\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 156, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/156\hfil Properties of the first eigenvalue] {Properties of the first eigenvalue of a model for non Newtonian fluids} \author[O. Chakrone, O. Diyer, D. Sbibih \hfil EJDE-2010/156\hfilneg] {Omar Chakrone, Okacha Diyer, Driss Sbibih} % in alphabetical order \address{Omar Chakrone \newline Universit\'e Mohammed I, Facult\'e des sciences\\ Laboratoire LANOL, Oujda, Maroc} \email{chakrone@yahoo.fr} \address{Okacha Diyer \newline Universit\'e Mohammed I, Ecole Sup\'erieure de Technologie\\ Laboratoire MATSI, Oujda, Maroc} \email{odiyer@yahoo.fr} \address{Driss Sbibih \newline Universit\'e Mohammed I, Ecole Sup\'erieure de Technologie\\ Laboratoire MATSI, Oujda, Maroc} \email{sbibih@yahoo.fr} \thanks{Submitted May 6, 2010. Published October 28, 2010.} \subjclass[2000]{74S05, 76T10} \keywords{k-Laplacian; eigenvalue; minimization} \begin{abstract} We consider a nonlinear Stokes problem on a bounded domain. We prove the existence of the first eigenvalue which is given by a minimization formula. Some properties such as strict monotony and the Fredholm alternative are established. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In studies of semi-linear elliptic equations such as \begin{gather*} -\Delta u = f(x,u)+h(x) \quad \text{in } \Omega, \\ u=0 \quad \text{on } \partial \Omega \end{gather*} where $\Omega$ is a bounded domain of $\mathbb{R}^{n}$. It is usual to impose conditions on the asymptotic behavior of the nonlinearity $f (x, u)$ in relation to the spectrum of the linear part of $-\Delta$. In the simplest situations, we consider $f (x, u)$ as a perturbation of $\lambda u$. According to that $\lambda$ being or not an eigenvalue of $-\Delta$, the results of such resonance or non-resonance are then obtained. Among the classical references on this subject, we can cite \cite{H} $(\lambda<\lambda_1)$, \cite{D} ($\lambda$ between two consecutive eigenvalues), \cite{L} $(\lambda=\lambda_1)$. We also cite the Dirichlet problem \begin{gather*} -\operatorname{div}(|\nabla u|^{k-2}\nabla u) = \lambda m(x)|u|^{k-2}u \quad \text{in } \Omega, \\ u=0 \quad \text{on } \partial \Omega. \end{gather*} The first eigenvalue $\lambda_1$ of the Dirichlet problem is simple and isolated. It was proved that it is the unique positive eigenvalue having a non negative eigenfunction, see \cite{a2}. Now we consider the eigenvalue problem of a non-linear operator k-Laplacian. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with boundary $\Gamma=\bigcup_{i=1}^{4}\overline{\Gamma_{i}}$, where $\Gamma_1=\{0\}\times ]-1,1[$, $\Gamma_2=\{1\}\times ]-1,1[$ and $\Gamma_{3}$, $\Gamma_{4}$ are symmetrical to the X-axis, see Figure \ref{fig1}. In the interior of this domain, a non-Newtonian liquid is subjected to pressures of known differences between the two sides $\Gamma_1$ and $\Gamma_2$. \begin{figure}[ht] \begin{center} \setlength{\unitlength}{1mm} \begin{picture}(70,40)(-7,0) \put(0,0){\line(0,1){40}} \put(60,0){\line(0,1){40}} \qbezier(0,40)(30,25)(60,40) \put(0,20){\line(1,0){60}} \qbezier(0,0)(30,15)(60,0) \multiput(0,18.5)(12,0){6}{\line(0,1){3}} \put(10.2,16){\scriptsize 0.2} \put(22.2,16){\scriptsize0.4} \put(34.2,16){\scriptsize0.6} \put(46.2,16){\scriptsize0.8} \put(-5,16){$\Gamma_1$} \put(62,16){$\Gamma_2$} \put(28,36){$\Gamma_3$} \put(28,0.2){$\Gamma_4$} \put(29,12){$x$} \put(-4.5,-0.2){\scriptsize $-1$} \put(-7,9.8){\scriptsize $-0.5$} \put(-4.5,29.8){\scriptsize 0.5} \put(-2.5,39.8){\scriptsize 1} \end{picture} \end{center} \caption{Geometry of channel $\Omega$} \label{fig1} \end{figure} We denote by $V$ the closure of $\mathcal{V}$ in the space $W^{1,k}(\Omega)$, where \begin{align*} \mathcal{V}=\big\{&u=(u_1,u_2)^{t}\in (C^1(\bar{\Omega}))^{2}: \operatorname{div} u=0, u_{i}(0,y)=u_{i} (1,y) \text{ on $[-1,1]$}\\ &\text{for $i=1,2$ and $u=0$ on } \Gamma_{3}\cup \Gamma_{4}\big\}. \end{align*} For given $\alpha\in \mathbb{R}$, we consider the eigenvalue problem: Find $(\lambda,u,p)\in \mathbb{R}\times V\setminus\{0\}\times L^{2}(\Omega)$ such that \begin{equation} \label{VPa} \begin{gathered} -\Delta_{k}u_1+\frac{\partial p}{\partial x} = \lambda m(x,y) |u_1|^{k-2}u_1 \quad\text{in }\Omega,\\ -\Delta_{k}u_2+\frac{\partial p}{\partial y} =\lambda m(x,y) |u_2|^{k-2}u_2 \quad \text{in }\Omega,\\ \operatorname{div}u=\frac{\partial u_1}{\partial x} +\frac{\partial u_2}{\partial y}=0 \quad \text{in }\Omega,\\ u_1(0,y) = u_1(1,y) \quad \text{on } [-1,1],\\ u_2(0,y) = u_2(1,y) \quad\text{on } [-1,1],\\ \frac{\partial u_1}{\partial x}(0,y) = \frac{\partial u_1}{\partial x}(1,y) \quad\text{on } [-1,1],\\ |\nabla u_2(0,y)|^{k-2}\frac{\partial u_2}{\partial x}(0,y) = |\nabla u_2(1,y)|^{k-2}\frac{\partial u_2}{\partial x}(1,y) \quad \text{on } [-1,1],\\ p(1,y)-p(0,y)=-\alpha \quad \text{on } [-1,1] \end{gathered} \end{equation} where the weight function $m(x,y)\in L^{\infty}(\Omega)$ can change the sign and it is positive in a subset of $\Omega$, $$ -\Delta_{k}u_{i}=-\operatorname{div}(|\nabla u_{i}|^{k-2}\nabla u_{i}) $$ is a k-Laplacian, $i=1,2$ and $10$, $\lambda_1(\alpha)$ is an eigenvalue of Problem \eqref{VPa}. \end{theorem} For the sake of simplicity, in what follows, we denote $\lambda_1=\lambda_1(m)=\lambda_1(\alpha,m)=\lambda_1(\alpha)$. \begin{theorem}\label{thm2} (i) $\lambda_1$ defined by \begin{equation}\label{2} \frac{1}{\lambda_1}=\max\{\int_{\Omega}m(x,y)(|u_1|^k+|u_2|^k); \ \int_{\Omega}|\nabla u_1|^k+|\nabla u_2|^k=1, u\in V\} \end{equation} is the first eigenvalue of Problem \eqref{VPa} with $\alpha=0$ in the sense $\Sigma\subset[\lambda_1,+\infty[$, where $\Sigma$ is the set of the positive eigenvalues. Moreover, $u$ is the eigenfunction associated with $\lambda_1$ if and only if $\int_{\Omega}|\nabla u_1|^k+|\nabla u_2|^k-\lambda_1\int_{\Omega}m(x,y)(|u_1|^k+|u_2|^k)= \inf\{\int_{\Omega}|\nabla v_1|^k+|\nabla v_2|^k-\lambda_1\int_{\Omega}m(x,y)(|v_1|^k+|v_2|^k)\ \ v\in V \} =0$. (ii) $\lambda_1(.)$ is strictly monotone in $L^{\infty}(\Omega)$; i.e., if $m_1, m_2$ are in the set $$ \big\{m\in L^{\infty}(\Omega);\operatorname{measure}\{(x,y)\in \Omega;\; m(x,y)>0\}\neq 0\big\} $$ such that $m_1(x,y)\lambda_1(m_2)$. (iii) $\lambda_1(.)$ is continuous in $L^{\infty}(\Omega)$. \end{theorem} \begin{theorem}[Fredholm alternative] \label{thm3} Suppose that $\lambda<\lambda_1$, then for $f\in (C(\overline{\Omega}))^2$ the problem: Find $(u,p)\in V\times L^{2}(\Omega)$ such that \begin{equation} \label{Q} \begin{gathered} -\Delta_{k}u_1+\frac{\partial p}{\partial x} =\lambda m(x,y) |u_1|^{k-2}u_1+f_1 \quad\text{in }\Omega,\\ -\Delta_{k}u_2+\frac{\partial p}{\partial y} = \lambda m(x,y) |u_2|^{k-2}u_2+f_2 \quad \text{in }\Omega,\\ \operatorname{div}u=\frac{\partial u_1}{\partial x} +\frac{\partial u_2}{\partial y} = 0 \quad\text{in }\Omega,\\ u_1(0,y)=u_1(1,y) \quad \text{on } [-1,1],\\ u_2(0,y)=u_2(1,y) \quad \text{on } [-1,1],\\ \frac{\partial u_1}{\partial x}(0,y) = \frac{\partial u_1}{\partial x}(1,y) \quad \text{on } [-1,1],\\ |\nabla u_2(0,y)|^{k-2}\frac{\partial u_2}{\partial x}(0,y) = |\nabla u_2(1,y)|^{k-2}\frac{\partial u_2}{\partial x}(1,y) \quad \text{on } [-1,1],\\ p(1,y)-p(0,y)=-\alpha \quad \text{on } [-1,1] \end{gathered} \end{equation} has a solution. \end{theorem} \section{Proof of the main theorems} For proving Theorem \ref{thm1}, we need the following results. \begin{proposition}\label{prop3.1} $u=(u_1,u_2)^{t}$ is a solution of problem: Find $(u,p)\in V\setminus\{0\}\times L^{2}(\Omega)$ such that \begin{equation} \label{P1} \begin{gathered} -\Delta_{k}u_1+\frac{\partial p}{\partial x}=f_1 \quad \text{in }\Omega,\\ -\Delta_{k}u_2+\frac{\partial p}{\partial y}=f_2 \quad \text{in }\Omega,\\ \operatorname{div}u=\frac{\partial u_1}{\partial x} +\frac{\partial u_2}{\partial y}=0 \quad \text{in }\Omega,\\ u_1(0,y)=u_1(1,y) \quad \text{on } [-1,1],\\ u_2(0,y)=u_2(1,y) \quad \text{on } [-1,1],\\ \frac{\partial u_1}{\partial x}(0,y) =\frac{\partial u_1}{\partial x}(1,y) \quad\text{on } [-1,1],\\ |\nabla u_2(0,y)|^{k-2}\frac{\partial u_2}{\partial x}(0,y) =|\nabla u_2(1,y)|^{k-2}\frac{\partial u_2}{\partial x}(1,y) \quad \text{on } [-1,1],\\ p(1,y)-p(0,y)=-\alpha \quad\text{on } [-1,1] \end{gathered}% \end{equation} where $f=(f_1,f_2)^t\in (C(\overline{\Omega}))^{2}$, if and only if $u$ is a solution of problem: Find $u\in V$ such that \begin{equation} \label{P1a} \sum_{i=1}^{2}\int_{\Omega}|\nabla u_{i}|^{k-2}\nabla u_{i}\nabla v_{i} -\alpha\int_{-1}^1v_1(0,y)dy =\int_{\Omega}(f_1v_1+f_2v_2) \end{equation} for all $v\in V$. \end{proposition} \begin{remark} \label{rmk3.2} \rm If we take $f_{i}=\lambda m(x,y)|u_{i}|^{k-2}u_{i}$, $i=1,2$. Then $(\lambda,u,p)$ is a solution of \eqref{VPa} if and only if $$ \sum_{i=1}^{2}\int_{\Omega}|\nabla u_{i}|^{k-2}\nabla u_{i}\nabla v_{i}- \alpha\int_{-1}^1v_1(0,y)dy=\lambda\sum_{i=1}^{2} \int_{\Omega}m(x,y)|u_{i}|^{k-2}u_{i}v_{i} $$ for all $v\in V$. For a proof of this remark see \cite{c}. \end{remark} \begin{proof}[Proof of Theorem \ref{thm1}] Since for all $v\in V$, $v=0$ on $\Gamma_{3}\cup \Gamma_{4} $, $u\in V\to(\int_{\Omega}|\nabla u_1|^k+|\nabla u_2|^k)^{1/k}$ define a norm in $V$ according to the Poincar\'e inequality in the space $V$: There exists $c>0$ such that \begin{equation}\label{E1} c\int_{\Omega} |u_1|^k+|u_2|^k\leq \int_{\Omega}|\nabla u_1|^k+|\nabla u_2|^k. \end{equation} Suppose by contradiction that for all $n\in \mathbb{N}^{*}$ there exists $u_{n}=(u_1^{n},u_2^{n})^{t}\in V$ such that $\frac{1}{n}\int_{\Omega}|u_1^{n}|^{k}+|u_2^{n}|^{k}>\int_{\Omega}|\nabla u_1^{n}|^{k}+|\nabla u_2^{n}|^{k}$, then we put $$ v_{n}=(v_1^{n},v_2^{n})^{t} $$ where $v_{i}^{n}=\frac{u_{i}^{n}}{(\int_{\Omega}|u_1^{n}|^{k} +|u_2^{n}|^{k})^{1/k}}$, $i=1,2$. Thus $\int_{\Omega}|v_1^{n}|^{k}+|v_2^{n}|^{k}=1$, so \begin{equation}\label{E4} \frac{1}{n}>\int_{\Omega}|\nabla v_1^{n}|^{k}+|\nabla v_2^{n}|^{k}. \end{equation} As $(v_{n})_{n}$ is bounded in $V$, we have for a subsequence also denoted $(v_{n})_{n}$, $v_{n}\rightharpoonup v$ in $V$ and $v_{n}\rightarrow v$ in $L^{k}(\Omega)$. Therefore $\|v\|_{L^{k}(\Omega)}=1$, so $v\neq 0$. By passing to the limit in \eqref{E4}, we have $$ 0\geq \liminf_{n}\int_{\Omega}|\nabla v_1^{n}|^{k}+|\nabla v_2^{n}|^{k}\geq \int_{\Omega}|\nabla v_1|^{k}+|\nabla v_2|^{k}. $$ So $\int_{\Omega}|\nabla v_1|^{k} =\int_{\Omega}|\nabla v_2|^{k}=0$, hence $v=cst$, therefore $v=0$ because $v=0$ on $\Gamma_{3}\cup \Gamma_{4}$, is a contradiction. By using \eqref{E1} and the Holder's inequality, we easily prove that $\beta$ is well defined. Let $(u_{n})=((u_{n1},u_{n2}))$ be a suitable minimization of $\beta$, then we have $$ \beta=\lim_{n\to\infty}\frac{1}{k}\int_{\Omega}|\nabla u_{n1}|^k+|\nabla u_{n2}|^k-\alpha\int_{-1}^1u_{n1}(0,y)dy $$ and $$ \int_{\Omega}m(x,y)(| u_{n1}|^k+| u_{n2}|^k)=1. $$ The sequence $(X_{n}):=(\frac{1}{k}\int_{\Omega}|\nabla u_{n1}|^k+|\nabla u_{n2}|^k)$ is bounded, if we have not for a subsequence, also denoted $(X_{n})$, $X_{n}\rightarrow +\infty$. Using the Holder's inequality and the fact that $V \hookrightarrow L^{k}(\Gamma_1)$ we get $$ \alpha \int_{-1}^1u_{n1}(0,y)dy\leq |\alpha|c(\frac{1}{k}\int_{\Omega}|\nabla u_{n1}|^k+|\nabla u_{n2}|^k)^{1/k}=|\alpha|cX_{n}^{1/k} $$ where $c\in\mathbb{R}$. Thus $\frac{1}{k}\int_{\Omega}\sum_{i=1}^{2}|\nabla u_{ni}|^{k}-\alpha\int_{-1}^1u_{n1}(0,y)dy\geq X_{n}-|\alpha|cX_{n}^{1/k}$, this prove that $\beta=+\infty$, which is impossible. According to the reflexivity of the space $V$ and the compact injections $V\hookrightarrow L^k(\Omega)$ and $V\hookrightarrow L^k(\Gamma_1)$, there exists a subsequence of $(u_{n})=((u_{n1},u_{n2}))$, which is also denoted by $(u_{n})=((u_{n1},u_{n2}))$, such that \begin{gather*} u_{n}=(u_{n1},u_{n2}) \rightharpoonup \varphi^1 =((\varphi^1)_1,(\varphi^1)_2) \quad\text{in } V,\\ u_{n}=(u_{n1},u_{n2}) \rightarrow \varphi^1 =((\varphi^1)_1,(\varphi^1)_2)\quad \text{in }L^k(\Omega),\\ u_{n1}|_{\Gamma_1} \rightarrow (\varphi^1)_1|_{\Gamma_1} \quad \text{in }L^k(\Gamma_1). \end{gather*} Hence $\int_{\Omega}m(x,y)(|(\varphi^1)_1|^k+|(\varphi^1)_2|^k)=1$, consequently $\varphi^1\neq 0$ and \begin{align*} \beta &\leq \frac{1}{k}\int_{\Omega}|\nabla (\varphi^1)_1|^k+|\nabla (\varphi^1)_2|^k -\alpha\int_0^1(\varphi^1)_1(0,y)dy\\ &\leq \frac{1}{k}\int_{\Omega}|\nabla u_{n1}|^k +|\nabla u_{n2}|^k-\alpha\int_0^1u_{n1}(0,y)dy, \end{align*} so $$ \beta= \frac{1}{k}\int_{\Omega}|\nabla (\varphi^1)_1|^k+|\nabla (\varphi^1)_2|^k-\alpha\int_0^1(\varphi^1)_1(0,y)dy. $$ On the other hand, for all $t>0$, $v=(v_1,v_2)\in V$, we put $w_{t}=(w_{thm1},w_{t2})$ where \begin{gather*} w_{thm1}=\frac{(\varphi^1)_1+tv_1}{(\int_\Omega m(x,y)(|(\varphi^1)_1+tv_1|^k+ |(\varphi^1)_2+tv_2|^k))^{1/k}},\\ w_{t2}=\frac{(\varphi^1)_2+tv_2}{(\int_\Omega m(x,y)(|(\varphi^1)_1+tv_1|^k+ |(\varphi^1)_2+tv_2|^k))^{1/k}}, \end{gather*} so that $\int_\Omega m(x,y)(|w_{thm1}|^k+|w_{t2}|^k)=1$ and \begin{align*} \beta&=\frac{1}{k}\int_{\Omega}|\nabla (\varphi^1)_1|^k+|\nabla (\varphi^1)_2|^k-\alpha\int_0^1(\varphi^1)_1(0,y)dy\\ &\leq \frac{1}{k}\int_{\Omega}|\nabla w_{thm1}|^k+|\nabla w_{t2}|^k-\alpha\int_0^1w_{thm1}(0,y)dy. \end{align*} By developing to order 1 for $t\to 0$ and by applying the same reasoning to $(-v)$, we obtain \begin{align*} &\sum_{i=1}^{2}\int_{\Omega}|\nabla (\varphi^1)_{i}|^{k-2}\nabla (\varphi^1)_{i}\nabla v_{i}-\alpha\int_0^1v_1(0,y)dy\\ &=(k\beta+(k-1)\alpha\int_0^1(\varphi^1)_1(0,y)dy) \times (\sum_{i=1}^{2}\int_{\Omega}m(x,y)|(\varphi^1)_{i}|^{k-2} (\varphi^1)_{i}v_{i}). \end{align*} Now we suppose that $\alpha\alpha'> 0$. We put $\overline{\varphi^1}=(\overline{\varphi^1}_1, \overline{\varphi^1}_2)$, where $\overline{\varphi^1}_{i}=\eta \varphi^1_{i}$ with $\eta^{k-1}=\frac{\alpha'}{\alpha}$. Then, by replacing in the equation $(P_1(\alpha))$, we obtain $$ \sum_{i=1}^{2}\int_{\Omega}|\nabla \overline{\varphi^1}_{i}|^{k-2}\nabla \overline{\varphi^1}_{i}\nabla v_{i}-\alpha'\int_0^1v_1(0,y)dy=\lambda_1(\alpha)\sum_{i=1}^{2}\int_{\Omega}m(x,y) |\overline{\varphi^1}_{i}|^{k-2}\overline{\varphi^1}_{i}v_{i}, $$ which completes the proof of Theorem \ref{thm1}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] (i) It is easy to prove that for $\alpha=0$, $\lambda_1$ is an eigenvalue of Problem \eqref{VPa} with $\alpha=0$ and $u\neq 0$ is a eigenfunction if and only if $ \sum_{i=1}^{2}\int_{\Omega}|\nabla u_{i}|^k-\lambda_1(m)\int_{\Omega}m(x,y)(|u_1|^k+|u_2|^k)=0=\inf\{\sum_{i=1}^{2}\int_{\Omega}|\nabla v_{i}|^k-\lambda_1(m)\int_{\Omega}m(x,y)(|v_1|^k+|v_2|^k);\ \ v\in V \}$. The proofs of (ii) and (iii) follow from (i). \end{proof} \begin{proof}[Proof of Theorem \ref{thm3}] It is clear that Problem \eqref{Q} is equivalent to the weak formulation: Find $u\in V$ such that \begin{equation} \label{Q'} \begin{aligned} &\sum_{i=1}^{2}\int_{\Omega}|\nabla u_{i}|^{k-2} \nabla u_{i}\nabla v_{i} -\alpha\int_{-1}^1v_1(0,y)dy\\ &=\lambda\sum_{i=1}^{2}\int_{\Omega}m(x,y)|u_{i}|^{k-2}u_{i}v_{i} +\sum_{i=1}^{2}\int_{\Omega}f_{i}v_{i} \quad \forall v\in V. \end{aligned} \end{equation} We consider the energy functional defined on $V$, \begin{equation}\label{E3} \Phi(u)=\frac{1}{k}\sum_{i=1}^{2}\int_{\Omega}|\nabla u_{i}|^k-\alpha \int_{-1}^1u_1(0,y)dy-\frac{\lambda}{k}\sum_{i=1}^{2}\int_{\Omega}m(x,y)|u_{i}|^k- \sum_{i=1}^{2}\int_{\Omega}f_{i}u_{i}. \end{equation} We verify that $u$ is a solution of Problem \eqref{Q'} if and only if $u$ is a critical point of the function $\Phi$. For the existence, it suffices to prove that there exists $u\in V$ such that $$ \Phi(u)=\inf_{v\in V}\, \Phi(v). $$ The functional $\Phi$ is continuous and convex, it suffices to show that $\Phi$ is coercive, indeed for all $u\in V$, using Theorem \ref{thm2}, we obtain \begin{equation}\label{t6} \lambda_1\int_{\Omega}m(x,y)(|u_1|^k+|u_2|^k ) \leq \int_{\Omega}|\nabla u_1|^k+|\nabla u_2|^k. \end{equation} Since the function $u\mapsto (\int_{\Omega}|\nabla u_1|^{k})^{1/k}+(\int_{\Omega}|\nabla u_2|^{k})^{1/k}:=\|u\|_{V}$ defines a norm in $V$, then we have successively \begin{align*} \sum_{i=1}^{2}\int_{\Omega}f_{i}u_{i} &\leq \sum_{i=1}^{2}\|f_{i}\|_{L^{k'}} \|u_{i}\|_{L^{k}} \\ &\leq c\sum_{i=1}^{2}\|\nabla u_{i}\|_{L^{k}} = c\|u\|_{V}, \end{align*} where $c>0$. \begin{align*} \alpha\int_{-1}^1u_1(0,y)dy &\leq |\alpha|\int_{\partial\Omega}|u_1|d\sigma \\ &\leq |\alpha| c'(\int_{\partial\Omega}|u_1|^{k}d\sigma)^{1/k} \quad \text{(Holder's inequality)} \\ &\leq |\alpha| c'(\int_{\Omega}|\nabla u_1|^{k})^{1/k} \quad ( V \hookrightarrow L^{k}(\partial\Omega) \text{ a continuous injection})\\ &= c''\|u\|_{V}, \end{align*} where $c'$ and $c''$ are positive. \begin{align*} \frac{\lambda}{k}\sum_{i=1}^{2}\int_{\Omega}m(x,y)|u_{i}|^k &\leq \frac{\tilde{\lambda}}{k}\sum_{i=1}^{2} \int_{\Omega}m(x,y)|u_{i}|^k \\ &\leq \frac{\widetilde{\lambda}}{\lambda_1k}\int_{\Omega} |\nabla u_1|^{k}+ |\nabla u_2|^{k}, \end{align*} where $\widetilde{\lambda}:= \begin{cases} 0 & \text{if } \lambda < 0 \\ \lambda & \text{if } \lambda \geq 0. \end{cases}$ According to \eqref{E3}, we obtain $$ \Phi(u)\geq \frac{1}{k}(1-\frac{\tilde{\lambda}}{\lambda_1}) \int_{\Omega}|\nabla u_1|^k+|\nabla u_2|^k -c'''\|u\|_{V}, $$ where $c'''>0$. Thus $$ \Phi(u)\geq \frac{1}{k}(1-\frac{\tilde{\lambda}}{\lambda_1}) \|u\|_{V}^{k}-c'''\|u\|_{V}, $$ where $c'''>0$. Since $\lambda<\lambda_1$, we deduce that $\Phi(u)\to +\infty$ when $\|u\|_V\to +\infty$, so we have proved the existence. \end{proof} \begin{thebibliography}{99} \bibitem{a1} C. Amrouche, M. Batchi, J. Batina; Navier-Stokes equations with periodic boundary conditions and pressure loss, {\it Applied Mathematics Letters}. \textbf{20} (2007), 48-53. \bibitem{a2} A. Anane; Simplicit\'e et isolation de la première valeur propre du p-Laplacien avec poids, {\it C. R. Acad. Sci. Paris, t.} \textbf{305} (1987), 725-728. \bibitem{c} O. Chakrone, O. Diyer, D. Sbibih; A non resonance of non-Newtonian fluid with known differences pressures between two parallel plates. Submitted. \bibitem{D} C. L. Dolph; Nonlinear integral equations of the Hammerstein type, {\it Trans. Amer. Math. Soc}. \textbf{66} (1949), 289-307. \bibitem{H} A. Hammerstein; Nichtlineare Integralgleichungen nebst anwendungen acta, {\it Math}. \textbf{54} (1930), 117-176. \bibitem{L} E. Landesman, A. Lazer; Nonlinear perturbation of linear elliptic boundary value problems at resonance, {\it J. Amer. Math. Mech}. \textbf{19} (1970), 609-623. \end{thebibliography} \end{document}