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AN ITERATION METHOD FOR CONTROLLABILITY OF
SEMILINEAR PARABOLIC EQUATIONS

BO SUN

Abstract. We present a method based on Picard’s idea to construct a se-
quence of controls and a sequence of solutions of linearized systems such that

their limits form a solution to the control problem. By doing this, we simpli-

fied the works in the references, and deduced the controllability for semilinear
coupled parabolic systems.

1. Introduction

The controllability for semilinear parabolic equations has been intensively stud-
ied in previous decades; see for example [2, 14, 3, 5, 6, 7]. Some new systems were
studied recently, such as nonlinear heat equation with memory effects, Lavanya [9],
and some semilinear parabolic equations arising in finance, Sakthivel [11]. Tang and
Zhang [12] studied null controllability for forward and backward linear stochastic
parabolic equations. It may not be easy to generalize their results to nonlinear
cases.

Generally speaking, all these works are based on the same idea: the methods
of approximating controllability for linear systems are based on the unique contin-
uation of solutions from an open set, while the exact null-controllability depends
on the inverse estimates of dual observed systems. Furthermore, the controllability
are generalized to semilinear systems by Schauder fixed-point arguments. All the
arguments are based on the compact embedding of H1

0 into L2. The Schauder fixed-
point arguments are good for semilinear parabolic systems with globally Lipschitz
nonlinearity, but difficult for those with superlinear terms. In this paper, we try to
do it in other ways, and give a method based on iteration idea, by which we sim-
plified some works concerning the controllability of semilinear parabolic systems in
literatures. Moreover, we deduced the controllability of coupled parabolic systems,
which seems impossible to be obtained by previous arguments.

This paper is organized as follows. In Section 2 we recall two lemmas which
are necessary for our analysis. In Section 3 we prove the exact null-controllability
of semilinear parabolic systems with mobile distributed control, to illustrate our
method. We discuss the controllability of coupled parabolic systems in Section 4.
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2. Preliminaries

For convenience, we recall the following two propositions, from [10].

Proposition 2.1. Let X, H, Y be Banach spaces with X ⊂⊂ H ⊆ Y and X reflex-
ive. Suppose that {un}∞n=1 is a sequence that is bounded in L2(0, T ;X), and that
{dun

dt }
∞
n=1 is bounded in Lp(0, T ;Y ), for some p > 1. Then there is a subsequence

of {un}∞n=1 that converges strongly in L2(0;T ;H).

Proposition 2.2. Let O be a bounded open set in Rm, and let {gj}∞j=1 be a sequence
of functions in Lp(O) with

‖gj‖Lp(O) ≤ C for all j ∈ Z+.

If gj → g ∈ Lp(O) almost everywhere, then gj ⇀ g in Lp(O).

3. Exact null-controllability for semilinear systems with mobile
distributed control

Consider the controllability for the Dirichlet problem

∂u

∂t
= ∆u + g(u) + f(x, t)χω(t)(x) in QT , (3.1)

u = 0 in ΣT , u|t=0 = u0, u0 ∈ L2(Ω), (3.2)

where Ω is an open bounded domain in Rn with boundary ∂Ω, QT = Ω × (0, T ),
ΣT = ∂Ω × (0, T ), f is a distributed control in L2(QT ), ω(·) is a mobile support,
and χω(·)denotes its indication function.

We assume growth conditions as follows:

|g(u)| ≤ c1 + c2|u|p, p = 1 + 4/n, ∀u ∈ R, (3.3)

g(u)u ≤ c3u
2, ∀u ∈ R, (3.4)

g(0) = 0, lim
u→0

g(u)
u

= g′(0). (3.5)

Conditions (3.3)-(3.5) ensure the existence of at least one generalized solution of
(3.1)-(3.2) from C([0, T ];L2(Ω))

⋂
H1,0

0 (QT ) [8, pp. 466-467]. Khapalov proved
that (3.1)-(3.5) is exactly null-controllable [6], but his generalization to nonlinear
systems is somewhat complicated. So in this paper we put forward some different
methods.

The corresponding linear system is as follows:

∂w

∂t
= ∆w + a(x, t)w + f(x, t)χω(t)(x) in QT , (3.6)

w = 0 in ΣT , w|t=0 = w0 ∈ L2(Ω). (3.7)

The counterparts to (3.3)-(3.4) are

a(x, t) ≤ c3, a ∈ Lr2(0, T ;Lr1(Ω)), (3.8)
1
r2

+
n

2r1
= 1, (3.9)

r1 ∈ (
n

2
,∞], r2 ∈ [1,∞), for n ≥ 2, (3.10)

r1 ∈ [1,∞], r2 ∈ [1, 2], for n = 1. (3.11)
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Khapalov proved that (3.6)-(3.11) is exactly null-controllable by a mobile internal
control, while the support may be chosen to be arbitrarily small. Moreover, he gives
the following estimates:

‖w‖Lq(QT ), ‖w‖B ≤ c(T )(‖w0‖L2(Ω) + ‖v‖L2(ω(·))), (3.12)

‖f‖L2(ω(·)) ≤ M‖w0‖L2(Ω), (3.13)

where q = 2 + 4/n,

‖w‖B = ‖w‖C([0,T ];L2(Ω)) +
( ∫ T

0

∫
Ω

‖∇w‖2Rndxdt
)1/2

,

c(T ) and M do not depend on the choice of a(x, t). Then he deduced the exact null-
controllability for (3.1)-(3.2) by Schauder fixed-point argument, with p ≤ 1 + 4/n.
Now we do in a different way.

As usual, we introduce the non-linearity

h(s) =

{
g(s)/s, s 6= 0,

g′(0), s = 0,

and construct a “linearized” system

∂u

∂t
= ∆u + h(z)u + f(x, t)χω(t)(x) in QT (3.14)

with the same initial and boundary conditions as (3.7).
We construct a sequence in L2(QT ) as follows: Take any z1 ∈ L2(QT ), substitute

it for z in (3.14), then there exists a control f1 ∈ L2(QT ) such that the correspond-
ing solution u1 satisfies that u1(T ) = 0; Take z2 = u1, substitute it for z in (3.14),
then there exists a control f2 ∈ L2(QT ) such that the corresponding solution u2

satisfies that u2(T ) = 0; Repeating this process yields two sequences {zn}∞n=1(or
{un}∞n=1) and {fn}∞n=1 in L2(QT ). This process can be illustrated as follows:

z1 ⇒ f1 ⇒ u1 = z2 ⇒ f2 ⇒ u2 = . . . ,

∂un

∂t
= ∆un + h(zn)un + fnχω(t). (3.15)

Now we prove that they converge in some topology, their limits solve (3.1)-(3.2),
and the limit satisfies that u(T ) = 0. To simplify notation, we denote

∫
QT
·dxdt by∫

QT
·.

Condition (3.5) implies that there is r > 0 such that

|h(z)| ≤ c4 = |g′(0)|+ 1

when |z| < r. On the other hand, it follows from (3.3) that

|h(z)| ≤ c1

|z|
+ c2|z|p−1

≤ c1

|z|p
|u|p−1 + c2|z|p−1

≤ c1

rp
|z|p−1 + c2|z|p−1

≤ c5|z|p−1
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when |z| ≥ r. Therefore,∫
QT

|h(zn)un|2n/(n+2)

=
∫
|zn|<r

|h(zn)un|2n/(n+2) +
∫
|zn|≥r

|h(zn)un|2n/(n+2)

≤ c4

∫
QT

|un|2n/(n+2) + c5

∫
QT

|zn|
8

n+2 |un|2n/(n+2).

(3.16)

It follows from the continuous embedding of L2+4/n(QT ) into L2n/(n+2)(QT ) that∫
QT

|un|2n/(n+2) ≤ c4

∫
QT

|un|2+4/n. (3.17)

By Hölder inequality we have∫
QT

|zn|
8

n+2 |un|2n/(n+2)

≤ c5

( ∫
QT

|zn|2+4/n
)4(n+1)/(n+2)2( ∫

QT

|un|2+4/n
)n2/(n+2)2

.

(3.18)

Combining (3.16), (3.17) and (3.18) yields∫
QT

|h(zn)un|2n/(n+2)

≤ c4

∫
QT

|un|2+4/n + c5

( ∫
QT

|zn|2+4/n
)4(n+1)/(n+2)2( ∫

QT

|un|2+4/n
)n2/(n+2)2

.

Due to (3.12) and (3.13), the sequence {un}∞n=1 or he sequence {zn}∞n=1 is
bounded in L2+4/n(QT ). So {h(zn)un}∞n=1 is bounded in L2n/(n+2)(QT ), and it
has a weak convergent subsequence. Furthermore, it follows from (3.12) and (3.13)
that {un}∞n=1 is bounded in L2(0, T ;H1

0 (Ω)), and {fn}∞n=1 is bounded in L2(ω(·)).
By extracting subsequences (that we denote by the index j to simplify the notation)
we have

uj ⇀ u in L2(0, T ;H1
0 (Ω)),

∆uj ⇀ ∆u in L2(0, T ;H−1(Ω)),

fj ⇀ f in L2(ω(·)).

Moreover, it follows from the continuous embedding of H1
0 (Ω) into L2n/(n−2) that

L2n/(n+2)(Ω) is continuously embedded in H−1(Ω). Therefore, L2n/(n+2)(QT )
is continuously embedded in L2n/(n+2)(0, T ;H−1(Ω)), and thus {h(zn)un}∞n=1 is
bounded in L2n/(n+2)(0, T ;H−1(Ω)). These facts imply that ∂un

∂t is bounded in
L2n/(n+2)(0, T ;H−1(Ω)), so it has subsequence which converges weakly to ∂u

∂t . Next
we will show that the subsequence of {h(zn)un}∞n=1 converges weakly to h(u)u in
L2n/(n+2)(0, T ;H−1(Ω)).

Remark 3.1. The constants c4 and c5 above are generic constants.

Substituting H1
0 (Ω) for X, L2(Ω) for H, and H−1(Ω) for Y in Proposition 2.1,

by extracting subsequence we have that {uj}∞j=1 converges to u strongly in L2(QT ).
A classical result in real analysis tells that another subsequence {uj}∞j=1 converges
to u almost everywhere in QT . It follows, using the continuity of g, that h(zj)
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converges to h(u) almost everywhere. Combining this fact with Proposition 2.2
leads to that {h(zj)uj}∞j=1 converges to h(u)u weakly in L2n/(n+2)(QT ), and thus
in L2n/(n+2)(0, T ;H−1(Ω)). Taking limit of (3.15) in L2n/(n+2)(0, T ;H−1(Ω)), we
see that u and v solve (3.1)-(3.2).

It remains to show that u(T ) = 0. The basic idea is that {uj}∞j=1 converges to u

strongly in L2(0, T ;L2(Ω)) implies that a subsequence {uj(t)}∞j=1 converges to u(t)
strongly in L2(Ω), for almost every t in [0, T ]. So we may think that {uj(T )}∞j=1

converges to u(T ) strongly in L2(Ω). It follows from un(T ) = 0 that u(T ) = 0.
However, the a.e. convergence of {un} to u and that un(T ) = 0 do not always

imply that u(T ) = 0, e.g., for a sequence {tn}, t ∈ (0, 1), T = 1. To avoid the
strange case with steep curve near t = T , we require that each control system as
(3.15) vanishes in advance, e.g.,

un(t) ≡ 0

for t ∈ (T
2 , T ) or ( 3T

4 , T ). Then it follows from the a.e. convergence of un to u that
u(t) = 0 in (T

2 , T ) or ( 3T
4 , T ). On the other hand, it follows from the regularity of

parabolic systems that
u ∈ C([0, T ];L2(Ω)).

So u(T ) = 0. We summarize the analysis above as follows:

Theorem 3.2. Suppose n ≥ 3 and that (3.3), (3.4), (3.5) hold. Then (3.1)-(3.2)
is exactly null-controllable by a mobile internal control, and that the support can be
chosen arbitrarily small.

Remark 3.3. Schauder fixed-point argument requires that map N : z 7→ u is
continuous and compact, from a bounded closed convex set into itself. These are
difficult to verify for systems with superlinear terms. Our method just requires that
the iteration generates bounded sequences of solutions and controls.

Remark 3.4. Of course, our method is also fit for those systems with globally
Lipschitz nonlinear terms or point controls. We take a system with superlinear
term and a mobile internal control just to show our method and its advantage.

4. Controllability of coupled parabolic systems

Consider a coupled parabolic system

ut −∆u = Φ(u, v) + fχω1 in QT , (4.1)

vt −∆v = Ψ(u, v) + gχω2 in QT , (4.2)

u(x, t) = v(x, t) = 0 on ΣT , (4.3)

u|t=0 = u0, v|t=0 = v0, u0, v0 ∈ L2(Ω), (4.4)

where ω1 and ω2 are proper subsets of Ω.
The system above is a widely used mathematical modelling for many chemical,

physical, biological or ecological phenomena. Many papers are devoted to study the
existence and uniqueness of local solution, global existence and blow-up of solutions
(see [1, 4]), but less is known about its controllability. So we consider this problem.
Suppose that Φ and Ψ are continuous functions, Φ is globally Lipschitz continuous
and differentiable with respect to u, so is Ψ with respect to v, and

Φ(0, v) = Ψ(u, 0) = 0, ∀u, v ∈ R.
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The solvability will be implied in our arguments on controllability.
The globally approximate controllability and finite dimensional exact controlla-

bility for (4.1)-(4.4) is formulated as follows (see [14] for single parabolic equation):
Given uT , vT in L2(Ω), ε > 0 and finite dimensional subspaces E1, E2 of L2(Ω),
there exist controls f and g in L2(QT ) such that

‖u(T )− uT ‖L2(Ω) ≤ ε, Π1u(T ) = Π1uT , (4.5)

|v(T )− vT |L2(Ω) ≤ ε, Π2v(T ) = Π2vT , (4.6)

where Π1 and Π2 are the orthogonal projections from L2(Ω) into E1 and E2 re-
spectively.

It seems difficult or impossible to construct a linearized systems for (4.1)-(4.4), as
(3.14) for (3.1)-(3.2). We will deduce the controllability without linearized system.
At first, we construct sequences of solutions and controls as follows: Take any
v1 ∈ L2(QT ), substitute it for v in (4.1), then it follows from the controllability
results on single parabolic systems (see [14]) that there exists control f1 ∈ L2(QT )
such that the corresponding solution u1 of (4.1) satisfies (4.5). Substitute u1 for u
in (4.2), there exists control g1 ∈ L2(QT ) such that the corresponding solution v2

satisfies (4.6). Then substitute v2 for v in (4.1), and get f2 and u2. Repeating this
process yields sequences {un}∞n=1, {vn}∞n=1, {fn}∞n=1 and {gn}∞n=1, which satisfy
(4.5) and (4.6). This process can be illustrated as follows:

v1 ⇒ f1 ⇒ u1 ⇒ g1 ⇒ v2 ⇒ f2 ⇒ u2 ⇒ . . . ,

∂un

∂t
−∆un = Φ(un, vn) + fnχω1 , (4.7)

vn+1

∂t
−∆vn+1 = Ψ(un, vn+1) + gnχω2 . (4.8)

We will prove that these sequences converge in some topology, and that their
limits solve (4.1)-(4.4), which satisfy (4.5) and (4.6).

Due to the global Lipschitz continuity of Φ and Ψ, sequences {fn}∞n=1, {gn}∞n=1,
{un}∞n=1 and {vn}∞n=1 are bounded in L2(QT ). So they have subsequences which
converge weakly. Let uj ⇀ u, vj ⇀ v, fj ⇀ f and gj ⇀ g in L2(QT ). By similar
arguments to those in last section, we have that

Φ(un, vn) ⇀ Φ(u, v),

Ψ(un, vn+1) ⇀ Ψ(u, v)

in L2(QT ). Taking limits of (4.7) and (4.8), one can easily verify that u, v, f and
g solve (4.1)-(4.4), and satisfy (4.5)-(4.6). We summarize our analysis as follows:

Theorem 4.1. Suppose that Φ and Ψ are continuous functions, Φ is globally Lip-
schitz continuous and differentiable with respect to u, so is Ψ with respect to v,
and

Φ(0, v) = Ψ(u, 0) = 0, ∀u, v ∈ R.

Then (4.1)-(4.4) is globally approximately controllable and finite-dimensional ex-
actly controllable.

Remark 4.2. By our method, all results concerning controllability of semilinear
parabolic systems can be extended to coupled parabolic systems. For example, We
may consider exact null-controllability of semilinear coupled parabolic systems with
superlinear terms, mobile internal controls or point-controls.
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From the point view of application, it is reasonable to consider coupled parabolic
system with a single control as follows:

ut −∆u = Φ(u, v) + fχω in QT , (4.9)

vt −∆v = Ψ(u, v) in QT , (4.10)

u(x, t) = v(x, t) = 0 on ΣT , (4.11)

u|t=0 = u0, v|t=0 = v0, u0, v0 ∈ L2(Ω). (4.12)

Theorem 4.3. Under the same conditions as in Theorem 4.1, system (4.9)-(4.12)
is globally approximately controllable and finite-dimensional exactly controllable.

The proof is similar to that of Theorem 4.1, but there is some difference. Let
us give a sketch: Given uT ∈ L2(Ω), ε > 0 and finite-dimensional subspace E
of L2(Ω). Take any v1 ∈ L2(QT ), substitute it for v in (4.9), then there exist
control f1 and the corresponding solution u1 such that ‖u1(T )−uT ‖L2(Ω) < ε, and
ΠEu1(T ) = ΠEuT . Substitute u1 for u in (4.10), then there is an unique solution
v2. Substitute v2 for v in (4.9), there exist control f2 and the corresponding solution
u2, which satisfy that ‖u2(T ) − uT ‖L2(Ω) < ε, and ΠEu2(T ) = ΠEuT . Repeating
this process yields sequences {un}∞n=1, {vn}∞n=1 and {fn}∞n=1. Their limits solve
(4.9)-(4.12), and satisfy

‖u(T )− uT ‖L2(Ω) < ε,

ΠEu(T ) = ΠEuT ,

where ΠE represents the orthogonal projection from L2(Ω) into E.
Theorem 4.1 and Theorem 4.3 can be generalized to multi-coupled parabolic

systems as follows:
∂u1

∂t
−∆u1 = Φ1(u1, u2, . . . , um) + f1χω1 in QT ,

∂u2

∂t
−∆u2 = Φ2(u1, u2, . . . , um) + f2χω2 in QT ,

. . .

∂um

∂t
−∆um = Φm(u1, u2, . . . , um) + fmχωm

in QT ,

ui|ΣT
= 0, ui|t=0 = ui0, ui0 ∈ L2(Ω), i = 1, 2, . . . ,m.

5. Examples

The following example, from combustion theory [13], illustrates our results.

∂u1

∂t
− d1∆u1 − (u2)ph(u1) = fχω1 in QT , (5.1)

∂u2

∂t
− d2∆u2 − (u2)ph(u1) = gχω2 in QT , (5.2)

u1(x, t) = u2(x, t) = 0 on ΣT , (5.3)

where h(s) = |s|γ exp(−α/|s|), and p, α, γ are positive constants. u1 represents
a temperature, while u2 represents a concentration. The nonlinearity vanishes at
u1 = 0 and u2 = 0. It is Lipschitz continuous, provided that p = γ = 1. It
follows from section 4 that the coupled system (5.1)-(5.3) is globally approximately
controllable and exactly null-controllable.
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