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CONSTANT INVARIANT SOLUTIONS OF THE POINCARÉ
CENTER-FOCUS PROBLEM

GARY R. NICKLASON

Abstract. We consider the classical Poincaré problem

dx

dt
= −y − p(x, y),

dy

dt
= x+ q(x, y)

where p, q are homogeneous polynomials of degree n ≥ 2. Associated with this

system is an Abel differential equation

dρ

dθ
= ψ3ρ

3 + ψ2ρ
2

in which the coefficients are trigonometric polynomials. We investigate two

separate conditions which produce a constant first absolute invariant of this
equation. One of these conditions leads to a new class of integrable, center

conditions for the Poincaré problem if n ≥ 9 is an odd integer. We also show

that both classes of solutions produce polynomial solutions to the problem.

1. Introduction

We consider the problem of finding center conditions for the critical point (0, 0)
for the system

dx

dt
= P (x, y),

dy

dt
= Q(x, y)

where P and Q are polynomials satisfying P (0, 0) = Q(0, 0) = 0. That is, we seek
to find conditions on P and Q such that all trajectories within a sufficiently small
neighborhood of the origin will be closed. In this work we look at the particular
system

dx

dt
= −y − p(x, y),

dy

dt
= x+ q(x, y) (1.1)

where p and q are homogeneous polynomials of degree n ≥ 2. This problem has
been the focus of much research since it was first formulated by Poincaré [10].

Corresponding to (1.1) is the first order differential equation

dy

dx
= −x+ q(x, y)

y + p(x, y)
. (1.2)
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Using a polar coordinate transformation, this is transformed into

dr

dθ
=

ξ(θ) r(θ)n

1 + η(θ) r(θ)n−1
(1.3)

where ξ, η are trigonometric polynomials of degree n + 1. This can be further
transformed [5] to an Abel equation of the first kind

dρ

dθ
= −(n− 1)ξ(θ)η(θ)ρ3 + ((n− 1)ξ(θ)− η′(θ))ρ2. (1.4)

Standard center conditions for a general n are given in terms of (1.3), (1.4) by

ξ(θ) = Kη′(θ) (1.5)

and by r(θ0−θ) = r(θ−θ0) (the symmetric or time reversible centers). In theseK 6=
0 and θ0 are constants. In a recent paper [9] the author was able to demonstrate
a class of centers of (1.1)–(1.2) by appealing to certain parity properties of the
solution of (1.4).

More generally, if (1.2) has a solution expressible in the form U(x, y) = C where
U is analytic on a neighborhood of the origin and C is a constant, the origin will
be a center. The search for integrability conditions for (1.2), usually in the form of
an integrating factor, is one method of determining center conditions.

In this article we consider solutions of (1.3), (1.4). The work is motivated by
the fact that if the first absolute invariant I1 of the Abel equation (1.4) is con-
stant, then the equation is solvable. If the coefficient functions ξ, η satisfy (1.5),
it is straightforward to show that the invariant is constant. We mention this case
for completeness purposes. Beyond this, we knew from previous work that other
constant invariant conditions for (1.4) exist. In particular, the complete symmetric
case for n = 3, which does not generally satisfy the condition (1.5), is integrable
in terms of a constant invariant Abel equation. Also, the symmetric cases for
n = 5, 7, 9, 11, while not generally having constant invariant I1, contain subcases
that are. It is our purpose here to give a more compete description of these cases,
and in so doing, give new, integrable center conditions for (1.1)–(1.2).

In the next section we review the derivation of eqs. (1.3), (1.4) as well as some
aspects of the Abel differential equation. In particular, we define the relative invari-
ants of an Abel equation and indicate that if the first absolute invariant I1 obtained
from these is constant, then the equation can be transformed to a separable equa-
tion. We mention a particular form for which a constant I1 can always be obtained
and indicate how this would apply to the form obtained from (1.3)–(1.5). We next
look at an integrating factor for (1.3) and use the previously obtained results to
give a precise form for it.

In section 4 we show that we obtain a constant invariant form for (1.4) which
does not satisfy (1.5). This form occurs only when n ≥ 5 is an odd integer. Using
the integrating factor, we obtain the solutions of (1.3) and show that they are
analytic on a neighborhood of the origin. These solutions are seen to generalize, to
any odd integer, previously given solutions for the symmetric case of n = 3. In the
next section we develop families of polynomial solutions from each of the constant
invariant cases of (1.4) discussed in this paper. In the last section we discuss some
of the reasons which led us to assume the particular form of the integrating factor
of (1.3).
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2. Aspects of the Abel differential equation

If we set x = r cos θ, y = r sin θ in (1.2), we obtain the polar form (1.3) where

ξ(θ) = sin θ q(cos θ, sin θ)− cos θ p(cos θ, sin θ),

η(θ) = sin θ p(cos θ, sin θ) + cos θ q(cos θ, sin θ)
(2.1)

are homogeneous trigonometric polynomials of degree n+1 in cos θ, sin θ. Through-
out the remainder of the paper we shall refer to the degree of a homogeneous,
trigonometric polynomial as the total degree of cos θ, sin θ in each term. Following
[5], we can further transform (1.3) by setting

ρ(θ) =
r(θ)n−1

1 + η(θ)r(θ)n−1
.

This gives (1.4)
dρ

dθ
= −(n− 1)ξ(θ)η(θ)ρ3 + ((n− 1)ξ(θ)− η′(θ))ρ2.

Now that we have obtained the form of the equation (1.4) being considered, we
briefly review certain properties of Abel equations. For a general Abel equation
of the first kind y′ = g3(x)y3 + g2(x)y2 + g1(x)y + g0(x), it is possible to define
recursively an infinite sequence of relative invariants by [4]

s3(x) = g0(x)g2
3(x)+

2
27
g3
2(x)+

1
3
(g3(x)g′2(x)−g2(x)g′3(x)−g1(x)g2(x)g3(x)) (2.2)

and

s2k+1(x) = g3(x)s′2k−1(x) + (2k − 1)(
1
3
g2
2(x)− g′3(x)− g1(x)g3(x))s2k−1(x) (2.3)

for k ≥ 2. From these, a sequence of absolute invariants can be formed. If the first
invariant I1 = s35/s

5
3 is constant, the Abel equation can be transformed to a sepa-

rable equation. This is the only general class of Abel equations which is integrable
by quadrature. We note that if s3(x) = 0, the Abel equation is transformable to
Bernoulli equation. The values of the parameters for which this will occur will be
obvious in what follows, so we do not specifically consider this possibility in this
paper.

A sufficient condition that an Abel equation of the form (1.4) has a constant
first invariant I1 is that the coefficient functions satisfy a relation of the form

(
g3(x)
g2(x)

)′ = Cg2(x) (2.4)

where C is a constant. This gives

I1 =
729(1− 3C)3

(9C − 2)2
. (2.5)

It is clearly evident that if the coefficient functions of (1.4) satisfy (1.5), the invari-
ant is constant. It should be noted however, that K and η in (1.5) cannot be chosen
in an arbitrary fashion. We must have either K = −1/(n + 1) (the Hamiltonian
condition) or η such that terms of the form e±i(n+1)θ are absent. Otherwise, in the
latter case, the functions p, q defined from (2.1) will not be polynomials.

The constant invariant condition associated with (1.5) is well known and the
condition itself can be derived in a number of different ways. In the following we
seek a more complete characterization of other conditions which produce a constant



4 G. R. NICKLASON EJDE-2010/130

invariant I1 but for which (2.4) is not satisfied. The basis for carrying out this work
is prior knowledge of certain conditions of this type.

3. An integrating factor

The constant invariant case defined by (1.5) is valid for any integer n ≥ 2. For
the next case we require that n ≥ 5 be an odd integer. This is necessitated by the
fact that the expressions for ξ, η that we shall obtain involve even powers and this
can occur only if n is odd. We begin by considering an integrating factor for the
symmetric n = 3 case defined by

p(x, y) = a21x
2y + a03y

3, q(x, y) = b30x
3 + b12xy

2.

Such an expression for the polar coordinate form (1.3) is given by

µ(r, θ) =
r

1 + r2f1(θ) + r4f2(θ)
(3.1)

where

f1(θ) = (a21 − b12) cos2 θ +
2a03b30 − b12a21 + a03b12 − b212 − a03a21

a03 − a21 − b12 + b30
and

f2(θ) = (a03b30 − a21b12)
(

cos4 θ +
a21 + b12 − 2a03

a03 − a21 − b12 + b30
cos2 θ

+
a03

a03 − a21 − b12 + b30

)
.

In particular, we find that

η(θ) =
a03 − a21 − b12 + b30
a03b30 − a21b12

f2(θ) (3.2)

where η is given by (2.1).
Based on earlier work involving the constant invariant cases for n = 5, 7, 9, 11,

we modify the form given by (3.1) to

µ(r, θ) =
r2α+1

1 + rn−1f1(θ) + r2(n−1)f2(θ)
(3.3)

where α is a value dependent on n and f1, f2 are trigonometric polynomials of
degree n− 1 and 2(n− 1) respectively. (As we shall see, the actual degrees of f1, f2
are less than these values.) The form (3.3) is not particularly suitable for finding
conditions for f1, f2 so we set V = 1/µ in the general condition for exactness

∂

∂r
(µrnξ) = − ∂

∂θ
(µ(1 + rn−1η))

to obtain
rnξ

∂V

∂r
+ (1 + rn−1η)

∂V

∂θ
− rn−1(nξ + η′)V = 0.

Substituting the appropriate form of (3.3) in this and collecting powers of r yields
the system of equations

(n+ 2α+ 1)ξ + η′ − f ′1 = 0 (3.4)

2(α+ 1)ξf1 − f ′2 − ηf ′1 + η′f1 = 0 (3.5)

(n− 2α− 3)ξf2 + ηf ′2 − η′f2 = 0 (3.6)

which the functions ξ, η, f1, f2 must satisfy.
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In the process of solving (3.4)–(3.6), we shall introduce two assumptions which
will produce sufficient conditions for a solution to be found. They are both based
on the known forms of (3.3) for previously obtained integrating factors. The first
of these is to assume that we can write

η′ = λ f ′1, ξ = ψ f ′1 (3.7)

where λ, ψ are trigonometric polynomials to be determined. The coefficient func-
tions in (3.1) and ξ, η for the symmetric n = 3 case also satisfy (3.7).

The conditions (3.7) may seem rather artificial, however we have found by
studying other integrating factors for integrable forms of (1.2)–(1.3) that they fre-
quently satisfy relations of a similar type. For example, the functions f1(θ) =
2a(cos θ)n−1 − 2b(sin θ)n−1 and η for the system

p(x, y) = axn−1y − 2bx2yn−2 + byn, q(x, y) = axn − 2axn−2y2 + bxyn−1

obtained in [1] satisfy a relation of the form η = λf1 where λ = (1/2) cos 2θ. An
integrating factor for this system is given by

µ(x, y) = (1 + 2(axn−1 + byn−1) + (axn−1 − byn−1)2)−(n+3)/(2n−2).

We believe that this or similar structure is inherent in most (if not all) integrating
factors and that it can be used to facilitate the development other integrable forms
of (1.2).

If (3.7) is satisfied then (3.4) reduces to the algebraic condition

(n+ 2α+ 1)ψ + λ = 1. (3.8)

The second condition is to note that

α =
1
2
(n− 3) (3.9)

for these integrating factors. With this (3.6) becomes elementary and furnishes the
relation

f2 = Aη (3.10)
which corresponds to (3.2). Here A 6= 0 is a constant. Now substituting (3.3), (3.7)
and (3.8) in (3.5) we obtain the relation

η = ((n− 1)ψ + λ)f1 −Aλ.

Differentiating this and using (3.7), (3.8) with (3.9) gives a differential equation for
f1

(1− λ)f ′1 + λ′f1 = 2Aλ′.
This can be solved to give

f1 = 2B(λ− 1) + 2A (3.11)

where B 6= 0 (the 2 is added for later convenience) is a constant.
From the preceding we can see that all functions can be expressed in terms of λ

which can be chosen in an arbitrary fashion. Let

N =
[1
4
(n− 1)

]
(3.12)

where [. . . ] is the greatest integer function and define

λ(θ) = a0 +
N∑

k=1

(a2k cos 2kθ + b2k sin 2kθ) (3.13)
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where a0 and a2k, b2k are arbitrary real numbers such that λ is not constant. In
terms of this function we find that

ξ =
B

n− 1
(1− λ)λ′, η = Bλ2 +A−B. (3.14)

As we noted earlier the degree of f1 given by (3.11) is only 2N rather than the
maximal value n− 1 that it could have in more general circumstances.

4. The Abel equation and related integrals

With ξ, η given by (3.14) we can now show that the trigonometric form (1.4) has
constant invariant. Using λ as independent variable, it becomes

dρ

dλ
= B(λ− 1)(Bλ2 +A−B)ρ3 +B(1− 3λ)ρ2. (4.1)

This equation is quite simple and is rather unusual in that both relative invariants
s3, s5 defined by (2.2), (2.3) are constant. Denoting the coefficients of ρ2, ρ3 in (4.1)
by g2, g3 respectively, we find

s3 =
2
27
g3
2 +

1
3
(g3g′2 − g2g

′
3) =

2
27
B2(9A− 8B)

and

s5 = (g2
2 − 3g′3)s3 =

2
27
B3(4B − 3A)(9A− 8B).

where the primes denote differentiation with respect to λ. From these we have

I1 =
s35
s53

=
729
4

(4B − 3A)3

B(9A− 8B)2
. (4.2)

Now that we have established that (1.4) is solvable if (3.14) is satisfied, we
proceed to show that these conditions do produce new center conditions for (1.1)–
(1.2). To do this we shall obtain the solution of (1.3) using the integrating factor
(3.3). Since the cartesian form of µ is not positive on a neighborhood of the origin,
we will need to establish that the solutions themselves are analytic there.

Substituting for f1, f2 in terms of λ and again using λ as independent variable,
we have

U(r, θ) =
∫
µ(r, θ)ξ(θ)rn dθ + F (r)

=
∫

B(1− λ)r2n−2 dλ

1 + 2(B(λ− 1) +A)rn−1 +A(Bλ2 +A−B)r2n−2
+ F (r)

= −B
∫

r2n−2x dx

ABr2n−2x2 + 2B(Arn−1 + 1)rn−1x+ (Arn−1 + 1)2
+ F (r)

where x = λ− 1 and F is a suitably chosen function of r. The discriminant of the
denominator is given by

∆ = 4B(B −A)(Arn−1 + 1)2r2n−2.

Within the context of the center–focus problem, we require that a solution of (1.3)
satisfy 1+rn−1η > 0. Based on this, we can assume that the sign of ∆ is determined
by the sign of B(B − A). This leads to three separate forms for the solution
U(r, θ) = C.
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We have
U(r, θ) = (B −K) ln |ABλrn−1 −KArn−1 +B −K|

− (B +K) ln |ABλrn−1 +KArn−1 +B +K| if ∆ > 0,
(4.3)

where K =
√
B(B −A);

U(r, θ) = ln
(
ABr2n−2λ2 + 2Brn−1λ+A(A−B)r2n−2

+ 2(A−B)rn−1 + 1
)
− 2K tan−1(K

Arn−1λ+ 1
Arn−1 + 1

) if ∆ < 0,
(4.4)

where K =
√
B/(A−B); and

U(r, θ) = ln(Arn−1λ+ 1) +
Arn−1 + 1
Arn−1λ+ 1

if ∆ = 0. (4.5)

We can easily see that each of these solutions is analytic at r = 0, so its corre-
sponding cartesian form is analytic on a neighborhood of the critical point (0, 0)
of (1.1). This means that the functions ξ, η defined in (3.14) do produce centers
of (1.1)–(1.2) for any odd integer n ≥ 5. Also, these solutions generalize to any
odd value of n the solutions for the symmetric case for n = 3 given in [8] for the
cartesian case and in [2] for the polar case.

The centers defined for the cases n = 5, 7 (N = 1) are symmetric centers because
there always exists a transformation θ → θ + θ0 for some constant θ0 such that λ
will become an even function. The functions ξ, η in (3.14) will then be respectively
odd, even which are exactly the conditions for the symmetric case. For n ≥ 9 it is
no longer generally possible to transform λ in this fashion, so the center conditions
defined in this way are of a type not previously recorded.

We note for future reference that the ∆ = 0 case of (4.5) is satisfied by the
parameter choice A = B. Substituting this in the invariant (4.2), we find that
I1 = 729/4. From this it is easy to see that (4.3), (4.4) give I1 > 729/4, I1 < 729/4
respectively.

We summarize the results of the last 2 sections in the following proposition.

Proposition 4.1. Let ξ, η be given by (3.14) where λ is defined by (3.12), (3.13).
Then the trigonometric Abel differential equation (1.4) has constant first absolute
invariant I1 = s35/s

5
3 given by (4.2).

Corollary 4.2. Let ξ, η be given by (3.14) where λ is defined by (3.12), (3.13).
Then the system (1.1)–(1.2) has a center at the origin for odd integers n ≥ 5. For
n = 5, 7 the centers are symmetric centers and for n ≥ 9 the centers are new. Each
of these center conditions is integrable and integrals for them are given in polar
form by (4.3)-(4.5).

5. Polynomial solutions

The usual Poincaré solution of (1.2) can be expressed in the form

U(x, y) = U2(x, y) +
∞∑

k=3

Uk(x, y) = C, (5.1)

where U2(x, y) = 1
2 (x2 + y2) and Uk(x, y) are homogeneous polynomials of degree

k(n − 1) + 2. If the series terminates for some positive integer k = M ≥ 2, the
solution is a polynomial P(x, y). We can further note that any integral power
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N1 ≥ 2 of P will again be a polynomial solution, but PN1 will not satisfy a relation
of the basic form (5.1). Polynomial solutions have been discussed by other authors
[3, 6], but they have restricted their discussion to the case for which N1 = 1.
However, in the course of this and other related work, we have found a number
of families of solutions whose series solutions terminate if we take some power
UN1 , N1 ≥ 2 of the form (5.1), but do not if the requirement N1 = 1 is imposed.
Both constant invariant forms of (1.4) which are discussed in this paper include
polynomial solutions of this type.

Suppose ξ, η satisfy (1.5). Then (1.3) has an elementary integrating factor of the
form µ(r) = rα where

α = − 1
K

(1 + nK). (5.2)

The solution is easily given by

rα+1
[
1 +

1 + α

n+ α
η(θ)rn−1

]
= C (5.3)

where C is a constant. If terms of degree n + 1 are absent in η, the term in the
square bracket apart from the 1 is a homogeneous polynomial of degree n − 1 in
x, y. So if α + 1 is a positive rational number, (5.3) is a polynomial in x, y or is
easily converted to one by taking a suitable power of the expression. In the case
α = 1 (K = −1/(n+ 1)), η can be chosen to have degree n+ 1 and (5.3) gives the
Hamiltonian solution. An integral of the type (5.3) was given in [7].

The second class of polynomial solutions can be obtained directly from (4.3).
The maximal degree of λ in the arguments of the logarithmic terms is 2N where
N is given by (3.12). So we can write rn−1λ = rn−1−2N (r2Nλ). From this it
is obvious that these terms, apart from the constants (B ±K), are homogeneous
polynomials of degree n − 1 in x, y. If the coefficients of the logarithmic terms
are negative rational numbers, −R1,−R2, the solution can be transformed to a
polynomial. Setting B−K = −R1,−(B+K) = −R2 where K =

√
B(B −A) and

solving gives

A =
2R1R2

R1 −R2
, B =

1
2
(R2 −R1), K =

1
2
(R1 +R2). (5.4)

If R1 = P1/Q1, R2 = P2/Q2 for positive integers P1, . . . , Q2 are given in reduced
form, the polynomial solution is

U(r, θ) = |ABλrn−1−KArn−1 +B−K|N1 |ABλrn−1 +KArn−1 +B+K|N2 (5.5)

where A,B,K are given by (5.4). In this N1 = P1Q2/M,N2 = P2Q1/M where M
is the greatest common divisor of P1Q2, P2Q1.

We now give without proof a cartesian form of the polynomials given by (5.5).
This second form was derived using a somewhat different approach (a different
integrating factor is involved), but the two sets are equivalent in that they both
can be shown to produce an integrating factor of the form (3.3). We believe that
this form is more useful than that given by (5.5) and it is also valid for n = 3.
All parameters in this new form are unrelated to those previously used except that
n ≥ 3 is still an odd integer.
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Let m = (n− 1)/2 and define

β =


1
2m if m is even
1
2 (m+ 1) if m is odd and n 6= 3
0 if n = 3.

Let

r(x, y) =
n−1−2β∑

k=0

akx
n−1−2β−kyk

be a homogeneous polynomial of degree n − 1 − 2β. The polynomial solution is
given by

P(x, y) = ((x2 + y2)βr(x, y) + 1)a(K(x2 + y2)m − α(x2 + y2)βr(x, y) + 1)b (5.6)

where α = a/b for positive integers a, b and K 6= 0 is a constant. Differentiating
(5.6), we find that P(x, y) satisfies (1.2) where

p(x, y) =
αβ +m

m
y(x2 + y2)βr(x, y) +

α

2m
(x2 + y2)β+1 ∂r

∂y

− α(α+ 1)
2mK

(x2 + y2)2β−m((x2 + y2)
∂r

∂y
+ 2β y r(x, y))r(x, y)

(5.7)

and

q(x, y) =
αβ +m

m
x(x2 + y2)βr(x, y) +

α

2m
(x2 + y2)β+1 ∂r

∂x

− α(α+ 1)
2mK

(x2 + y2)2β−m((x2 + y2)
∂r

∂x
+ 2β x r(x, y))r(x, y)

(5.8)

are homogeneous polynomials of degree n. We note that these forms remain valid
for the case n = 3 (β = 0,m = 1).

Polynomials of the types discussed here have appeared previously. Case(IV)
of [6, Theorem 7] (when suitably corrected) and Case (I) of [6, Theorem 6] are
examples of the constant invariant case defined by (5.3). For n = 3 the polynomial
solution (5.6) is

P(x, y) = (a0x
2+a1xy+a2y

2+1)a(K(x2+y2)−α(a0x
2+a1xy+a2y

2)+1)b. (5.9)

We believe that the expression given in the Appendix of [3] should be of this type.

6. Discussion

In this section we briefly discuss the motivation which led to the results given in
this paper. It has primarily to do with the values which the first absolute invariant
I1 of a constant invariant Abel equation can take on. If an Abel equation is of type
constant invariant, the solution must have a particular structure: essentially that
given by (4.3)-(4.5).

We start with the constant invariant form given by (1.5),(5.3). This leads to a
form of (1.4) for which the value C in (2.4) is given by C = −(n−1)K/(Kn−K−1)2.
Solving (5.2) for K and substituting in the value for C, we find that

I1 −
729
4

=
19683

4
(n− 1)2(α+ 1)2(α+ n)2

(2n− 1 + α)2(n+ 1 + 2α)2(n− α− 2)2

which is obviously nonnegative (α = n − 2 leads to a Bernoulli equation) for the
range of parameter values, n ≥ 2, α > −1, necessary for a polynomial solution.
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Moreover, since α = −1,−n are not allowed values in the solution (5.3) this expres-
sion is always positive. So, within the constraints of the Poincaré problem defined
by (1.3)–(1.5), it is not possible to obtain solutions of the form (4.4), (4.5). We
conclude the discussion of these centers by mentioning (although not central to
the theme of this paper) that many of the solutions (5.3) for the Bernoulli form
α = n−2 are isochronic. That is, all trajectories of (1.1) within a sufficiently small
neighborhood of the origin have the same minimal period.

The second class of constant invariant centers arose by extending conditions for
n = 3 symmetric centers. We had learned that this case is solvable in terms of a
constant invariant Abel equation whose invariant can take on any value. This led
us to search for other constant invariant conditions of this type. By using Maple
to solve an extensive system of nonlinear equations, we found constant invariant
conditions for n = 5, 7, 9, 11. In these, even though restricted to the symmetric
case, the invariant could take any value, unlike the case of the previous class of
centers. It was the solution of these cases along with the integrating factor (3.1)
and the solutions (5.6) which produced the form of the integrating factor (3.3), the
conditions (3.7) and the value of α (3.9).

The polynomial solutions (5.6) defined by (5.7),(5.8) lead to an Abel equation
whose first invariant I1 satisfies

I1 −
729
4

=
19683

4
α2(α+ 1)2

(α− 1)2(2α+ 1)2(α+ 2)2
.

This is similar to the case of the polynomials defined by (1.5). Furthermore, these
solutions do not generally belong to the symmetric class of centers for n ≥ 9. So,
because of this and the discussion in previous paragraph, we felt that there were
likely constant invariant forms of a non–symmetric type for the odd integers which
would produce invariant values I1 ≤ 729/4.

The results of this paper give sufficient conditions for (1.4) to have a constant
first invariant. We do not know if there are other constant invariant conditions, but
we think it unlikely. We do believe, however, that it is probable that the conditions
defined by (3.14) are special cases of more general, integrable center conditions.
We hope to consider this and other applications of conditions like those in (3.7) in
upcoming work.
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[7] J. Giné; The center problem for a linear center perturbed by homogeneous polynomials, Acta

Math. Sin. (Engl. Ser.) 22 (2006), 1613–1620.
[8] V. A. Lunkevich and K. S. Sibiriskii; Integrals of a system with a homogeneous third–degree

nonlinearity in the case of a center , Differ. Equ. 20 (1984), 1000–1005.



EJDE-2010/130 CONSTANT INVARIANT SOLUTIONS 11

[9] G. R. Nicklason; A general class of centers for the Poincaré problem, J. Math. Anal. Appl.
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