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EXISTENCE OF NONNEGATIVE SOLUTIONS TO
POSITONE-TYPE PROBLEMS IN RN WITH INDEFINITE

WEIGHTS

DHANYA RAJENDRAN, JAGMOHAN TYAGI

Abstract. We study the existence of a nonnegative solution to the following

problem in RN , N ≥ 3, in both the radial as well as in the non-radial case
with an indefinite weight function a(x):

−∆u = λa(x)f(u)

u(x)→ 0 as |x| → ∞.

The nonlinearity f above is of “positone” type; i.e., f is monotone increasing

with f(0) > 0. We show the existence of a nonnegative solution to the above

problem for λ > 0 small enough. We also prove the existence of a nonnegative
solution to the above problem in exterior as well as in annular domains. Mo-

tivated by the scalar equation, we further extend these results to the case of

coupled system. Our proof involves the method of monotone iteration applied
to the integral equation corresponding to the problem.

1. Introduction

Many problems in areas of Mathematical Physics such as fluid dynamics [2],
wave phenomena, nonlinear field theory [4], combustion theory [3, 13] etc., lead to
finding a positive solution to a nonlinear eigenvalue problem of the type

−∆u = λf(u) in Ω,

where λ is a positive parameter. For an excellent survey on the existence and
multiplicity results for positive solutions of the above problem in a bounded smooth
domain Ω and when f(0) ≥ 0, we refer the reader to the paper of Lions [23]. More
recently, motivated by applications in population genetics (see [14]), there is a lot
of interest in the following variant involving a weight function a(x):

−∆u = λa(x)f(u) in Ω,
u = 0 on ∂Ω.

(1.1)

In addition to the nonlinearity f , the indefinite weight function also plays a
crucial role in proving the existence of positive solutions to (PΩ). For conciseness,
(1.1) with Ω = Rn will denote the problem (PΩ) with Ω = RN but with the decay
condition u(x) → 0 as |x| → ∞.
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When f(0) = 0, there are many interesting results dealing with the existence
of classical positive solutions in any arbitrary domain and here we give a brief
summary of some of the results for the case of sign changing a. Brown and Tertikas
[5] established the existence of nontrivial radial solutions to (1.1) with Ω = Rn for
large λ > 0 by the methods of sub–supersolution and monotone iteration. Tertikas
[24], Brown and Stavrakakis [6] established the existence of a positive solution to
the problem (1.1) with Ω = Rn again by the construction of appropriate sub and
supersolutions. Due to the appearance of similar problems in population genetics,
authors in [6],[24] established the existence of positive solutions u to (PΩ) such
that 0 ≤ u ≤ 1. Gámez [15] also studied the same problem with sign changing
weight. He established the existence of positive solutions in D1,2

0 (RN ) by means
of the approximation generated by positive solutions of the problem posed on BR.
For the existence of a positive solution to (1.1) in annular domains, we refer the
reader to [16], [22] and references cited therein. In [16, 22], the authors assume
the positivity of the potential a(x), which is easier than our situation as we don’t
impose any sign condition on a.

To the best of our knowledge, there seems to be no result regarding the existence
of nonnegative radial solutions to the problem (1.1) with Ω = RN when f(0) 6= 0,
although there are results for bounded domains. The earlier results for the case
f(0) = 0 in RN , do not seem to extend easily to the case f(0) 6= 0.

In the case f(0) 6= 0, in order to get an idea of the conditions to be imposed on
f and a, we describe some available results for bounded domains. Cac et al. [8]
studied (1.1) with Ω = B1 for sign changing a, f(0) > 0 assuming

• f is continuous, positive and nondecreasing in [0,∞).
• a ∈ L1(0, 1) and there exists an ε > 0 such that∫ t

0

xN−1a+(x)dx ≥ (1 + ε)
∫ t

0

xN−1a−(x)dx,

for all t ∈ [0, 1].

With the above conditions on f and a, for λ small, they showed the existence of
a nonnegative solution of (1.1) with Ω = B1 using a variant of monotone iteration
and a fixed point argument. Cac et al. [9] generalized the result of [8] in B1 to
bounded domains with smooth boundary relaxing the non-decreasing assumption
on f , but assuming that a ∈ Ls(Ω) for s > max{1, N

2 } and that the Dirichlet
problem

−∆w = a+(x)− (1 + ε)a−(x), x ∈ Ω, u = 0 on ∂Ω (1.2)

has a nonnegative solution in Ω. Hai [19] established the existence of a positive
solution to the problem (1.1) with an indefinite weight a in any bounded domain Ω
by applying the Leray–Schauder fixed point theorem. This was done by relaxing the
condition that f is nondecreasing, but by assuming the continuity of a. Afrouzi and
Brown [1] also studied the same problem (PΩ) in a bounded domain Ω for smooth
f and established the existence of a positive solution for λ small by an application
of the implicit function theorem. In both [1] and [19], a condition similar to 1.2
was assumed on a+ and a−.

There is also a good amount of research dealing with corresponding semilin-
ear elliptic systems, in particular, reaction–diffusion systems. Reaction–diffusion
systems model many phenomena in Biology, Ecology, combustion theory, chemical
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reactions, population dynamics etc. A typical example of these models is

−∆u = λf(v) in Ω,

−∆v = λg(u) in Ω,
u = 0 = v on ∂Ω,

(1.3)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω. We refer to
the works, [11, 12, 17, 21, 25] among many others, in this context. In [11], Dal-
masso established the existence of positive solutions for (1.3) by Schauder fixed
point theorem and de Figueirdo et al. ([12]) answer the existence question in an
Orlicz space setting for N ≥ 3. For the existence and non–existence of positive
solutions to (1.3) in a ball when N ≥ 4, we refer the reader to [17]. In [21], Hulshof
and Vorst established the existence of a positive solution to (1.3) for N ≥ 1 by
variational techniques. Recently, Castro et al. [10] and Hai and Shivaji [20] have
also established the existence of a positive solution to the system given in (1.3).
Motivated by the work of Cac et al. [8], we explore the existence question in RN

for single equation as well as for systems with conditions similar to theirs. To over-
come the lack of compactness posed by unbounded domains, we need to assume
additional integrability conditions on a. For bounded domains, one of the main
tools used to prove the existence of positive solutions is the classical Schauder fixed
point theorem. In this work we get the compactness of the relevant integral oper-
ator in whole RN by this additional integrability condition on a (see, (H2) Prop.
2.3 below). Using (H4) for a+ and a− as in [8], we employ the monotone iteration
method adapted to the indefinite weight a(x), to construct a subset of the cone of
nonnegative functions invariant under the integral operator. We remark that (H4)
works in exterior as well as in annular domains.

Let G(x, t) be the Green’s function for the equation (xN−1y′(x))′ = 0 subject
to the Dirichlet boundary conditions on I. Let Γ(x − y) = cN |x − y|2−N be the
fundamental solution of −∆, where cN = 1

N(N−2)wN
, wN is the volume of the unit

sphere in RN.
Let I denote any of the following intervals: (0,∞), (R1,∞), (R1, R2), for some

R1, R2 > 0. We will work with the following set of hypotheses for the radial case:

(H1) f : R → (0,∞) is continuous, non-decreasing and f(0) > 0.
(H2) There exists some 0 < σ ≤ 1 such that

∫
I
t1+σ|a(t)| dt <∞.

(H3)
∫

I
|a(t)| dt <∞.

(H4) there exists µ > 0 :
∫

I
G(x, t)tN−1a+(t) dt ≥ (1 + µ)

∫
I
G(x, t)tN−1a−(t) dt,

for all x ∈ I.
For the non-radial case, we assume

(N1) f : R → R+ is Hölder continuous, non-decreasing and f(0) > 0.
(N2) a is a locally Hölder continuous function on RN and there exist δ > 0, C > 0

such that
|a(x)| ≤ C|x|−(2+δ) for all large x.

(N3) There exists µ > 0 such that∫
RN

Γ(x− y)(a+(y)− (1 + µ)a−(y))dy ≥ 0, ∀x ∈ RN.

More precisely, in this paper we are interested in the following set of problems:
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Problem 1. To establish the existence of nonnegative solutions to the following
radial version of the problem (1.1) with Ω = Rn for N ≥ 3:

y′′(x) +
N − 1
x

y′(x) + λa(x)f(y(x)) = 0, in (0,∞), (1.4)

y′(0) = 0, y(x) → 0 as x→∞. (1.5)

Also, using the same approach, to show the existence of nonnegative solutions to
(1.4) in the exterior domain (R1,∞) for some R1 > 0 with the boundary conditions

y(R1) = 0, y(x) → 0, as x→∞ for N ≥ 3 (1.6)

and in the annular region (R1, R2), 0 < R1 < R2 with the boundary conditions

y(R1) = 0 = y(R2) for N ≥ 2. (1.7)

Problem 2. To show the existence of a nonnegative pair (y1, y2) of solutions to
the following radial coupled system by similar arguments as are given in dealing
with problem 1 for N ≥ 3:

y′′1 (x) +
N − 1
x

y′1(x) + λa1(x)f1(y2(x)) = 0, in (0,∞),

y′′2 (x) +
N − 1
x

y′2(x) + λa2(x)f2(y1(x)) = 0, in (0,∞),

y′i(0) = 0, yi(x) → 0 as x→∞, for i = 1, 2.

(1.8)

Also, using the same approach, to show the existence of nonnegative solutions to
the above system in exterior as well as in annular domains.

subsection*Problem 3 To consider, without radial assumptions, the following
coupled system of differential equations in RN , N ≥ 3,

∆u1 + λa1(x)f1(u2(x)) = 0,

∆u2 + λa2(x)f2(u1(x)) = 0,

ui(x) → 0 as |x| → ∞ for i = 1, 2,
(1.9)

and show the existence of a non-negative pair of solution (u1, u2). We now state
the main results.

Theorem 1.1. Let f, a satisfy hypotheses (H1)–(H4). Then (1.4) posed on I, with
the corresponding boundary conditions as in anyone of (1.5), (1.6), (1.7) has a
nonnegative solution for λ small.

Theorem 1.2. Let fi, ai, i = 1, 2 satisfy the hypotheses (H1)–(H4). Then the
coupled system of equations (1.8) has a nonnegative solution for λ small.

Theorem 1.3. Let fi, ai, i = 1, 2 satisfy the hypotheses (N1)–(N3). Then the
coupled system of equations (1.9) has a nonnegative solution for λ small.

In Section 2, we state and prove some preliminary results which are required to
prove the main results. Theorem 1.1 is proved in Section 3 in RN while in Section
4 the proof is given in exterior as well as in annular domains. Theorems 1.2 and
1.3 are proved in Sections 5 and 6 respectively. Finally, in Section 7 we construct
some examples for the illustration of our main results.
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2. Preliminary Results

The Green’s function for the boundary value problem

(xN−1y′(x))′ = 0, x ∈ (0,∞), y′(0) = 0, y(x) → 0, as x→∞,

is the function G : [0,∞)× [0,∞) → [0,∞) given by

G(x, t) =
1

N − 2

{
t2−N , 0 < x ≤ t <∞,

x2−N , 0 < t ≤ x <∞.

Let Cb([0,∞)) denote the space of bounded continuous functions endowed with
the supremum norm. Given any open set A, let X(A) denote the space of bounded
measurable functions on A endowed with the ess-sup norm. Define the integral
operator L : X([0,∞)) → Cb([0,∞)) by

(Lξ)(x) = λ

∫ ∞

0

G(x, t)tN−1a(t)f(ξ(t)) dt.

Let A = {x ∈ [0,∞) : a(x) ≥ 0} and B = {x ∈ [0,∞) : a(x) < 0}. We denote by
C+

b (·) the cone of all nonnegative members in Cb(·). Define the following operators
representing the positive and negative part of L: L+ : X([0,∞)∩A) → C+

b ([0,∞)),
by

(L+(ϕ))(x) = λ

∫
A

G(x, t)tN−1a+(t)f(ϕ(t)) dt

and L− : X([0,∞) ∩B) → C+
b ([0,∞)) by

(L−(ϕ))(x) = λ

∫
A

G(x, t)tN−1a−(t)f(ϕ(t)) dt.

We note that the operator L can now be written as

Lϕ = L+ϕ− L−ϕ.

Using the monotonicity of f we can conclude that L+ and L− are both monotone
operators; i.e.,

ϕ ≤ ψ ⇒ L±ϕ ≤ L±ψ.

One of the difficulties is that, in general, L does not leave the cone C+
b ([0,∞)) in-

variant. Thus our main task ahead is to identify a closed convex set C ⊂ C+
b ([0,∞))

which is left invariant under L. This is the content of the next result (see also [8]).

Proposition 2.1. Assume (H1) holds and there exist ξ, η ∈ C+
b ([0,∞)) such that

0 ≤ ξ ≤ η, ξ = L+ξ − L−η and η = L+η − L−ξ. Then C = {g ∈ Cb([0,∞)) : ξ ≤
g ≤ η} is a closed convex set and is invariant under L.

Proof. It is easy to see that C is a closed convex set in Cb([0,∞)). Now we show
that C is invariant under L. This is because for any g ∈ C,

Lg = L+g − L−g ≤ L+η − L−ξ = η.

Hence Lg ≤ η and similarly using the monotonicity property of L+ and L− we have
Lg ≥ ξ. Therefore C is invariant under L. �

Remark 2.2. We remark that there seems to be a gap in the arguments given by
Cac et al. [8] in proving the invariance of L, though the invariance of L can be
obtained there as in the above proposition.
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Now we construct ξ and η as required in Proposition 2.1 by an iteration technique
introduced by Cac et al. [8]. We may think of the following proposition as the
indefinite version of the standard monotone iteration process that yields a solution
once a pair of sub and super solutions is given. Indeed the proof uses the fact that
L is a difference of two monotone operators.

Proposition 2.3. Let the hypotheses (H1)–(H3) hold. Suppose we have bounded
measurable functions ξ0 and η0 on [0,∞) such that they satisfy

(1) 0 ≤ ξ0 ≤ η0 on A, 0 ≤ η0 ≤ ξ0 on B;
(2) Lη0 ≤ η0 on A, Lη0 ≤ ξ0 on B;
(3) Lξ0 ≥ ξ0 on A, Lξ0 ≥ η0 on B.

Then there exist ξ, η ∈ C+
b ([0,∞)) satisfying the requirements of Proposition 2.1.

Proof. For any integer n ≥ 0 we define

ξn+1(x) =

{
Lξn(x) x ∈ A,
Lηn(x) x ∈ B

and ηn+1(x) =

{
Lηn(x) x ∈ A,
Lξn(x) x ∈ B.

By induction, it is easy to check that if the pair (ξn, ηn) satisfies (1)–(3), then so
does (ξn+1, ηn+1). Therefore,

Lξn(x) ≤ Lηn(x), Lηn(x) ≤ Lηn−1(x), Lξn(x) ≥ Lξn−1(x),

for all n ≥ 1 and all x ∈ [0,∞). Combining all the above inequalities, we obtain

0 ≤ Lξ0 ≤ Lξ1 · · · ≤ Lξn ≤ Lξn+1 ≤ · · · ≤ Lηn+1 ≤ Lηn ≤ · · · ≤ Lη0.

Thus we can find ξ, η such that Lξn(x) ↑ ξ(x) and Lηn(x) ↓ η(x) pointwise on [0,∞).
Since Lξ0, Lη0 are bounded and Lξ0 ≤ ξ ≤ η ≤ Lη0 , ξ and η are bounded. From the
hypothesis (H2), |ta(t)| is integrable on [0,∞) and clearly G(x, t)tN−2 is uniformly
bounded on [0,∞)×[0,∞). Hence by the Lebesgue dominated convergence theorem
we obtain

ξ(x) = lim
n
Lξn+1(x) = lim

n
(L+(Lξn)− L−(Lηn))(x) = (L+ξ − L−η)(x).

We note that given any bounded measurable function ψ on [0,∞), L±ψ is a bounded
continuous function on [0,∞). Therefore the last equation implies that ξ is bounded
and continuous on [0,∞). In a similar fashion we can show that η = L+η−L−ξ in
[0,∞) and hence η is also bounded and continuous on [0,∞). �

Proposition 2.4. Let f, a satisfy (H1)–(H3). Then under the assumptions of
Proposition 2.1, L has a fixed point in C.

Proof. We show that {Lg : g ∈ C} is an equicontinuous family. Since 0 ≤ g(x) ≤
‖η‖∞, for all x ∈ [0,∞) and f is continuous, there exists K > 0 such that
|f(g(x))| ≤ K, for all x ∈ [0,∞), g ∈ C. By the Lipschitzness of G(x, t)tN−1 in
the x variable for every t; i.e.,

|G(x, t)tN−1 −G(y, t)tN−1| ≤ C|x− y|, for x, y ∈ R and ∀t ∈ R,
for any given ε > 0 there exists δ > 0 such that for all |x− y| < δ we have

|Lg(x)− Lg(y)| ≤ λ

∫ ∞

0

|G(x, t)tN−1 −G(y, t)tN−1| |f(g(t))| |a(t)| dt

≤ λKε

∫ ∞

0

|a(t)| dt.



EJDE-2010/158 EXISTENCE OF NONNEGATIVE SOLUTIONS 7

Therefore, using (H3), we obtain from the last inequality that {Lg : g ∈ C} is an
equicontinuous family. In view of Proposition 2.1, we also obtain that {Lg : g ∈ C}
is uniformly bounded. By Arzela–Ascoli theorem, for any given ε > 0, and M > 0
there exists an N ∈ N such that

|Lgn(x)− Lgm(x)| ≤ ε

2
, ∀x ∈ [0,M ],∀n,m ≥ N. (2.1)

Now we claim that L : C → C is a compact operator; i.e., for any bounded sequence
{gn} ⊂ C, {Lgn} has a subsequence (which we again denote by {Lgn}), which
converges in C. Using the explicit form ofG(x, t) and keeping in mind the hypothesis
(H2) we rewrite

Lgn(x) = λ
[ ∫ x

0

G(x, t)tN−1a(t)f(gn(t)) dt+
∫ ∞

x

G(x, t)tN−1a(t)f(gn(t)) dt
]

=
λ

(N − 2)

[ ∫ x

0

( t
x

)(N−2−σ)
x−σt1+σa(t)f(gn(t)) dt+

∫ ∞

x

ta(t)f(gn(t)) dt
]
.

Therefore, from (H2) and the last inequality we have

|Lgn(x)| ≤ K
λ

(N − 2)
x−σ‖t(1+σ)a‖L1([0,∞)), ∀x ∈ (0,∞).

From the above estimate, given ε > 0 we can choose M > 0 large so that

|Lgn(x)| ≤ ε

4
,∀x > M.

In particular, this implies

|Lgn(x)− Lgm(x)| ≤ ε

2
,∀x > M,∀n,m ∈ N.

Using (2.1) with this choice of M along with the last estimate, it follows that {Lgn}
is a uniformly Cauchy sequence in C. It now follows that L : C → C is a compact
operator. Since L is clearly continuous, by Schauder’s fixed point theorem L has a
fixed point, i.e., Lϕ = ϕ for some ϕ ∈ C. �

3. Proof of Theorem 1.1 in RN

It is easy to see that a fixed point of L in C+
b ([0,∞)) is a solution of (1.4)–(1.5).

Therefore, in view of Propositions 2.1, 2.3 and 2.4 to obtain such a fixed point it
is sufficient to construct ξ0 and η0 satisfying conditions (1)–(3) of Proposition 2.3.
Let

ξ0(x) =

{
0 for x ∈ A,
α for x ∈ B

and η0(x) =

{
α for x ∈ A,
0 for x ∈ B.

Then condition (1) is satisfied if α ≥ 0. Now the condition (2) is

Lη0 = L+(α)− L−(0) ≤ α in [0,∞)

while (3) is
Lξ0 = L+(0)− L−(α) ≥ 0 in [0,∞).

Letting z±(x) =
∫∞
0
G(x, t)tN−1a±(t) dt these last two conditions become respec-

tively

λ[z+(x)f(α)− z−(x)f(0)] ≤ α, (3.1)

λ[z+(x)f(0)− z−(x)f(α)] ≥ 0. (3.2)
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Define w(x) = z+(x) − (1 + µ)z−(x). Then from (H4) we have that z+(x) ≥
(1 + µ)z−(x) in [0,∞). Also if

f(α) ≤ (1 + µ)f(0) (3.3)

holds, then (3.2) is satisfied. We can indeed choose such an α using the continuity
of f and claim that (3.1) can also be satisfied for the same α provided λ is small
enough. We make the following easy estimate:

|
∫ ∞

0

G(x, t)tN−1a(t) dt| ≤ 1
(N − 2)

∫ ∞

0

t|a(t)| dt = β (say).

Noting that

z+(x)− z−(x) =
∫ ∞

0

G(x, t)tN−1a(t) dt

we obtain
z+(x) ≤ z−(x) + β. (3.4)

Hence, using (3.3),

f(α)z+(x)− f(0)z−(x) ≤ [f(α)− f(0)]z−(x) + f(α)β

≤ [f(α)− f(0)]β + f(α)β

≤ f(0)β(1 + 2µ).

Therefore, (3.1) is satisfied if for example

λ ≤ α

f(0)β(1 + 2µ)
= λ0.

Remark 3.1. We note that with minor changes to the proof, in the above argument
for getting an inequality like (3.4), one can replace (H4) by

(H4)’ There exists µ > 0 such that∫ t

0

xN−1a+(x)dx ≥ (1 + µ)
∫ t

0

xN−1a−(x)dx, ∀ t ∈ [0,∞).

4. Proof of Theorem 1.1 in exterior as well as in annular domains

In this section, we consider problems (1.4), (1.6) and (1.4), (1.7) which cor-
respond to problem on exterior and annular domain respectively and show the
existence of nonnegative radial solutions for λ small. The Green’s function G :
[R1,∞)× [R1,∞) → [0,∞) for the boundary value problem

(xN−1y′(x))′ = 0,

y(R1) = 0, y(x) → 0, as x→∞, N ≥ 3

is

G(x, t) =
(tx)2−N

(N − 2)

{
xN−2 −RN−2

1 , R1 ≤ x ≤ t <∞,

tN−2 −RN−2
1 , R1 ≤ t ≤ x <∞.

Similarly, the Green’s function G : [R1, R2] × [R1, R2] → [0,∞) for the boundary
value problem

(xN−1y′(x))′ = 0, y(R1) = 0 = y(R2),
for N ≥ 3 is

G(x, t) =
1

(N − 2)(R2−N
1 −R2−N

2 )

{
(R2−N

2 − t2−N )(x2−N −R2−N
1 ), x ≤ t,

(R2−N
1 − t2−N )(x2−N −R2−N

2 ), t ≤ x,
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and for N = 2, it is

G(x, t) = (log
R2

R1
)−1

{
log R2

t log x
R1
, x ≤ t,

log R1
t log x

R2
, t ≤ x.

If R2 = ∞, by y(R2) = 0 we mean that y(x) → 0 as x→∞.
As before, we can define the integral operator L : X([R1, R2]) → C+

b ([R1, R2])
by

(Lξ)(x) = λ

∫ R2

R1

G(x, t)tN−1a(t)f(ξ(t)) dt,

where G is the Green’s function as given above. It is easy to check that all the
details in the proof of Theorem 1.1 in RN can be modified easily to give the proof
in the case of an exterior or an annular domain that we are considering. Hence we
omit the details.

5. Coupled radial system

In this section, we find a nonnegative solution for the coupled system (1.8) in
RN for N ≥ 3. We assume that fi, ai satisfy the hypotheses (H1)–(H4) for i = 1, 2.

Define the integral operator L : X([0,∞))×X([0,∞)) → Cb([0,∞))×Cb([0,∞))
by

L(ξ, η) = (L1η, L2ξ),
where

L1η(x) = λ

∫ ∞

0

G(x, t)tN−1a1(t)f1(η(t)) dt,

L2ξ(x) = λ

∫ ∞

0

G(x, t)tN−1a2(t)f2(ξ(t)) dt.

Let

A1 = {x ∈ [0,∞) : a1(x) ≥ 0}, B1 = {x ∈ [0,∞) : a1(x) < 0}
A2 = {x ∈ [0,∞) : a2(x) ≥ 0}, B2 = {x ∈ [0,∞) : a2(x) < 0}.

Define the following operators representing the positive and negative parts of Li

for i = 1, 2: L+
i : X([0,∞) ∩Ai) → C+

b ([0,∞)) by

(L+
i ϕ)(x) = λ

∫
Ai

G(x, t)tN−1(ai)+(t)fi(ϕ(t)) dt,

and L−i : X([0,∞) ∩Bi) → C+
b ([0,∞)) by

(L−i ϕ)(x) = λ

∫
Bi

G(x, t)tN−1(ai)−(t)fi(ϕ(t)) dt.

We note that the operator Li can now be written as

Liϕ = L+
i ϕ− L−i ϕ, i = 1, 2.

Using the monotonicity of fi we can conclude that both L+
i and L−i are monotone

operators; i.e.,
ϕ ≤ ψ =⇒ L±i ϕ ≤ L±i ψ.

We denote any g ∈ Cb([0,∞)) × Cb([0,∞)) by g = (g1, g2) where gi ∈ Cb([0,∞)).
For ξ = (ξ1, ξ2), η = (η1, η2) ∈ C+

b ([0,∞)) × C+
b ([0,∞)) by ξ ≤ η we mean the

relations ξ1 ≤ η1 and ξ2 ≤ η2 hold.
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Proposition 5.1. Let f1 and f2 be nondecreasing functions. Assume that there
exist ξ, η ∈ C+

b ([0,∞))× C+
b ([0,∞)) such that 0 ≤ ξ ≤ η and

ξ1 = L+
1 ξ

2 − L−1 η
2, η1 = L+

1 η
2 − L−1 ξ

2,

ξ2 = L+
2 ξ

1 − L−2 η
1, η2 = L+

2 η
1 − L−2 ξ

1.

Then C = {g ∈ C+
b ([0,∞))× C+

b ([0,∞)) : ξ ≤ g ≤ η} is a closed convex set and is
invariant under L.

Proof. It is easy to see that C is a closed convex set in C+
b ([0,∞)) × C+

b ([0,∞)).
Now we show that C is invariant under L. This is because for any g = (g1, g2) ∈ C,

Lg = (L1g
2, L2g

1) = (L+
1 g

2 − L−1 g
2, L+

2 g
1 − L−2 g

1)

≤ (L+
1 η

2 − L−1 ξ
2, L+

2 η
1 − L−2 ξ

1)

= (η1, η2) = η.

Hence Lg ≤ η and similarly using the monotonicity of L+
i and L−i we have Lg ≥ ξ.

Therefore, C is invariant under L. �

Proposition 5.2. Let fi, ai satisfy the hypotheses (H1)–(H3). Suppose there exist
bounded measurable functions ξ0 = (ξ10 , ξ

2
0) and η0 = (η1

0 , η
2
0) on [0,∞) × [0,∞)

satisfying
(1) 0 ≤ ξ10 ≤ η1

0 on A2, 0 ≤ η1
0 ≤ ξ10 on B2;

(2) L1η
2
0 ≤ η1

0 on A2, L1η
2
0 ≤ ξ10 on B2;

(3) L1ξ
2
0 ≥ ξ10 on A2, L1ξ

2
0 ≥ η1

0 on B2;
(4) 0 ≤ ξ20 ≤ η2

0 on A1, 0 ≤ η2
0 ≤ ξ20 on B1;

(5) L2η
1
0 ≤ η2

0 on A1, L2η
1
0 ≤ ξ20 on B1;

(6) L2ξ
1
0 ≥ ξ20 on A1, L2ξ

1
0 ≥ η2

0 on B1.
Then there exist ξ, η ∈ C+

b ([0,∞)) × C+
b ([0,∞)) satisfying the requirements of

Proposition 5.1.

Proof. For any integer n ≥ 0 we define

ξ1n+1(x) =

{
L1ξ

2
n for x ∈ A2,

L1η
2
n for x ∈ B2,

η1
n+1(x) =

{
L1η

2
n for x ∈ A2,

L1ξ
2
n for x ∈ B2,

ξ2n+1(x) =

{
L2ξ

1
n for x ∈ A1,

L2η
1
n for x ∈ B1,

η2
n+1(x) =

{
L2η

1
n for x ∈ A1,

L2ξ
1
n for x ∈ B1.

Then following the lines of Proposition 2.3, we obtain

0 ≤ L1ξ
2
0 ≤ L1ξ

2
1 ≤ · · · ≤ L1ξ

2
n ≤ L1ξ

2
n+1 ≤ · · · ≤ L1η

2
n+1 ≤ L1η

2
n ≤ . . . L1η

2
0 .

0 ≤ L2ξ
1
0 ≤ L2ξ

1
1 ≤ · · · ≤ L2ξ

1
n ≤ L2ξ

1
n+1 ≤ · · · ≤ L2η

1
n+1 ≤ L2η

1
n ≤ . . . L2η

1
0 .

We can find ξ1, ξ2, η1, η2 on [0,∞), such that L1ξ
2
n ↑ ξ1, L2ξ

1
n ↑ ξ2, L1η

2
n ↓ η1, and

L2η
1
n ↓ η2. Also we have that ξi and ηi are continuous and

ξ1 = L+
1 ξ

2 − L−1 η
2, η1 = L+

1 η
2 − L−1 ξ

2,

ξ2 = L+
2 ξ

1 − L−2 η
1, η2 = L+

2 η
1 − L−2 ξ

1.

�

Proposition 5.3. Let fi, ai satisfy the hypotheses (H1)–(H3). Then under the
assumption of Proposition 5.1, L has a fixed point in C.
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Proof. In view of Proposition 5.1, using similar arguments as in Proposition 2.4,
one can see easily that L : C → C is continuous operator. For applying Schauder’s
fixed point theorem, it suffices to show that L is compact. Let gn = (g1

n, g
2
n) be a

bounded sequence in C+
b ([0,∞)) × C+

b ([0,∞). By Proposition 2.4, there exists a
subsequence of gn, which we still denote by gn, such that Lgn(x) → (g1(x), g2(x)),
where g1, g2 ∈ C+

b ([0,∞)). Hence by Schauder’s fixed point theorem there exists
ϕ = (ϕ1, ϕ2) ∈ C such that Lϕ = ϕ. �

Proof of Theorem 1.2. It is easy to see that a fixed point of L in C+
b ([0,∞)) ×

C+
b ([0,∞)) is a solution of (1.8). In order to obtain such a fixed point it is enough

to construct ξ0 and η0 satisfying conditions (1)–(6) of Proposition 5.2. Motivated
by the scalar case, let

ξ10(x) =

{
0 for x ∈ A2,

α for x ∈ B2,
η1
0(x) =

{
α for x ∈ A2,

0 for x ∈ B2,

ξ20(x) =

{
0 for x ∈ A1,

α for x ∈ B1,
η2
0(x) =

{
α for x ∈ A1,

0 for x ∈ B1,

where α > 0, ξ0 = (ξ10 , ξ
2
0) and η0 = (η1

0 , η
2
0). Let

βi =
∫ ∞

0

t|ai(t)|
N − 2

dt

for i = 1, 2 and λ ≤ λ̄, where

λ̄ = min
{ α

β1f1(0)(1 + 2µ)
,

α

β2f2(0)(1 + 2µ)
}
.

By similar arguments as in the proof of Theorem 1.1, with the above choice of α
and λ̄, it can be easily checked that the hypotheses of Proposition 5.2 are satisfied.
So for the sake of brevity, we omit the detailed verification. �

6. Coupled nonradial system

In this section, we show the existence of a nonnegative solution to the coupled
system (1.9) in RN for N ≥ 3. Let BR denote the open ball of radius R centered
at 0. In this section we first recall the following result by Li and Ni [26]:

Lemma 6.1. Let h be a locally Hölder continuous function on RN with the following
decay at infinity, for some δ > 0 and C > 0:

|h(x)| ≤ C|x|−(2+δ) for all large x.

Let w be the Newtonian potential of h. Then w(x) is well defined and has the decay
property

|w(x)| ≤ C|x|−δ for all large x.

Lemma 6.2. Let h,w be as in Lemma 6.1, then −∆w = h in RN .

Proof. Let |x| < R. Then we can write w(x) = cN
∫

RN

h(y)
|x−y|N−2 dy = w1(x)+w2(x)

where

w1(x) = cN

∫
BR(0)

h(y)
|x− y|N−2

dy, w2(x) = cN

∫
RN\BR(0)

h(y)
|x− y|N−2

dy.
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We have −∆w1(x) = h(x) by a standard argument since h is Hölder continuous in
BR (see [18]). Further, w2 is well defined due to the decay hypothesis on h and
hence ∆w2 = 0. �

Let us define the integral operator L : X(RN)×X(RN) → Cb(RN)× Cb(RN) by

L(ξ, η)(x) = (L1η(x), L2ξ(x)),

where

L1η(x) = λ

∫
RN

Γ(x− y)a1(y)f1(η(y)) dy,

L2ξ(x) = λ

∫
RN

Γ(x− y)a2(y)f2(ξ(y))dy.

By the hypotheses (N1)–(N2) and Lemma 6.1 the operator L is well defined. Let

A1 = {x ∈ RN : a1(x) ≥ 0}, B1 = {x ∈ RN : a1(x) < 0},
A2 = {x ∈ RN : a2(x) ≥ 0}, B2 = {x ∈ RN : a2(x) < 0}.

Define the following operators representing the positive and negative parts of Li

for i = 1, 2: L+
i : X(RN ∩Ai) → C+

b (RN) by

(L+
i ϕ)(x) = λ

∫
Ai

Γ(x− y)(ai)+(y)fi(ϕ(y)) dy,

and L−i : X(RN ∩Bi) → C+
b (RN) by

(L−i ϕ)(x) = λ

∫
Bi

Γ(x− y)(ai)−(y)fi(ϕ(y)) dy.

We note that the operator Li can now be written as

Liϕ = L+
i ϕ− L−i ϕ, i = 1, 2.

Using the monotonicity of fi, we can conclude that for i = 1, 2, both L+
i and L−i

are monotone operators. The following proposition can be proved as above.

Proposition 6.3. Let fi, ai satisfy the hypotheses (N1)–(N2) and ξ0, η0 ∈ X(RN )×
X(RN ) satisfy assumptions (1)–(6) of Proposition 5.2. Then there exist ξ, η ∈
C+

b (RN )× C+
b (RN ) with ξ ≤ η such that

ξ1 = L+
1 ξ

2 − L−1 η
2, η1 = L+

1 η
2 − L−1 ξ

2,

ξ2 = L+
2 ξ

1 − L−2 η
1, η2 = L+

2 η
1 − L−2 ξ

1.

Proposition 6.4. Let

C = {g ∈ Cb(RN)× Cb(RN) : ξ ≤ g ≤ η}.

Further assume that fi, ai satisfy the hypotheses (N1)–(N2) and there exist ξ, η as
in Proposition 6.3. Then L has a fixed point in C.

Proof. With the above hypotheses, it can be shown as in Proposition 5.1, that C is
a closed, convex set invariant under L. Since Γ is locally integrable and ai’s have
the decay given in (N2), Γ ∗ a1 and Γ ∗ a2 are also integrable in RN . By standard
arguments, it can be shown that {Lgn} is an equicontinuous family in C(BR) and
also L : C → C is a continuous operator. To apply the Schauder’s fixed point
theorem, it suffices to show that L : C → C is a compact operator.
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Let {gn} be a sequence of functions in C. It is easy to see that Lgn(x) is uniformly
bounded in RN . Thus by Arzela–Ascoli theorem, Lgn(x) has a uniformly convergent
subsequence in BR (which we still denote by {Lgn}) for any fixed R > 0. We note
that, by Lemma 6.1,

|L1g
2
n(x)| = λ

∣∣ ∫
RN

Γ(x− y)a1(y)f1(g2
n(y)) dy

∣∣
≤Mλ

∫
RN

Γ(x− y)|a1(y)| dy

≤ C|x|−δ for all large x.

Therefore, for a given ε > 0, we fix R > 0 large enough such that

|L1g
2
n(x)| ≤ ε

4
∀|x| > R.

Similarly, we get |L2g
1
n(x)| ≤ ε

4 for all |x| > R. Thus for the sequence {gn} ⊂ C for
which {Lgn} converges in C(BR), we have that L1g

2
n(x) and L2g

1
n(x) are uniformly

Cauchy in C(RN ). Thus Lgn(x) converges to some g = (g1, g2) in RN which shows
that L : C → C is compact. Now by Schauder’s fixed point theorem there exists
ϕ = (ϕ1, ϕ2) ∈ C such that Lϕ = ϕ. �

Proof of Theorem 1.3. Define ξ0 and η0 as in the proof of Theorem 1.2. Then in
a similar way, for λ small we can obtain ξ and η as required in the Proposition
6.4. Thus we have a ϕ ∈ C such that Lϕ = (L1ϕ2, L2ϕ1) = (ϕ1, ϕ2). Since
a1(x)f1(ϕ2(x)) is bounded and integrable in RN , we have ϕ1 ∈ C1(RN ) (see,
[18]). Similarly ϕ2 is also in C1(RN ) and by an application of Lemmas 6.1 and
6.2 (ϕ1, ϕ2) solves the non-radial coupled system. Indeed by classical Schauder’s
theory (ϕ1, ϕ2) ∈ C2,α(RN )× C2,α(RN ) for some 0 < α < 1. �

Remark 6.5. In fact, we can consider the following n×n coupled system and show
the existence of a nonnegative solution using the methods in this section

∆u1 + λa1(x)f1(uσ(1)(x)) = 0,

∆u2 + λa2(x)f2(uσ(2)(x)) = 0,
. . .

∆un + λan(x)fn(uσ(n)(x)) = 0.

Here σ is a bijection from {1, 2, . . . , n} to itself, a′is may change sign and fi, ai

satisfy the hypotheses (N1)–(N3) for i = 1, . . . , n. For the sake of brevity, we omit
the details.

Remark 6.6. f(0) > 0 is used in showing the existence of the solution of −∆u =
λa(x)f(u), for λ small enough. If we assume f(u) = up, and a(x) satisfies (N2), the
above equation does not have any bounded positive solution decaying at infinity
for any λ. The proof follows by Pohozaev’s identity (see [26]).

7. Examples

In this section, we construct some examples for the illustration of our results.

Example 7.1. Let N ≥ 3, T ≥ 1 and A,B > 0. Define

a(t) =

{
Aθ1(t), t ∈ [0, T ],
−Bθ2(t), t ∈ (T,∞),
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where θ1(t) ≥ α1 > 0, θ2(t) > 0 such that
∫ T

0
θ1(t) dt < ∞ and

∫∞
T
tN−1θ2(t) dt ≤

α2 <∞. It is easy to see that a(t) satisfies (H2), (H3).

Now our aim is to find A and B such that the hypothesis (H4) is satisfied; i.e.,
there exists µ > 0 such that for all x ∈ (0,∞),∫ ∞

0

G(x, t)tN−1a+(t) dt ≥ (1 + µ)
∫ ∞

0

G(x, t)tN−1a−(t) dt.

The above inequality holds if and only if∫ T

0

G(x, t)tN−1a+(t) dt ≥ (1 + µ)
∫ ∞

T

G(x, t)tN−1a−(t) dt. (7.1)

First consider the case x ∈ (0, T ]. In this case, G(x, t) = 1
N−2 t

2−N for T < t <∞.
Therefore, (7.1) becomes

A

∫ x

0

x2−N tN−1θ1(t) dt+A

∫ T

x

tθ1(t) dt ≥ (1 + µ)B
∫ ∞

T

tθ2(t) dt.

In the above expression, the left-hand side is greater than or equal to Aα1[x2

N + T 2

2 −
x2

2 ] ≥ Aα1T 2

N while the right-hand side is less than or equal to (1 +µ)Bα2 (because∫∞
T
tθ2(t) dt ≤ α2). So, with the choice: A ≥ (1+µ)Bα2N

T 2α1
, a(t) satisfies (7.1) for all

x ∈ (0, T ]. Now let x ∈ (T,∞). Then G(x, t) = 1
N−2x

2−N for 0 < t < T . Thus
(7.1) becomes

A

∫ T

0

x2−N tN−1θ1(t) dt

≥ B(1 + µ)
[ ∫ x

T

x2−N tN−1Bθ2(t) dt+
∫ ∞

x

tθ2(t) dt
]
.

(7.2)

Similar to the previous case, we obtain the left-hand side is greater than or equal to
Aα1T N

N x2−N while the rihgt-hand side is less than or equal to (1 + µ)Bα2x
2−N (in

view of
∫∞

T
tN−1θ2(t) dt ≤ α2). Hence, with the choice: A ≥ (1+µ)Bα2N

T N α1
, a(t) satis-

fies (7.1) for all x ∈ (T,∞). Thus, since T ≥ 1, with the choice: A ≥ (1+µ)Bα2N
T 2α1

, a(t)
satisfies (H4).

Note that there are many examples of θ1 and θ2, one can choose in the above
example. For instance, we can take θ1(t) = 1, (1+t2), e−t and θ2(t) = e−t

tN−1 ,
1

tα+N−1 ,
with α > 1.

Remark 7.2. For T < 1, one can construct examples of θ1(t) and θ2(t) with
some different integrability conditions on θ1, θ2. We omit the details for the sake of
brevity.

Example 7.3. Let n ∈ Z+, and define

a(t) =

{
e−t

1+tN−1 , t ∈ [2n, 2n+ 1),
−e−t

2N(1+µ)tN−1 , t ∈ [2n+ 1, 2n+ 2).

By elementary calculation we observe that a(t) satisfies (H2), (H3) and (H4’).

Example 7.4. Two specific examples of the nonlinearity f are:

(i) f(y) = (1 + y2)3 and α =
√

(1 + µ)
1
3 − 1;

(ii) f(y) = ey − 1
2(y+1) and α > 0 sufficiently small.
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In both cases, it is easy to see that f(α) ≤ (1 + µ)f(0).

Remark 7.5. Let

a(t) =

{
A, t ∈ [0, T ], T ≥ 1,
− e−t

tN−1 , t ∈ (T,∞),

and f(y) = (1 + y2)3. We note that for these choices, one can find out the value of
λ0 in Theorem 1.1. We first note that

1
(N − 2)

∫ ∞

0

t|a(t)| dt ≤ 1
(N − 2)

(A
T 2

2
+ e−T ) ≡ β.

Let A = (1+µ)Ne−T B
T 2 in view of Example 7.1. Then we obtain

λ0 =
2(N − 2)

√
(1 + µ)

1
3 − 1

[(1 + µ)BN + 2]e−T (1 + 2µ)
.
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[15] J. L. Gámez; Existence and bifurcation of positive solutions of a semilinear elliptic problem

in RN , Nonlinear Diff. Eqn. Appl., 4 (1997), pp. 341–357.
[16] X. Garaizar; Existence of positive radial solutions for semilinear elliptic equations in the

annulus, J. Diff. Equations, 70 (1987), pp. 69–92.



16 D. RAJENDRAN, J. TYAGI EJDE-2010/158
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