
d

dγ
H ′(T (γ)φc)

∣∣
γ=0

= H ′′(φc)(T ′(0)φc) = H ′′(φc)
( d

dx
φc

)
. (5.5)

Hence d
dxφc belongs to the kernel of the unbounded and self-adjoint linear operator

Lc = E′′(φc) + c. (5.6)
Next we have our second hypothesis:

(H2) (One-dimensional kernel) The operator Lc has kernel spanned by T ′(0)φc =
d
dxφc.
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Now, from (5.3) we consider the linear variational equation

vt = V (u)v, (5.7)

where V (u) denotes the derivative of K(u) ≡ ∂xE
′(u) (see (1.2)), namely, V (u)v =

K ′(u)v is a linear function of v given by

V (u)v = ∂x(E′′(u)(v)).

Let I(u) be any conservation law for (5.3) with derivative G(u), namely,

I ′(u)(v) = 〈G(u), v〉.

Therefore, we obtain that for any solution u(t) of (5.3) and v(t) of (5.7)

d

dt
〈G(u(t)), v(t)〉 = 0. (5.8)

Then for u(t) being a travelling wave of the model in (5.3) we get from (5.8) that

〈G(φc(x− ct)), v(t)〉 = 〈G(φc(x)), v(x+ ct, t)〉

is independent of t. Therefore, for w(x, t) ≡ v(x+ ct, t), we obtain that for every t,

0 = 〈G(φc), wt(t)〉 = 〈G(φc), [c∂x + V (φc)]w〉 = 〈[−c∂x + (V (φc))∗]G(φc), w(t)〉,

where V ∗ represents the adjoint operator associated to V . So, since the value w(0)
can be arbitrary we have

0 = [−c∂x + (V (φc))∗]G(φc) = −[c+ E′′(φc)](∂xI ′(φc)) = −Lc∂xI ′(φc). (5.9)

By hypothesis (H2) above we obtain from (5.9) that there is λ = λ(c, I) such that

∂xI
′(φc) = λ

d

dx
φc. (5.10)

Relation (5.10) contains the most important information in our study. Indeed,
if we consider the evolution equation

zt = ∂xI
′(z(t)), (5.11)

then zλ(x, t) = φc(x + λt) is a travelling wave solution for (5.11). In general, the
value of λ depending on I and c, is not easy to find out. Note that from (5.10)
we have I ′(φc) = λφc + β, with β being an integration constant. If φc is a solitary
wave solution (lim|ξ|→∞ φ(ξ) = 0) then β = 0. In the case of periodic travelling
waves solutions we will also assume β = 0.
Remark. Hypothesis (H2), it is a delicate issue to be verified in the periodic
setting, but the techniques developed in Angulo and Natali [8, 9] can be useful for
this purpose.

Next, we apply the foregoing to the 3-BO and 5-mKdV equations in (5.2) and
(5.1), respectively.

5.2. The 3-BO case. Let ψ denote the travelling wave solutions of type solitary
wave or periodic wave for the BO (1.3). This equation can be written in the
Hamiltonian form

ut = ∂xE
′
BO(u(t))

with

EBO(u) =
∫
uHux −

1
6
u3 dx.
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So, the hypothesis (H1) above follows from Section 4 (formulas (4.1) and (4.4)).
Now, for verifying hypothesis (H2) we need to study the kernel of the pseudo-
differential operator

LBO =
d

dx
H− ψ + c.

For ψ being the solitary wave solution in (4.1) or the periodic travelling wave in
(4.4), the works of Bennett et al. [11], Albert [1], Albert et al. [3] and Angulo et al.
[8], show that ker(LBO) = [ ddxψ] (see Angulo [7] for a summary of these results).
Thus, there is a constant λBO such that ψ(x+ λBOt) is a travelling wave solution
of (5.2) according to the results established in Subsection 5.1.

Next, we obtain the exact value of λBO. We start establishing some nontrivial
facts about the solutions of the pseudo-differential equation

Hψ′ + cψ − 1
2
ψ2 = 0, c > 0. (5.12)

In Albert [2] it was shown an alternative method of proof of uniqueness of the
solitary waves solutions for the intermediate long wave equation (ILW) and the BO
(see (4.1)), which does not use complex analysis (see [4], [5]). His method make
use of positive-operator theory and suitable identities associated to the dispersion
operator in the ILW and BO equations. In the case of the BO was used the well-
known product formula

fg +H(f · Hg + g · Hf)−Hf · Hg = 0, (5.13)

valid for f, g ∈ L2(R). Inspecting his proof, one can observe that the key equality
in Lemma 3 in [2], established on the line for N = NH being the “dispersion
operator” defined by N̂Hf(ξ) = ξcoth(ξH)f̂(ξ), ξ ∈ R, it is also true in the periodic
setting with N replaced by M = ∂xH. Indeed, since the formula (5.13) is true for
f, g ∈ L2

per, differentiation of (5.13) yields the main equality

f ′g + fg′ +M
[
f
( ∫ x

0

Mg
)

+ g
( ∫ x

0

Mf
)]
−Mf

( ∫ x

0

Mg
)
−Mg

( ∫ x

0

Mf
)

= 0.

Hence following the ideas in [2], we obtain that every positive periodic solution ψ
of (5.12) satisfies

Hψ′ = −2
(ψ′
ψ

)′
.

Therefore, from (5.12) the following ordinary differential equation holds:(ψ′
ψ

)′
=
c

2
ψ − 1

4
ψ2. (5.14)

Then, it is easy to see that φc in (4.1) (with ω = c > 0) and χc defined in (4.4),
satisfy (5.14). Now, from (5.14) it follows that ψ satisfies

[ψ′]2 = ψ2[cψ − 1
4
ψ2 +D], (5.15)

where D is the constant of integration. The value of this constant in the case ψ = φc
in (4.1) it is D = 0, and for ψ = χc in (4.4), it is given by D = − π2

L2 .
Now, by denoting G(u) = 4uxx + 3H(uux) + 3uHux − u3, we can write (5.2) in

the hamiltonian form
ut = ∂xG(u).
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Here G(u) = I ′(u) with I(u) being the following conservation law for the BO,

I(u) =
∫

2(ux)2 −
3
2
u2Hux +

1
4
u4 dx.

Then for uc(x, t) = ψ(x + λBOt) with λBO = D − 3c2, we obtain after some
computations based on relations (5.12) and (5.15) that

G(ψ) = λBOψ.

Hence, uc(x, t) is a travelling wave solution (solitary or periodic) for the 3-BO (5.2).
Finally, from the approach in [14], Section 3, and Section 4 above, we obtain the

following result.

Theorem 5.1. The initial value problem for the third order BO equation (5.2) is
locally ill-posed in Hs(R) and in Hs

per for s < −1/2.

5.3. The 5-mKdV case. We start with the following scaling for u being solution
of the mKdV (3.1). For v(x, t) =

√
2

2 u(x, t) we have that

vt + 6v2vx + vxxx = 0. (5.16)

So, we have that (5.1) is the second equation from the mKdV (5.16) hierarchy.
Now, for v(x, t) = ζc(x− ct) we have

ζ ′′c + 2ζ3
c − cζc = 0, and [ζ ′c]

2 = −ζ4
c + cζ2

c +Bc, (5.17)

with Bc the integration constant. Then for φc in (3.3) (c = ω > 0) we have that
ζc =

√
2

2 φc satisfies (5.17) with Bc = 0 and with Bc = Bϕc
for ζc =

√
2

2 ϕc, and ϕc

being the dnoidal wave solution satisfying (3.9) for c > 2π2

L2 .
Equation (5.16) can be written in the Hamiltonian form as

vt = ∂xE
′
mKdV (v(t))

with

EmKdV (v) =
1
2

∫
(vx)2 − v4 dx.

Moreover, the family of travelling wave ζc satisfies E′mKdV (ζc) + cζc = 0. So, we
obtain the hypothesis (H1) in Subsection 5.1.

For obtaining hypothesis (H2) we study the kernel of the second order differential
operator

LmKdV = − d2

dx2
− 6ζ2

c + c.

For ζc being a solitary wave solution we have that an elementary application of
the Oscillation theory of the Sturm-Liouville theory implies that zero is a simple
eigenvalue with eigenfunction d

dxζc. For ζc =
√

2
2 ϕc and ϕc being the dnoidal

wave solution defined in Section 3, the analysis is more delicate. In this case, the
Floquet theory can be used (see Angulo [6] or the proof of Theorem 6.5 below) for
obtaining the desired property for LmKdV . We note in this point that by using the
new technique in Angulo&Natali [8] (see also Angulo [7]) which is based in positive
properties of the Fourier transform of ϕc, we can also deduce hypothesis (H2).

Then for G(u) = uxxxx + 6u5 + 10u2uxx + 10u(ux)2, one can write (5.1) in the
form

ut = ∂xG(u)
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with G(u) = M ′(u) and M being the following conservation law for the mKdV in
(5.16),

M(u) =
∫

1
2
(uxx)2 + u6 − 5u2(ux)2 dx.

Therefore, for uc(x, t) = ζc(x+ λmKdV t) with

λmKdV = c2 − 2Bc,

we obtain after some computations based in the relations in (5.17), that G(ζc) =
λmKdV ζc. Hence, uc(x, t) represents a travelling wave solution for the 5-mkdv (5.1).

From Section 3 in [14] and Section 3 above we obtain the following result.

Theorem 5.2. The initial value problem for the fifth order modified Korteweg-de
Vries equation (5.1) is not locally well-posed in Hs(R) and Hs

per for any s < −1/2.

Remarks. (a) Recently Kwon in [29] showed that the initial value problem (IVP)
for the following general fifth order mKdV equation

ut − uxxxxx + c0u
4ux + c1(u3)xxx + c2uuxuxx + c4u

2uxxx = 0,

with cj constants, is local well-posedness in Hs(R) for s ≥ 3/4 and that the solution
map from data to the solutions, fails to be uniformly continuous for s ∈ (− 7

24 ,
3
4 ).

Theorem 5.2 above shows that the IVP is also ill-posed in Hs(R) for s < −1/2.
(b) The third equation from the mKdV (5.16) hierarchy is given by

ut − ∂7
xu− 84u∂xu∂4

xu− 560u3∂xu∂
2
xu− 14u2∂5

xu− 140u∂2
xu∂

3
xu

− 126∂3
xu(∂xu)

2 − 182∂xu(∂2
xu)

2 − 70u4∂3
xu− 420u2(∂xu)3 − 140u6∂xu = 0,

(5.18)
which is coming from the conservation law

N(u) =
∫
−1

2
(uxxx)2 − 35u4(ux)2 + 7u2(uxx)2 −

7
2
(ux)4 +

5
2
u8 dx.

Then we have that (5.18) has the hamiltonian form ut = ∂xN
′(u). Therefore we

obtain that uc(x, t) = ζc(x+ λN,ct) with

λN,c = c3 − 6cBc,

is a travelling wave to (5.18). Then we get that the IVP for the seventh order
modified Korteweg-de Vries equation (5.18) is ill-posed in Hs(R) and Hs

per for
s < −1/2.
(c) The third equation from the BO hierarchy is

ut = ∂xS(u) (5.19)

where

S(u) = u4 − 4u2Hux − 4uH(uux) + 2(Hux)2 + 4H(uHux)x
− 6(ux)2 − 12uuxx + 8Huxxx.

Here S(u) = W ′(u) for W being the following conservation law for the BO equation

W (u) =
∫

1
5
u5 − 4

3
u3Hux − u2H(uux) + 2u(Hux)2 + 6u(ux)2 + 4uxxHux dx.

Therefore we obtain that uc(x, t) = ψ(x+ λW,ct) with

λW,c = 4c3 − 4cD,
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and D given in (5.15), it is a travelling wave to (5.19) satisfying S(ψ) = λW,cψ.
Then we deduce that the IVP for (5.19) is ill-posed inHs(R) andHs

per for s < −1/2.
(d) The role of the index s = −1/2 in Theorems 5.1 and 5.2 for the spaces Hs(R),
can be explained via a scaling argument, that is, if u(x, t) solves the IVP (5.1),
then uλ(x, t) = λu(λx, λ5t), λ > 0, solves the same equation with data u0,λ(x) =
λu0(λx). Then for Ds defined by D̂sf(ξ) = |ξ|sf̂(ξ), we obtain that the equality

‖Dsu0,λ‖ = λs+
1
2 ‖Dsu0‖

implies that this norm is independent of λ only when s = −1/2. A similar analysis
is carried on with (5.2) via the scaling

uλ(x, t) = λu(λx, λ3t).

6. Ill-posedness for the dmKdV and the fifth order dmKdV

In this section we develop a theory of ill-posedness in the periodic case for the
defocusing modified Korteweg-de Vries equation (dmKdV)

vt + 6v2vx − vxxx = 0, v = v(x, t) ∈ R, (6.1)

and for the fifth order defocusing modified Korteweg-de Vries equation (5-dmKdV)

vt − vxxxxx − 30v4vx + 10v2vxxx + 10(vx)3 + 40vvxvxx = 0. (6.2)
The use of the theory of elliptic functions and the Floquet theory associated to the
Lamé equation will be basic in our analysis.

6.1. The dmKdV case. In this section we focus to the ill-posedness result for the
defocusing mKdV (6.1). We start obtaining a family of periodic travelling wave
solutions of (6.1) in the form

v(x, t) = Qc(x− ct).

So, if we substitute this specific solution in the defocusing mKdV and consider the
integration constant equal to zero then Q = Qc satisfies the ordinary differential
equation

Q′′ + cQ− 2Q3 = 0. (6.3)
From this we obtain the first order differential equation (the associated quadrature
form)

[Q′]2 = Q4 − cQ2 +A, (6.4)
where A is the integration constant and which need to be different of zero for
obtaining periodic profile solutions. Let us suppose that the fourth order polynomial
F (t) = t4 − ct2 +A has the positive roots η1 > η2 > 0. From (6.4) it follows that

[Q′]2 = (Q2 − η2
1)(Q2 − η2

2), −η2 ≤ Q ≤ η2,

η2
1 + η2

2 = c > 0, η2
1η

2
2 = A > 0.

(6.5)

Next, we normalize Q by letting ϕ = Q/η2, so that (6.5) becomes

[ϕ′]2 = η2
1(k2ϕ2 − 1)(ϕ2 − 1) (6.6)

with k2 = η2
2/η

2
1 . Next, by letting now ϕ(ξ) = sin(ψ(ξ)) with ψ(0) = 0 and ψ

continuous, the substitution of it into (6.6), yields the equation

[ψ′]2 = η2
1(1− k2sin2ψ).
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We may solve for ψ implicitly to obtain

F (ψ; k) =
∫ ψ(ξ)

0

dt√
1− k2 sin2 t

= η1 ξ. (6.7)

The left-hand side of (6.7) is just the standard elliptic integral of the first kind and
so, for fixed k, the elliptic function snoidal sn(ξ; k) is defined in terms of the inverse
of the mapping ψ 7−→ F (ψ; k). Hence, (6.7) implies that

sn(η1ξ; k) = sinψ(ξ).

Therefore, we obtain the snoidal periodic profile for (6.3)

Qc(ξ) = η2 sn(η1ξ; k),

which is determined by the elliptic modulus k2 = η2
2/η

2
1 ∈ (0, 1).

Next we establish the main information for obtaining a smooth curve, c → Qc,
of periodic travelling waves for (6.3) with minimal period L. Since sn has minimal
period 4K(k) then the minimal period of Qc, TQc , is given by TQc = 4K(k)/η1.
Moreover, from the relations in (6.5) it follows

0 < η2 <
√
c/2 < η1 <

√
c,

and k and TQc
can be seen as functions of c and η1, namely,

k2(η1, c) =
c− η2

1

η2
1

, TQc
(η1, c) =

4
η1
K(k(η1, c)).

Therefore, from the properties of K(k) and from the implicit function theorem we
have the following result (see Angulo [6, 7]).

Theorem 6.1. Let L > 0 be a fixed number and n any positive integer. Then there
exists a smooth branch of snoidal waves, c ∈ ( 4π2

L2 ,+∞) 7→ Qc ∈ Hn
per([0, L]), such

that
Q′′c (ξ) + cQc(ξ)− 2Q3(ξ) = 0, for all ξ ∈ R, (6.8)

where
Qc(ξ) = η2 sn(η1ξ; k). (6.9)

Here, η1, η2 and k are smooth functions of c, satisfying the relations

η1 ∈ (
√
c/2,

√
c), η2 =

√
c− η2

1 , k2 =
η2
2

η2
1

4K(k(c))
η1(c)

= L, for all c >
4π2

L2
.

(6.10)

Moreover, k(c) → 1 as c→∞.

The following theorem is the main piece in our study of ill-posedness for the
defocusing mKdV.

Theorem 6.2. The Fourier coefficients {Q̂c(m)}m∈Z for Qc defined in (6.9) satisfy

lim
c→+∞

Q̂c(m) =
4π
L
, for all m ≥ 0.



16 J. ANGULO, S. HAKKAEV EJDE-2010/119

Proof. From [18] we have for q = e−πK
′/K that the Fourier series of sn is

snu =
2π
kK

∞∑
m=0

qm+ 1
2

1− q2m+1
sin

[
(2m+ 1)

π

2
u

K

]
.

Therefore, from the relations η1 = 4K/L and η2 = η1k we obtain

Qc(ξ) =
4π
L

∞∑
m=0

sech
[
(2m+ 1)

π

2
K ′

K

]
sin

[
(2m+ 1)

2πξ
L

]
.

Hence from Theorem 6.1 we finish the proof. �

So, following the method in Section 3 we obtain the main result of this Subsec-
tion.

Theorem 6.3. The Cauchy problem for the defocusing mKdV is not locally well-
posed in Hs

per, s < −1/2, in the sense that the mapping data-solution u0 → u is
not continuous.

Then, from Christ, Colliander and Tao [20, Theorem 8 ] and from Theorem 6.3
above we obtain the following sharp ill-posedness type result for (6.1).

Theorem 6.4. The Cauchy problem for the defocusing mKdV is not locally well-
posed in Hs

per, s < 1/2, in the sense that the mapping data-solution u0 → u is not
uniformly continuous.

6.2. The fifth order dmKdV case. In this Subsection we focus to the ill-posed-
ness result for the 5-dmKdV (6.2). We start writing the dmKdV equation (6.1) in
the hamiltonian form

vt = ∂xE
′
dmKdV (v(t))

with
EdmKdV (v) =

1
2

∫
(v′(x))2 + v4(x) dx.

Therefore, the snoidal wave solution Qc in (6.9) is a critical point of the functional
H = EdmKdV − cF for F (u) = ‖u‖2/2 and for every c > 4π2/L2. Hence from
Subsection 5.1 we need to show that the kernel of the linear operator H ′′(Qc) =
LdmKdV ,

LdmKdV = − d2

dx2
+ 6Q2

c − c, (6.11)

is generated by d
dxQc. So, we establish the next periodic spectral problem for

Lsn ≡ LdmKdV , namely,
Lsnχ = λχ,

χ(0) = χ(L), χ′(0) = χ′(L),
(6.12)

and the following result is obtained in this context.

Theorem 6.5. Let Qc be the snoidal wave given in Theorem 6.1 for c ∈ ( 4π2

L2 ,+∞).
Let

λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ · · ·,
connote the eigenvalues of the problem (6.12). Then

λ0 < λ1 = 0 < λ2 < λ3 < λ4

are all simple whilst, for j ≥ 5, the λj are double eigenvalues. The λj only accu-
mulate at +∞.
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Proof. Theorem 6.5 is a consequence of Floquet theory (Magnus and Winkler [31])
together with some particular facts about the periodic eigenvalue problem associ-
ated to the Lamé equation,

d2

dx2
Λ + [ρ− 6k2sn2(x; k)]Λ = 0

Λ(0) = Λ(4K(k)), Λ′(0) = Λ′(4K(k)).
(6.13)

Indeed, we certainly know that λ0 < λ1 ≤ λ2. Since Lsn d
dxQc = 0 and d

dxQc has
2 zeros in [0, L), it follows that 0 is either λ1 or λ2. We will show that 0 = λ1 < λ2.
First, we perform the change of variable Λ(x) ≡ χ(x/η1). Then, using the explicit
form (6.9) for Qc and that η2

1k
2 = η2

2 , the problem (6.12) is equivalent to the
eigenvalue problem (6.13) with

ρ =
c+ λ

η2
1

=
η2
1 + η2

2 + λ

η2
1

= 1 + k2 +
λ

η2
1

. (6.14)

Next, from Floquet theory the Lamé equation in (6.13) (see Angulo [6, 7]) with
boundary conditions Λj(0) = Λj(2K(k)), j = 0, 1, has exactly three instability
intervals, so the first five eigenvalues for (6.13), {ρj : 0 ≤ j ≤ 4}, are simple and
for j ≥ 5, the ρj are double eigenvalues. In Angulo [6] the explicit values of that
simple eigenvalues and its eigenfunctions are given. Indeed, the eigenvalues are:

ρ0 = 2[1 + k2 −
√

1− k2 + k4], ρ1 = 1 + k2, ρ2 = 1 + 4k2,

ρ3 = 4 + k2, ρ4 = 2[1 + k2 +
√

1− k2 + k4].
(6.15)

Then from (6.14) we obtain the following relations

ρ0 7→ λ0 < 0, ρ1 7→ λ1 = 0, ρ2 7→ λ2 > 0,
ρ3 7→ λ3 > λ2, ρ4 7→ λ4 > λ3.

(6.16)

This completes the proof. �

Now, for P (v) = vxxxx + 6v5 − 10v(vx)2 − 10v2vxx we write (6.2) in the form

vt = ∂xP (v)

with P (v) = R′(v) and R being the following conservation law for the dmKdV
equation (6.1),

R(v) =
∫

1
2
(vxx)2 + v6 + 5v2(vx)2 dx.

Then for vc(x, t) = Qc(x+ λR,ct) with

λR,c = c2 + 2A,

we obtain from (6.4) that P (Qc) = λR,cQc. Hence, vc(x, t) represents a travelling
wave solution for the 5-dmKdV (6.2).

Then following the method in Section 3 we obtain the following result.

Theorem 6.6. The Cauchy problem for the fifth order defocusing mKdV (6.2) is
not locally well-posed in Hs

per, s < −1/2, more precisely, the mapping data-solution
u0 → u fails to be continuous with respect to the Hs

per.
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Remark: Theorem 6.5 and the property of concavity of the function

d(c) = EdmKdV (Qc)− c
1
2

∫
Q2
c(x) dx

(d′′(c) < 0) give us the basic information which could give the initial steps for
obtaining a instability theory of the orbit generated by the snoidal wave Qc, namely,
ΩQc = {Qc(·+r) : r ∈ R}, by the periodic flow generated by the defocusing mKdV.
We note that the classical stability theories in [23] and [15] do not give a light
for obtaining a conclusive answer about this issue. We plan to discuss this in a
subsequent paper.
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