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EXISTENCE OF SOLUTIONS IN THE α-NORM FOR PARTIAL
DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE WITH

FINITE DELAY

KHALIL EZZINBI, HATEM MEGDICHE, AMOR REBEY

Abstract. In this work, we prove results on the local existence of mild so-

lution and global continuation in the α-norm for some class of partial neutral

differential equations. We suppose that the linear part generates a compact
analytic semigroup. The nonlinear part is just assumed to be continuous. We

use the compactness method, to show the main result of this work.

1. Introduction

In this work, we study the existence and global continuation of solutions in the
α-norm for partial differential equations of neutral type with finite delay. The
following model provides an example of such a situation

∂

∂t
[v(t, x)− av(t− r, x)]

=
∂2

∂x2
[v(t, x)− av(t− r, x)] + f(

∂

∂x
v(t− r, x)) for t ≥ 0, x ∈ [0, π]

v(t, 0) = av(t− r, 0), v(t, π) = av(t− r, π) for t ≥ 0,

v(t, x) = v0(t, x) for − r ≤ t ≤ 0, x ∈ [0, π],

(1.1)

where a and r are positive constants, f : R → R is a continuous function, and v0 is
a given initial function from [−r, 0]× [0, π] to R. Equation (1.1) can be written in
the following abstract form for partial differential equations

d

dt
Dut = −ADut + F (t, ut) for t ≥ 0,

u0 = ϕ, ϕ ∈ Cα,
(1.2)

where −A is the infinitesimal generator of an analytic semigroup on a Banach space
X, Cα := C([−r, 0];D(Aα)), 0 < α < 1, denotes the space of continuous functions
from [−r, 0] into D(Aα), and the operator Aα is the fractional α-power of A. This
operator (Aα, D(Aα)) will be described later. For x ∈ C([−r, b];D(Aα)), b > 0,
and t ∈ [0, b], xt denotes, as usual, the element of Cα defined by xt(θ) = x(t + θ)
for θ ∈ [−r, 0]. F is a continuous function from R+ × Cα with values in X and D
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is a bounded linear operator from CX := C([−r, 0];X) into X defined by Dϕ =
ϕ(0)−D0ϕ, for ϕ ∈ CX , where D0 is a bounded linear operator given by:

D0ϕ =
∫ 0

−r

dη(θ)ϕ(θ) for ϕ ∈ CX ,

where η : [−r, 0] → L(X) is of bounded variation and non-atomic at zero. That is,
there is a continuous nondecreasing function δ : [0, r] → [0,+∞[ such that δ(0) = 0
and ∥∥∫ 0

−s

dη(θ)ϕ(θ)
∥∥ ≤ δ(s)‖ϕ‖ for ϕ ∈ CX ; s ∈ [0, r]. (1.3)

There is an extensive literature of differential equations of neutral type motivated
by physical applications. Xia and Wu (1996), Hale (1994), and Wu (1996) studied
the neutral partial functional differential equation

∂

∂t
Dut = K

∂2

∂x2
Dut + f(ut) for x ∈ S1, (1.4)

where K is a positive constant and X be the space C(S1,R). Let A = K ∂2

∂x2 with
domain C2(S1,R), then A is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 on X and the associated integrated form of (1.4) subject to the initial
condition u0 = ϕ ∈ C([−r, 0], X) is

D(ut) = T (t)D(ϕ) +
∫ t

0

T (t− s)f(us)ds for t ≥ 0. (1.5)

Wu [16] established the existence of mild solution of (1.5). Travis and webb [14]
considered partial differential equations of the form

d

dt
u(t) = −Au(t) + F (t, ut) t ≥ 0,

u0 = ϕ, ϕ ∈ Cα,
(1.6)

where −A the infinitesimal generator of a compact analytic semigroup and F is
only continuous with respect to a fractional power of A in the second variable.

This work is motivated by the paper of Travis and Webb [14], where the authors
studied the existence and continuability in the α-norm for equation (1.2) but in the
case where D0 = 0, they assumed that F : Cα → X is continuous. In [2] the authors
obtained the local and the global existence of solution of Eq. (1.2) for α = 0 in the
case when the linear part is non densely defined Hille-Yosida. Recently, in [1] Adimy
and Ezzinbi have developed a basic theory of partial neutral functional differential
equations in fractional power spaces, they proved the existence and regularity of
the solution of Eq. (1.2) where the nonlinear part satisfies Lipschitz conditions.

The present paper is organized as follows. In the first section, we introduce some
notations and necessary preliminaries. In Section 2, we study the local existence
and global continuation of mild solutions of (1.2). Finally, to illustrate our results,
we give in Section 3 an application.

2. Existence of local mild solutions

In this section we study the existence of mild solutions for the abstract Cauchy
problem (1.2). Before that, we state the following assumption.

(H1) −A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 on a
Banach space X and 0 ∈ ρ(A), where ρ(A) is the resolvent set of A.
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Note that if 0 ∈ ρ(A) is not satisfied, one can substitute the operator A by the
operator (A − σI) with σ large enough such that 0 ∈ ρ(A − σ). This allows us to
define the fractional power Aα for 0 < α < 1, as a closed linear invertible operator
with domainD(Aα) dense inX. The closedness of Aα implies thatD(Aα), endowed
with the graph norm of Aα; i.e., the norm |x| = ‖x‖ + ‖Aαx‖, is a Banach space.
Since Aα is invertible, its graph norm | · | is equivalent to the norm ‖x‖α = ‖Aαx‖.
Thus, D(Aα) equipped with the norm ‖ · ‖α, is a Banach space, which we denote
by Xα. For 0 < β ≤ α < 1, the imbedding Xα ↪→ Xβ is compact if the resolvent
operator of A is compact. Also, the following properties are well known.

Theorem 2.1 ([11]). Let 0 < α < 1 and assume that (H1) holds. Then
(i) T (t) : X −→ D(Aα) for every t > 0,
(ii) T (t)Aαx = AαT (t)x for every x ∈ D(Aα) and t ≥ 0,
(iii) for every t > 0 the operator AαT (t) is bounded on X and there exists

Mα > 0 such that

‖AαT (t)‖ ≤Mαe
ωtt−α, (2.1)

(iv) There exists Nα > 0 such that

‖(T (t)− I)A−α‖ ≤ Nαt
α for t > 0. (2.2)

In the sequel, we denote by Cα := C([−r, 0];Xα) the Banach space of all contin-
uous function from [−r, 0] to Xα endowed with the norm

‖ϕ‖Cα
:= sup

θ∈[−r,0]

‖ϕ(θ)‖α for ϕ ∈ Cα.

Definition 2.2. Let ϕ ∈ Cα. A continuous function u : [−r,+∞[→ Xα is called a
mild solution of (1.2) if

(i) D(ut) = T (t)D(ϕ) +
∫ t

0
T (t− s)F (s, us)ds for t ≥ 0,

(ii) u0 = ϕ.

Besides (H1), we consider the hypothesis:
(H2) The semigroup (T (t))t≥0 is compact on X.
(H3) If x ∈ Xα and θ ∈ [−r, 0] then η(θ)x ∈ Xα and Aαη(θ)x = η(θ)Aαx.

Remark 2.3. Assumption (H3) implies that if ϕ ∈ Cα then

D0(ϕ) ∈ Xα, AαD0(ϕ) = D0(Aαϕ), (2.3)

where
(Aαϕ)(θ) = Aα(ϕ(θ)) for θ ∈ [−r, 0], ϕ ∈ Cα.

The main result of this section is the following theorem.

Theorem 2.4. Assume that the hypothesis (H1)–(H3) hold true. Let U be an open
subset of the Banach space Cα. If F : [0, a]× U → X is continuous, then for each
ϕ ∈ U there exist t1 := t1(ϕ) with 0 < t1 ≤ a and a mild solution u ∈ C([−r, t1];Xα)
of (1.2).

Proof. The proof of this result is based on the Sadovskii’s fixed-point theorem. Let
ϕ ∈ U and 0 < t1 ≤ a. We choose 0 < ρ ≤ a to be small enough such that
{ψ ∈ Cα : ‖ψ − ϕ‖Cα

≤ ρ} ⊂ U . Now we consider the set

Ω := {u ∈ C([−r, t1];Xα) : u0 = ϕ and ‖ut − ϕ‖Cα
≤ ρ for t ∈ [0, t1]},
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where C([−r, t1];Xα) is endowed with the uniform convergence topology. It is easy
to check that Ω is nonempty and bounded. By using the triangular inequality, it is
clear that λu1 + (1− λ)u2 ∈ Ω, for any u1, u2 ∈ Ω and λ ∈]0, 1[. Then Ω is convex.
Also, Ω is closed in C([−r, t1];Xα). To prove that, consider a convergent sequence
(un)n≥0 of Ω with limn→+∞ un = u in Ω. Then, for any n in N, we have

‖u0 − ϕ‖Cα
≤ ‖u0 − un

0‖Cα
+ ‖un

0 − ϕ‖Cα
,

letting n to +∞, yields ‖u0−ϕ‖Cα = 0, then u0 = ϕ. In addition for any t ∈ [0, t1],
n ∈ N

‖ut − ϕ‖Cα
≤ ‖ut − un

t ‖Cα
+ ‖un

t − ϕ‖Cα

≤ ‖ut − un
t ‖Cα

+ ρ.

Letting n to +∞, we deduce that ‖ut − ϕ‖Cα
≤ ρ. Consequently, u ∈ Ω. We have

Ω is a nonempty, bounded, convex and closed subset of C([−r, t1];Xα) when t1 is
given by (2.6).

Let the mapping H : Ω → C([−r, t1];Xα) be defined by

H(u)(t) =

{
D0(ut) + T (t)D(ϕ) +

∫ t

0
T (t− s)F (s, us)ds if t ∈ [0, t1],

ϕ(t) if t ∈ [−r, 0].

We will prove now the continuity of H. Let (un)n≥1 be a convergent sequence in Ω
with limn→∞ un = u. Using (2.3), and that D0 is a bounded linear operator, there
exists a positive constant M such that

‖D0(un
t )−D0(ut)‖α ≤M‖un

t − ut‖Cα . (2.4)

On the other hand the set Λ = {(s, un
s ), (s, us) : s ∈ [0, t1], n ≥ 1} is compact

in [0, t1] × Cα. By Hëıne’s theorem implies that F is uniformly continuous in Λ.
Accordingly, since (un)n≥1 converge to u, we have

‖H(un)−H(u)‖∞ ≤Mα

∫ t1

0

eωs

sα
ds sup

s∈[0,t1]

‖F (s, un
s )− F (s, us)‖ → 0 as n→ +∞.

(2.5)
Using (2.5) and the estimate (2.4), we obtain that (Hun)n≥1 converge to Hu. This
yields the continuity of H.

We will show that there exists t1 := t1(ϕ) ∈]0, a] such that H(Ω) ⊆ Ω. Let
u ∈ Ω. We have the following translation property

(Hu)t(θ) =


D0ut+θ + T (t+ θ)Dϕ
+

∫ t+θ

0
T (t+ θ − s)F (s, us)ds if t+ θ ∈ [0, t1],

ϕ(t+ θ) if t+ θ ∈ [−r, 0].

Choose γ > 0 such that

‖ϕ(t+ θ)− ϕ(θ)‖α ≤
ρ

5
min{1, 1

var[−r,0](η)
},

for t ∈ [0, γ] and θ ∈ [−r, 0] such that t+θ ∈ [−r, 0]. This implies in particular that
‖(H(u))t(θ)− ϕ(θ)‖α ≤ ρ, for t ∈ [0, γ] and θ ∈ [−r, 0] such that t+ θ ∈ [−r, 0].

Choose s ∈]0, r] such that δ(s) ≤ 1/5 and ‖T (t)Dϕ−Dϕ‖α ≤ ρ/5, for t ∈ [0, s].
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If 0 ≤ t+ θ ≤ s, then

(H(u))t(θ)− ϕ(θ) =
∫ −s

−r

dη(τ)
(
ϕ(t+ θ + τ)− ϕ(τ)

)
+

∫ 0

−s

dη(τ)
(
ut+θ(τ)− ϕ(τ)

)
+ T (t+ θ)D(ϕ)−D(ϕ)

+ ϕ(0)− ϕ(θ) +
∫ t+θ

0

T (t+ θ − s)F (s, us)ds.

As F is continuous, we can choose ρ > 0 small enough such that there exists N > 0
so that ‖F (t, ψ)‖ ≤ N , for t ∈ [0, ρ] and ‖ψ − ϕ‖Cα

≤ ρ. Then, if t1 ≤ ρ we obtain

‖
∫ t+θ

0

T (t+ θ − s)F (s, us)ds‖α ≤MαN

∫ t

0

eωss−αds.

We can take γ such that
∫ γ

0
eωss−αds ≤ ρ

5MαN . We deduce that

‖(H(u))t(θ)− ϕ(θ)‖α ≤ var[−r,0](η) sup
τ∈[−r,−s]

‖ϕ(t+ θ + τ)− ϕ(τ)‖α

+ δ(s)‖ut+θ − ϕ‖Cα + ‖ϕ(0)− ϕ(θ)‖α

+ ‖T (t+ θ)D(ϕ)−D(ϕ)‖α +MαN

∫ t

0

eωss−αds.

Finally, we choose
t1 = min{γ, s, ρ}. (2.6)

Then, for 0 ≤ t+ θ ≤ t1, we obtain ‖(H(u))t(θ)− ϕ(θ)‖α ≤ ρ. So, we have proved
that there exists t1 := t1(ϕ) ∈]0, a] such thatH(Ω) ⊆ Ω. Consider now the mapping
H1 : Ω → C([−r, t1];Xα) defined by

H1(u)(t) =

{
D0(ut) if t ∈ [0, t1],
ϕ(t)−Dϕ if t ∈ [−r, 0].

Also define H2 : Ω → C([−r, t1];Xα) by

H2(u)(t) =

{
T (t)D(ϕ) +

∫ t

0
T (t− s)F (s, us)ds if t ∈ [0, t1],

Dϕ if t ∈ [−r, 0].

It is clear that H = H1 +H2. If we prove that H1 is a strict contraction and H2

is compact. Apply the Sadovskii’s fixed theorem to obtain the existence of a fixed
point of H on Ω.

(1) Let u, v ∈ Ω. Then for each t ∈ [0, t1], we have

H1u(t)−H1v(t) = D0(ut − vt)

=
∫ 0

−r

dη(θ)(u(t+ θ)− v(t+ θ))

=
∫ 0

−s

dη(θ)(u(t+ θ)− v(t+ θ)).

According to (2.3), we have

AαD0(ut − vt) =
∫ 0

−s

dη(θ)Aα(u(t+ θ)− v(t+ θ)),
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which implies
‖D0(ut − vt)‖α ≤ δ(s) sup

−r≤t≤t1

‖u(t)− v(t)‖α

Consequently,

sup
−r≤t≤t1

‖H1u(t)−H1v(t)‖α ≤ δ(s) sup
−r≤t≤t1

‖u(t)− v(t)‖α.

Since δ(s) ≤ 1/5, H1 is therefore a strict contraction in Ω.
(2) We will show that the Im(H2) := {H2(u), u ∈ Ω}, is relatively compact. By

the Arzela-Ascoli theorem it suffices to prove that the set {H2(u)(t) : u ∈ Ω} is a
relatively compact in Xα for each t ∈ [0, t1], and H2(Ω) is an equicontinuous family
of functions on [0, t1].

(i) To prove the first assertion, it is sufficient to show that the set {H2u(t) : u ∈
Ω} is relatively compact for each t ∈]0, t1]. Let t ∈]0, t1] fixed, and β > 0 such that
α < β < 1, we have

‖(AβH2u)(t)‖ ≤ ‖Aβ−αT (t)AαD(ϕ)‖+ ‖
∫ t

0

AβT (t− s)F (s, us)ds‖

≤Mβ−αe
ωttα−β‖D(ϕ)‖α +MβN

∫ t

0

eωss−βds < +∞.

Then for fixed t ∈]0, t1], {(AβH2u)(t)} is bounded in X, and appealing to the
compactness of A−β : X → Xα, we deduce that {H2(u)(t) : u ∈ Ω} is relatively
compact set in Xα.

(ii) On the other hand, for every 0 ≤ t0 < t ≤ t1, one has

H2u(t)−H2u(t0) = (T (t)− T (t0))Dϕ+
∫ t

t0

T (t− s)F (s, us)ds

+
∫ t0

0

(T (t− s)− T (t0 − s))F (s, us)ds

= (T (t)− T (t0))Dϕ+
∫ t

t0

T (t− s)F (s, us)ds

+ (T (t− t0)− I)
∫ t0

0

T (t0 − s)F (s, us)ds.

We obtain that

‖H2u(t)−H2u(t0)‖α ≤ ‖(T (t)− T (t0))Dϕ‖α +MαN

∫ t

t0

eωs

sα
ds

+ ‖(T (t− t0)− I)
∫ t0

0

AαT (t0 − s)F (s, us)ds‖.

It is clear that the first part tend to zero as |t− t0| → 0, since for t0 > 0 the set{∫ t0

0

AαT (t0 − s)F (s, us)ds, u ∈ Ω
}

is relatively compact in X, there is a compact set K̃ in X such that∫ t0

0

AαT (t0 − s)F (s, us)ds ∈ K̃for u ∈ Ω.
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By Banach-Steinhaus’s theorem, we have

∥∥(T (t− t0)− I)
∫ t0

0

AαT (t0 − s)F (s, us)ds
∥∥ → 0 as t→ t0,

uniformly in u ∈ Ω. This implies

lim
t→t+0

sup
u∈Ω

‖H2(u)(t)−H2(u)(t0)‖α = 0.

Using similar argument for 0 ≤ t < t0 ≤ b, we can conclude that {H2u(t), u ∈ Ω}
is equicontinuous.

Finally, the Sadovskii’s fixed-point theorem implies that H has a fixed point u
in Ω. The fact that u is a mild solutions of Equation (1.2). This completes the
proof. �

To define the mild solution in its maximal interval of existence, we add the
following condition

(H4) F : [0,+∞[×Cα → X is continuous and takes bounded sets of [0,+∞[×Cα

into bounded sets in X.

Theorem 2.5. Assume that the hypotheses of Theorem 2.4 hold and F satisfies
(H4). If u is a mild solution of (1.2) on [−r, tmax[, then either tmax = +∞ or
lim supt→tmax

‖ut‖Cα
= +∞.

To prove this result, we need the following lemma.

Lemma 2.6 ([1]). Assume that (H1), (H3) hold, and that there exist positive con-
stants a, b, c such that, if w ∈ C([−r,+∞[;Xα) is a solution of

Dwt = f(t) for t ≥ 0,
w0 = ϕ, ϕ ∈ Cα,

(2.7)

where f is a continuous function from [0,+∞[ to Xα. Then

‖wt‖Cα
≤ (a‖ϕ‖Cα

+ sup
0≤s≤t

‖f(s)‖α)ect for t ≥ 0. (2.8)

Proof of Theorem 2.5. Assume that tmax < +∞ and lim supt→tmax
‖ut‖Cα

< +∞.
Let R = sups∈[0,tmax[ ‖F (s, us)‖ and u : [t0, tmax[→ Xα, t0 ∈]0, tmax[, be the re-
striction of u to [t0, tmax[. Consider t ∈ [t0, tmax[ and β such that α < β < 1.
Then

‖D(ut)‖β ≤ ‖Aβ−αT (t)AαD(ϕ)‖+ ‖
∫ t

0

AβT (t− s)F (s, us)ds‖

≤Mβ−αe
ωttα−β‖D(ϕ)‖α +MβR

∫ t

0

eωss−βds.
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Thus, ‖D(ut)‖β is bounded on [t0, tmax[. Now, for t0 ≤ t < t+ h < tmax, we have

D(ut+h)−D(ut) = T (t+ h)Dϕ− T (t)Dϕ+
∫ t+h

0

T (t+ h− s)F (s, us)ds

−
∫ t

0

T (t− s)F (s, us)ds

= T (t)[(T (h)− I)Dϕ] + (T (h)− I)
∫ t

0

T (t− s)F (s, us)ds

+
∫ t+h

t

T (t+ h− s)F (s, us)ds

= (T (h)− I)D(ut) +
∫ t+h

t

T (t+ h− s)F (s, us)ds.

We put, for t ∈ [t0, tmax[,

f(t) = (T (h)− I)D(ut) +
∫ t+h

t

T (t+ h− s)F (s, us)ds.

Using the estimate (2.8), we obtain that

‖ut+h − ut‖Cα
≤ (a‖uh − u0‖Cα

+ b sup
0≤s≤t

‖f(s)‖α)ect.

On the other hand and using (2.2), for t ∈ [t0, tmax[, we have

‖f(t)‖α ≤ ‖(T (h)− I)A−(β−α)AβD(ut)‖+ ‖
∫ t+h

t

AαT (t+ h− s)F (s, us)ds‖

≤ Nβ−αh
β−α‖D(ut)‖β +RMα

∫ t+h

t

eω(t+h−s)(t+ h− s)−αds

≤ Nβ−αh
β−α‖D(ut)‖β +RMα

∫ h

0

eωss−αds

≤ Nβ−αh
β−α‖D(ut)‖β +RMα max{1, eωtmax} h

1−α

1− α
→ 0 as h→ 0.

Since ‖uh − u0‖Cα
→ 0 as h→ 0,

lim
h→0

‖ut+h − ut‖Cα
= 0

uniformly with respect to t ∈ [t0, tmax[. Which implies that u is uniformly contin-
uous and limt→tmax u(t) exists in Xα; the solution can be continued to the right to
tmax, which contradicts the maximality of [−r, tmax[. This completes the proof of
the theorem. �

The following result provides sufficient conditions for the existence of global
solutions to (1.2).

Corlllary 2.7. Under the same assumptions as in Theorem 2.4, if there exists
locally integrable functions k1 and k2 such that ‖F (t, ϕ)‖ ≤ k1(t)‖ϕ‖Cα

+ k2(t) for
ϕ ∈ Cα and t ≥ 0, then (1.2) admits global solutions.
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3. Example

Consider the partial functional differential equation of neutral type,

∂

∂t
[v(t, x)− av(t− r, x)]

=
∂2

∂x2
[v(t, x)− av(t− r, x)] + f(

∂

∂x
v(t− r, x)) for t ≥ 0, x ∈ [0, π],

v(t, 0) = av(t− r, 0), v(t, π) = av(t− r, π) for t ≥ 0,

v(t, x) = v0(t, x) for − r ≤ t ≤ 0, x ∈ [0, π].

(3.1)

Where a, r are positive constants, f : R → R and v0 : [−r, 0] × [0, π] → R are
continuous. Let X = L2([0, π]; R) and A : D(A) ⊂ X → X be defined by Ay = −y′′
with domain D(A) = H2[0, π] ∩ H1

0 [0, π]. Then Ay =
∑∞

n=1 n
2(y, en)en for y ∈

D(A), where {en(s) =
√

2/π sinns, n ≥ 1}, is the orthonormal set of eigenvectors
of A. For each y ∈ D(A1/2) := {y ∈ X :

∑∞
n=1 n(y, en)en ∈ X} the operator A1/2

is given by A1/2y =
∑∞

n=1 n(y, en)en.

Lemma 3.1. [15] If y ∈ D(A1/2), then y is absolutely continuous, y′ ∈ X and
‖y′‖X = ‖A1/2y‖X .

It is well known that −A is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 on X given by T (t)y =

∑∞
n=1 e

−n2t(y, en)en, y ∈ X. It follows from this
last expression that (T (t))t≥0 is a compact semigroup on X (for any t > 0, T (t) is
a Hilbert Schmidt operator).

Let u(t) = v(t, .) for t ≥ 0, ϕ(θ) = v0(θ, .) for θ ∈ [−r, 0], D : C1/2 → X1/2 be
defined by

Dϕ = ϕ(0)− aϕ(−r) = ϕ(0)−
∫ 0

−r

dη(θ)ϕ(θ) for ϕ ∈ C1/2,

with η(θ) = 0 for −r < θ ≤ 0 and η(−r) = aI. Let F : C1/2 −→ X be given by

(F (ϕ))(x) = f(ϕ(−r)′(x)) for ϕ ∈ C1/2, x ∈ [0, π].

Then (3.1) takes the abstract form

d

dt
Dut = −ADut + F (t, ut) for t ≥ 0,

u0 = ϕ, ϕ ∈ Cα.
(3.2)

Lemma 3.2. Operator F is continuous from C1/2 to X.

Proof. Let ϕ ∈ C1/2. We consider a sequence (ϕn)n convergent to ϕ in C1/2. Then

‖A1/2ϕn(−r)−A1/2ϕ(−r)‖X ≤ sup
θ∈[−r,0]

‖A1/2ϕn(θ)−A1/2ϕ(θ)‖X

= ‖ϕn − ϕ‖C 1
2
→ 0 as n→ +∞.

Then ∫ π

0

| ∂
∂x
ϕn(−r)(x)− ∂

∂x
ϕ(−r)(x)|2dx→ 0 as n→ +∞.

This implies
∂

∂x
ϕn(−r) → ∂

∂x
ϕ(−r) as n→∞
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in L2[0, π]. Consequently, there exists (ϕnk
)k, g ∈ L2[0, π] such that

∂

∂x
ϕnk

(−r)(x) → ∂

∂x
ϕ(−r)(x) a. e., as k →∞

and

| ∂
∂x
ϕn(−r)(x)| ≤ |g(x)| a.e.

By the continuity of f ,

f
( ∂

∂x
ϕnk

(−r)(x)
)
→ f

( ∂

∂x
ϕ(−r)(x)

)
as k →∞.

Assuming that |f(t)| ≤ b|t|+ c, by the Lebesgue’s dominated convergence theorem,
we have

f
( ∂

∂x
ϕnk

(−r)
)
→ f

( ∂

∂x
ϕ(−r)

)
as k →∞

in L2[0, π]. Since the limit does not depend on the subsequence (ϕnk
)k, then we

obtain
F (ϕn) → F (ϕ)

in L2[0, π] as n→∞. We deduce that F is continuous. �

Consequently, Theorem 2.4 ensures the existence of a maximal interval of exis-
tence [−r, tmax[ and a mild solution of (3.1).
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