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EXISTENCE OF SOLUTIONS TO INDEFINITE QUASILINEAR
ELLIPTIC PROBLEMS OF P-Q-LAPLACIAN TYPE

NIKOLAOS E. SIDIROPOULOS

Abstract. We study the indefinite quasilinear elliptic problem

−∆u−∆pu = a(x)|u|q−2u− b(x)|u|s−2u in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN , N ≥ 2, with a sufficiently smooth
boundary, q, s are subcritical exponents, a(·) changes sign and b(x) ≥ 0 a.e. in
Ω. Our proofs are variational in character and are based either on the fibering
method or the mountain pass theorem.

1. Introduction

Let Ω be a bounded domain in RN , N ≥ 2, with a sufficiently smooth boundary
∂Ω. We consider the stationary nonlinear equation

−∆qu−∆pu = f(x, u) in Ω (1.1)

with Dirichlet boundary condition

u = 0 on ∂Ω, (1.2)

where p, q ∈ (1, N), ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator and f :
Ω× R → R is a Caratheodory function.

Solutions to (1.1) are the steady state solutions of the reaction diffusion system

ut = div(A(u)∇u) + f(x, u), (1.3)

where A(u) = (|∇u|q−2 + |∇u|p−2). This system has a wide range of applications
in physics and related sciences like chemical reaction design [2], biophysics [12] and
plasma physics [19]. The function u describes the concentration of a substance,
div(A(u)∇u) corresponds to the diffusion with diffusion coefficient A(u) and f(·, ·)
represents the reaction.

Equation (1.1) also arises in the study of soliton-like solutions of the nonlinear
Schrödinger equation

iψt = −∆ψ −∆pψ + f(x, ψ)
which was considered by Derrick [9] as a model for elementary particles.
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When p = q = 2, (1.1) is a normal Schrodinger equation which has been ex-
tensively studied, we refer to [3, 6, 7]. Recently, the problem when m = 2 6= q
and

f(x, u) = V ′(u)
was studied in [4] where it is proved that (1.1)-(1.2) admits a weak solution with a
prescribed value of topological charge. The eigenvalue problem

−∆u+ V (x)u+ εr(−∆pu+W ′(u)) = µu

was considered in [5] and the behavior of the eigenvalues as ε → 0 was examined.
In [8] the case where m 6= p and

f(x, u) = λa(x)|u|γ−2u− b(x)|u|m−2u− c(x)|u|p−2u

is studied and a bifurcation result is also presented. A solution is also provided in
[13] under the assumption that

f(x, u) = g(x, u)− b(x)|u|m−2u− c(x)|u|p−2u (1.4)

where the function g(·, ·) does not satisfy the Ambrosetti-Rabinowitz condition.
The C1,δ-regularity of the solutions of problem (1.1) was shown in [14]. Constraint
minimization is employed in [20] with constraint functional∫

RN

[b(x)|u|q − c(x)|u|pu]dx = λ

when f(·, ·) satisfies (1.4), in order to show that (1.1) admits a solution for λ ∈
(0, λ0), λ0 > 0. Sufficient conditions for the existence of two solutions to problem
((1.1) are provided in [17].

In this article we study the problem

−∆u−∆pu = a(x)|u|q−2u− b(x)|u|s−2u in Ω, (1.5)

u = 0 on ∂Ω, (1.6)

where the exponents q, s are subcritical and a(·), b(·) are essentially bounded func-
tions, a(·) changes sign while b(·) ≥ 0 a.e. in Ω. Our proofs are variational in
character and rely either on the fibering method of Pohozaev [18] or on the moun-
tain pass theorem of Ambrosetti-Rabinowitz [1].

By symmetry, we will only consider the cases where p < 2.

2. Preliminaries and main results

We make the following hypotheses concerning the data of problem (1.5)-(1.6):
(H0) 1 < s, q < 2∗.
(H1) a(·) ∈ L∞(Ω) and a+ := max{a, 0} 6= 0.
(H2) b(·) ∈ L∞(Ω) and b(x) ≥ 0 a.e. in Ω.
We will seek weak solutions in the space

E := H1
0 (Ω),

supplied with the norm ‖υ‖E = ‖∇υ‖2. The energy functional Φ : E → R associ-
ated with (1.5)-(1.6) is

Φ(υ) :=
1
p
‖∇υ‖p

p +
1
2
‖∇υ‖2

2 −
1
q
A(υ) +

1
s
B(υ), (2.1)
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where

A(υ) :=
∫

Ω

a(x)|υ|qdx and B(υ) :=
∫

Ω

b(x)|υ|sdx.

to find nonnegative critical points for Φ(·) we use the fibering method. So we
decompose the function u ∈ E as u = rυ, where r ∈ R, v ∈ E, and define the
extended functional F (·, ·) associated with Φ(·) as

F (r, υ) := Φ(rυ) =
|r|p

p
‖∇υ‖p

p +
|r|2

2
‖∇υ‖2

2 −
|r|q

q
A(υ) +

|r|s

s
B(υ). (2.2)

If u = rυ is a critical point of Φ(·), then we must have

Fr(r, υ) = 0. (2.3)

Clearly, (2.3) is equivalent to

r2‖∇υ‖2
2 + rp‖∇υ‖p

p = rqA(υ)− rsB(υ). (2.4)

Let r := r(υ) be a positive solution of (2.4). We define the reduced functional
Φ̂(υ) := Φ(r(υ)υ), υ ∈ E, which, in view of (2.4), has the following equivalent
expressions

Φ̂(υ) := r2(
1
2
− 1
p
)‖∇υ‖2

2 + rq(
1
p
− 1
q
)A(υ) + rs(

1
s
− 1
p
)B(υ) (2.5)

= rq(
1
p
− 1
q
)‖∇υ‖p

p + r2(
1
2
− 1
q
)‖∇υ‖2

2 + rs(
1
s
− 1
q
)B(υ) (2.6)

= rp(
1
p
− 1
s
)‖∇υ‖p

p + r2(
1
2
− 1
s
)‖∇υ‖2

2 + rq(
1
s
− 1
q
)A(υ) (2.7)

= rp(
1
p
− 1

2
)‖∇υ‖p

p + rq(
1
2
− 1
q
)A(υ) + rs(

1
s
− 1

2
)B(υ). (2.8)

The fibering method is based on the following fact.

Lemma 2.1. Let H : E → R be a functional which is continuously Fréchet-
differentiable in E\{0} and satisfies the conditions:

〈H ′(υ), υ〉 6= 0 if H(υ) = 1,

and H(0) = 0. If υ 6= 0 is a conditional critical point of Φ̂(·) under the constraint
H(υ) = 1, then u := r(υ)υ is a nonzero critical point of Φ(·).

For more details we refer to [11]. The constraint functional we are going to use
is

H(υ) := ‖∇υ‖p
p + ‖∇υ‖2

2

which clearly satisfies the two conditions in Lemma 2.1. Let

S1 := {υ ∈ E : H(υ) = 1}. (2.9)

Note that, because of assumption (H1), the set

G1 := {υ ∈ E : A(υ) > 0}

is nonempty.
We distinguish the following cases:
Case 1: q < min{p, s, 2}. We will work as in [15, 16]. From (2.4) we see that

rp−q‖∇υ‖p
p + r2−q‖∇υ‖2

2 + rs−qB(υ) = A(υ), (2.10)
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which admits a unique solution r(υ) > 0 for every υ ∈ G1. It is easy to check that
r(υ)υ = r(kυ)kυ for every k > 0. The implicit function theorem, see [21] , shows
that r(·) ∈ C1(G1). If υ ∈ S1 then the Hölder inequality implies that ‖∇υ‖2

2 ≥ θ for
some θ > 0 and so, by (2.10), r(·) is bounded on G1 ∩ S1 because A(·) is bounded
on S1 by the Rellich theorem. Consequently, Φ̂(·) is bounded on G1 ∩ S1. Let

M = inf
u∈G1∩S1

Φ̂(u).

By (2.6), M < 0. Suppose that {υn} is a minimizing sequence for Φ̂(·) in G1 ∩ S1.
Then, at least for a subsequence, we have that υn → υ̃ weakly in E, and so we
may assume that A(υn) → A(υ̃) and B(υn) → B(υ̃). Exploiting the weak lower
semicontinuity of the norms we get that

0 ≤ ‖∇υ̃‖2
2 ≤ lim inf ‖∇υn‖2

2, 0 ≤ ‖∇υ̃‖p
p ≤ lim inf ‖∇υn‖p

p.

Since {r(υn)}n∈N is bounded we may also assume that r(υn) → r̃. Therefore,

Φ(r̃υ̃) ≤ lim inf Φ(rnυn) = M < 0,

implying that r̃ > 0 and υ̃ 6= 0. On the other hand, by (2.10)

r(υn)p−q‖∇υn‖p
p + r(υn)2−q‖∇υn‖2

2 + r(υn)s−qB(υn) = A(υn). (2.11)

By taking the limit as n→ +∞, we obtain

0 < r̃p−q‖∇υ̃‖p
p + r̃2−q‖∇υ̃‖2

2 + r̃s−qB(υ̃) ≤ A(υ̃), (2.12)

which implies that υ̃ ∈ G1. In view of (1.5),

r(υ̃)p−q‖∇υ̃‖p
p + r(υ̃)2−q‖∇υ̃‖2

2 + r(υ̃)s−qB(υ̃) = A(υ̃), (2.13)

and so (2.12) shows that r̃ ≤ r(υ̃ ). If we assume that r̃ < r(υ̃), then, since the
function t→ Φ(tυ̃), t ∈ (0, r(υ̃)), is strictly decreasing, we have

Φ̂(υ̃) = Φ(r(υ̃)υ̃) < Φ(r̃υ̃) ≤M. (2.14)

Then

Φ̂(
υ̃

‖υ̃‖E
) = Φ̂(υ̃) = M,

a contradiction. Therefore, r̃ = r(υ̃). Then, by (2.11) and (2.13),

lim
n→∞

{‖∇υn‖p
p + r(υn)2−p‖∇υn‖2

2} = ‖∇υ̃‖p
p + r(υ̃)2−p‖∇υ̃‖2

2, (2.15)

which implies that ‖∇υn‖p
p → ‖∇υ̃‖p

p and ‖∇υn‖2
2 → ‖∇υ̃‖2

2. Consequently, υ̃ ∈
S1 and Φ̂(υ̃) = M . Since |υ̃| is also a minimizer of Φ̂(·), we may assume that υ̃ ≥ 0.
Lemma 2.1 implies that u := r(υ̃)υ̃ is a solution to (1.5)-(1.6). By [14, Theorem 1],
u ∈ C1,δ(Ω) for some δ ∈ (0, 1). Therefore we have the following result.

Theorem 2.2. Assume that (H0)-(H2) are satisfied and q < min{p, s, 2}. Then
(1.5)-(1.6) admits a non-negative solution u ∈ C1,δ(Ω) for some δ ∈ (0, 1).

Case 2: p < q < 2 < s. Let

Q(r, υ) := rq−pA(υ)− rs−pB(υ)− r2−p‖∇υ‖2
2. (2.16)

Then (2.4) is equivalent to
Q(r, υ) = ‖∇υ‖p

p. (2.17)
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We see that for υ ∈ G1 the function Q(·, υ) has a unique critical point r∗ := r∗(υ)
satisfying

(q − p)A(υ) = (s− p)r∗(υ)s−qB(υ) + (2− p)r∗(υ)2−q‖∇υ‖2
2. (2.18)

In view of (2.16), we get the following equivalent expressions for (2.18), that will
be needed in the sequel,

Q(r∗(υ), υ) =
2− q

2− p
r∗(υ)q−pA(υ) +

s− 2
2− p

r∗(υ)s−pB(υ), (2.19)

Q(r∗(υ), υ) =
s− q

s− p
r∗(υ)s−pA(υ) +

2− s

s− p
r∗(υ)2−p‖∇υ‖2

2, (2.20)

Q(r∗(υ), υ) =
s− q

q − p
r∗(υ)s−pB(υ) +

2− q

q − p
r∗(υ)s−p‖∇υ‖2

2. (2.21)

Let
G2 := {υ ∈ G1 : ‖∇υ‖p

p < Q(r∗(υ), υ)}. (2.22)

Equation (2.17) has two positive solutions r1(υ), r2(υ) with r1(υ) < r∗(υ) < r2(υ)
for every υ ∈ G2. Let r := r2(υ). Then

rp−q+1Qr(r, υ) = (q − p)A(υ)− (s− p)rs−qB(υ)− (2− p)r2−q‖∇υ‖2
2,

which, combined with (2.18), gives

rp−q+1Qr(r, υ) = (2− p)‖∇υ‖2
2(r

2−q
∗ − r2−q) + (s− p)B(υ)(rs−q

∗ − rs−q) < 0.

By the implicit function theorem r(·) is continuously differentiable. Let

G3 :=
{
υ ∈ G1 : ‖∇υ‖p

p <
p

q

2− q

2− p
r∗(υ)q−pA(υ)

}
(2.23)

and assume that G3 6= ∅. Since q > p and r(υ) > r∗(υ), we see that G3 ⊆ G2 and
so G2 6= ∅. If υ ∈ G3, then

‖∇υ‖p
p <

p

q

2− q

2− p
r∗(υ)q−pA(υ), (2.24)

and so

‖∇υ‖p
p <

p

q

2− q

2− p
r(υ)q−pA(υ).

Thus
2− p

p
r(υ)p‖∇υ‖p

p +
q − 2
q

r(υ)qA(υ) < 0. (2.25)

By (2.25) and (2.8) we conclude that

Φ̂(υ) < rp(
1
p
− 1

2
)‖∇υ‖p

p + rq(
1
2
− 1
q
)A(υ) < 0.

On the other hand, if υ ∈ G2 ∩ S1, by (2.10)

r(υ) ≤
( A(υ)
‖∇υ‖2

2

)1/(2−q)

, (2.26)

and so r(·) is bounded on G2∩S1. Consequently, Φ̂(υ) is also bounded on G2∩S1.
Let

M := inf
υ∈G2∩S1

Φ̂(υ) < 0.
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Suppose that {υn}n∈N is a minimizing sequence in G2 ∩ S1. Then there exists υ̃ ∈
E such that, at least for a subsequence, A(υn) → A(υ̃), B(υn) → B(υ̃),

0 ≤ ‖∇υ̃‖2 ≤ lim inf ‖∇υn‖2 ≤ 1,

0 ≤ ‖∇υ̃‖p ≤ lim inf ‖∇υn‖p ≤ 1.

We must have υ̃ 6= 0 because, otherwise, 0 = Φ(0) ≤ lim infn→∞Φ(r(υn)υn) = M ,
a contradiction. Since {r(υn)}n∈N is bounded and r∗(υn) < r(υn), n ∈ N, we may
assume that r∗(υn) → r̃∗ and r(υn) → r̃ > 0. If A(υ̃) = 0, then, by (2.26), we
obtain that r̃ = 0 which is a contradiction. Thus, A(υ̃) > 0 and so υ̃ ∈ G1. Also,
r̃∗ > 0 by (2.18). We claim that υ̃ ∈ G3. Indeed, by (2.17),

‖∇υ̃‖p
p ≤ lim sup

n→∞
‖∇υn‖p

p ≤ lim sup
n→∞

Q(r∗(υn), υn)

≤ lim sup
n→∞

{r∗(υn)q−pA(υn)− r∗(υn)s−pB(υn)} − lim inf
n→∞

r∗(υn)2−p‖∇υn‖2
2

≤ r̃q−p
∗ A(υ̃)− r̃s−p

∗ B(υ̃)− r̃2−p
∗ ‖∇υ̃‖2

2 = Q(r̃∗, υ̃),
(2.27)

implying that
‖∇υ̃‖p

p ≤ Q(r∗(υ̃), υ̃). (2.28)

If we assume the equality
‖∇υ̃‖p

p = Q(r∗(υ̃), υ̃), (2.29)

then by using (2.4) for υ = υn and passing to the limit as n→ +∞, we obtain

‖∇υ̃‖p
p

≤ lim sup
n→∞

‖∇υ̃n‖p
p ≤ lim sup

n→∞
Q(r(υn), υn)

≤ lim sup
n→∞

{r(υn)q−pA(υn)− r(υn)s−pB(υn)} − lim inf
n→∞

r(υn)2−p‖∇υn‖2
2

≤ r̃q−pA(υ̃)− r̃s−pB(υ̃)− r̃2−p‖∇υ̃‖2
2 = Q(r̃, υ̃).

(2.30)

In view of (2.27), (2.29) and (2.30), we conclude that r̃ = r̃∗ = r̃∗(υ̃). On the other
hand, by replacing υ by υn in (2.18) and passing to the limit we obtain

(q − p)A(υ̃) ≥ (s− p)r∗(υ̃)s−qB(υ̃) + (2− p)r∗(υ̃)2−q‖∇υ̃‖2
2.

Since r∗(υ̃) satisfies

(q − p)A(υ̃) = (s− p)r∗(υ̃)s−qB(υ̃) + (2− p)r∗(υ̃)2−q‖∇υ̃‖2
2,

we deduce that ‖∇υn‖2
2 → ‖∇υ̃‖2

2 and

(q − p)A(υ̃) = (s− p) r∗(υ̃)s−qB(υ̃) + (2− p) r∗(υ̃)2−q‖∇υ̃‖2
2. (2.31)

Thus,

A(υ̃) =
s− p

q − p
r̃s−qB(υ̃) +

2− p

q − p
r̃2−q‖∇υ̃‖2

2. (2.32)

On the other hand, (2.5) and (2.32) imply that

M = lim
n→∞

Φ̂(υn) =
(s− q)(s− p)

pqs
r̃sB(υ̃) +

(2− p)(2− q)
2pq

r̃2‖∇υ̃‖2
2 > 0,

a contradiction. Therefore, υ̃ ∈ G3 proving the claim. We shall show next that
r̃ = r(υ̃). Let t > 0 be such that tυ̃ ∈ S1. Since for t > 0

r∗(tυ̃)tυ̃ = r∗(υ̃)υ̃, (2.33)
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by (2.17), (2.23) and (2.33), we have

‖∇υ̃‖p
p < Q(r∗(υ̃), υ̃) = Q(tr∗(tυ̃), υ̃) = t−pQ(r∗(tυ̃), tυ̃).

Thus
‖t∇υ̃‖p

p ≤ Q(r∗(tυ̃), tυ̃),

which implies tυ̃ ∈ G2 ∩ S1. Furthermore, by (2.17), r(tυ̃) satisfies

Q(tr(tυ̃), υ̃) = ‖∇υ̃‖p
p = Q(r(υ̃), υ̃), (2.34)

which gives
tr(tυ̃) = r(υ̃). (2.35)

In view of (2.30),
Q(r(υ̃), υ̃) = ‖∇υ̃‖p

p ≤ Q(r̃, υ̃),
implying that r̃ ≤ r(υ̃). If we assume that r̃ < r(υ̃), then, since the function
z → Φ(zυ̃) is strictly decreasing in (r̃, r(υ̃)), by (2.35) we obtain

M = lim inf
n→∞

Φ(r(υn)υn) ≥ Φ(r̃υ̃) > Φ(r(υ̃)υ̃) = Φ(r(tυ̃)tυ̃) = Φ̂(tυ̃),

which is a contradiction. Thus r̃ = r(υ̃). Then (2.15) holds, and so υ̃ ∈ S1 and
Φ̂(υ̃) = M . As in the previous case we may assume that υ̃ ≥ 0. Lemma 2.1 implies
that u := r(υ̃)υ̃ is a solution to (1.5)-(1.6).

Therefore, we have proved the following result.

Theorem 2.3. Assume that conditions (H0)-(H2) are satisfied, p < q < 2 < s and
the set G3 defined in (2.23) is not empty. Then the problem (1.5)-(1.6) admits a
non-negative solution u ∈ C1,δ(Ω) for some δ ∈ (0, 1).

Remark 2.4. We will now give some conditions which guarantee that G3 6= ∅.
Suppose that supp a+) ⊆ supp b). Then there exists υ ∈ S1 such that B(υ) > 0.
Since r∗(υ)2−q < r(υ)2−q, (2.18) yields

(q − p)A(υ) < (s− p)r∗(υ)s−qB(υ) + (2− p)r(υ)2−q‖∇υ‖2
2, (2.36)

and so

r∗(υ)s−q >
q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
r(υ)2−q ‖∇υ‖2

2

B(υ)
.

Consequently,
p

q

2− q

2− p
r∗(υ)q−pA(υ)

>
p

q

2− q

2− p

(q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
r(υ)2−q ‖∇υ‖2

2

B(υ)

)(q−p)/(s−q)

A(υ).
(2.37)

On the other hand, (2.10) implies that

r(υ) ≤
(A(υ)
B(υ)

)1/(s−q)

, (2.38)

which combined with (2.37) gives

p

q

2− q

2− p

(q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
r(υ)2−q ‖∇υ‖2

2

B(υ)

)(q−p)/(s−q)

A(υ)

>
p

q

2− q

2− p

(q − p

s− p

A(υ)
B(υ)

− 2− p

s− p

(A(υ)
B(υ)

)(2−q)/(s−q) ‖∇υ‖2
2

B(υ)

) q−p
s−q

A(υ).
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If a+(·) is large enough then

p

q

2− q

2− p

(q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
A(υ)(2−q)/(s−q) ‖∇υ‖2

2

B(υ)
2−q
s−q +1

)(q−p)/(s−q)

A(υ) > ‖∇υ‖p
p,

(2.39)
implying that υ ∈ G3.

Suppose now that
(
supp a+)\ supp b)

)o 6= ∅. Then there exists υ ∈ S1 with
B(υ) = 0. From (2.18) we see that

r∗(υ) =
(q − p

2− p

A(υ)
‖∇υ‖2

2

)1/(2−q)

, (2.40)

and so
p

q

2− q

2− p
r∗(υ)q−pA(υ) =

p

q

2− q

2− p

(q − p

2− p

A(υ)
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ).

Consequently, if a+(·) is large enough,

p

q

2− q

2− p

(q − p

2− p

) q−p
2−q

A(υ)
2−p
2−q > ‖∇υ‖2(2−p)/(2−q)

2 , (2.41)

implying that G3 6= ∅.
Case 3: p < s < q < 2. In this case we define

Q(r, υ) := rq−pA(υ)− rs−pB(υ)− r2−p‖∇υ‖2
2.

Let υ ∈ G1 and assume that B(υ) > 0. For r ≥ 0 let

F (r, υ) := rp−sQ(r, υ) = rq−sA(υ)−B(υ)− ‖∇υ‖2
2r

2−s. (2.42)

Then, F (0, υ) = −B(υ) < 0 and limr→+∞ F (r, υ) = −∞. It is easy to see that
F (·, υ) attains its maximum at

r̄(υ) =
(q − s

2− s

A(υ)
‖∇υ‖2

2

)1/(2−q)

(2.43)

with

F (r̄(υ), υ) =
2− q

2− s
r̄q−sA(υ)−B(υ). (2.44)

Consequently, Q(r, υ) > 0 for some r > 0 if and only if F (r̄(υ), υ) > 0, and this
holds if

r̄(υ) > r̂(υ) := (
2− s

2− q

B(υ)
A(υ)

)1/(q−s). (2.45)

Suppose that (2.45) holds. Then it is easy to see that the function

r 7→ rp−s+1Qr(r, υ) = (q − p)rq−sA(υ)− (2− p)‖∇υ‖2
2r(υ)

2−s − (s− p)B(υ),

has two positive roots r1∗(υ) and r2∗(υ) with r1∗(υ) < r2∗(υ). Clearly, r1∗(υ) is
a point of local minimum of Q(., υ) while r2∗(υ) is a point of global maximum of
Q(., υ). Define r∗(υ) := r2∗(υ). We claim that

r̄(υ) < r∗(υ). (2.46)

Indeed,

rs−pFr(r, υ) = Qr(r, υ) + (p− s)
Q(r, υ)
r

,
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and since Fr(r̄(υ), υ) = 0 and Q(r̄(υ), υ) = r̄(υ)s−pF (r̄(υ), υ) > 0 we get

Qr(r̄(υ), υ) = (s− p)
Q(r̄(υ), υ)
r̄(υ)

> 0,

proving the claim.
Next, let υ ∈ G1 and assume that B(υ) = 0. Clearly Q(·, υ) attains its maximum

at

r∗(υ) :=
(q − p

2− p

A(υ)
‖∇υ‖2

2

)1/(2−q)

(2.47)

with

Q(r∗(υ), υ) =
2− q

2− p
r∗(υ)q−pA(υ). (2.48)

Since r∗(υ) satisfies the equation Qr(·, υ) = 0, that is

(q − p)A(υ)r∗(υ)q−s = (s− p)B(υ) + (2− p)‖∇υ‖2
2r∗(υ)

2−s, (2.49)

we have that

r∗(υ) ≤
(q − p

2− p

A(υ)
‖∇υ‖2

2

)1/(2−q)

. (2.50)

If υ ∈ G2 and the condition (2.45) is satisfied, then (2.4) has two positive solutions
r1(υ), r2(υ) with r1(υ) < r∗(υ) < r2(υ). Define r(υ) := r2(υ). Since Qr(r, υ) < 0
for all r > r∗(υ), by the implicit function theorem, r ∈ C1(G2). We will assume
that the set

G4 := {υ ∈ G1 : ‖∇υ‖p
p ≤

p

s

2− s

2− p

(s
q

2− q

2− s
r̄(υ)q−sA(υ)−B(υ)

)
r̄(υ)s−p} (2.51)

is not empty. Thus,

r̄(υ) >
(q
s

2− s

2− q

B(υ)
A(υ)

)1/(q−s)

.

We will show that G4 ⊆ G2. Indeed, let υ ∈ G5 and assume first that B(υ) > 0.
Then, since p

s ,
2−s
2−p and s

q are less than 1, (2.42), (2.44), (2.46) and (2.51) imply
that

‖∇υ‖p
p <

(s
q

2− q

2− s
r̄(υ)q−sA(υ)−B(υ)

)
r̄(υ)s−p

<
(2− q

2− s
r̄(υ)q−sA(υ)−B(υ)

)
r̄(υ)s−p

= F (r̄(υ), υ)r̄(υ)s−p = Q(r̄(υ), υ)

< Q(r∗(υ), υ),

and so υ ∈ G2. Next, let υ ∈ G4 and assume B(υ) = 0. Then, from (2.46),

‖∇υ‖p
p <

p

q

2− q

2− p
r̄(υ)q−pA(υ) <

2− q

2− p
r∗(υ)q−pA(υ) = Q(r∗(υ), υ),

which shows that υ ∈ G2. Notice also that G4 ∩ S1 6= ∅. Since r̄(υ) < r∗(υ) < r(υ)
for any υ ∈ G4, we get

‖∇υ‖p
p ≤

p

s

2− s

2− p

(s
q

2− q

2− s
r(υ)q−sA(υ)−B(υ)

)
r(υ)s−p,
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which, in view of (2.8), implies that Φ̂(υ) < 0 for υ ∈ G4. On the other hand, if
υ ∈ G2 ∩ S1, then (2.10) implies that

r(υ) ≤
( A(υ)
‖∇υ‖2

2

)1/(2−q)

, (2.52)

and so r(·) is bounded on G2 ∩ S1. Therefore Φ̂(υ) is bounded on G2 ∩ S1. Let

M := inf
υ∈G2∩S1

Φ̂(υ) < 0.

Suppose that {υn}n∈N is a minimizing sequence for Φ̂(·) in G̃2 ∩ S1. Then, there
exist υ̃ ∈ E such that, at least for a subsequence, A(υn) → A(υ̃), B(υn) → B(υ̃).
We must have υ̃ 6= 0 because, otherwise, 0 = Φ(0) ≤ lim infn→∞Φ(r(υn)υn) = M ,
a contradiction. Since {r(υn)}n∈N is bounded we get r(υn) → r̃, and r∗(υn) → r̃∗.
On the other hand, r̃ > 0 because M = lim infn→∞ Φ̂(υn) < 0. If we assume that
A(υ̃) = 0, then, by (2.52), we should have r̃ = 0, a contradiction. Thus, υ̃ ∈ G1.
Also, by (2.45) and (2.46), we have

r̃ ≥ r̃∗ ≥ r̂(υ̃) := (
2− s

2− q

B(υ̃)
A(υ̃)

)1/(q−s). (2.53)

We will show that υ̃ ∈ G2. Indeed, if not, then, as in proof of the previous Theorem,
r̃ = r̃∗ = r∗(υ̃) where r∗(υ̃) is the point of global maximum of Q(·, υ̃) which satisfies

(q − p)A(υ̃)r∗(υ̃)q−s = (s− p)B(υ̃) + (2− p)‖∇υ̃‖2
2r∗(υ̃)

2−s.

Consequently, by passing to the limit in (2.49), where we have replaced υ by υn,
n ∈ N, we get ‖∇υn‖2

2 → ‖∇υ̃‖2
2, where

(q − p)A(υ̃)r̃q−s − (s− p)B(υ̃) = (2− p)‖∇υ̃‖2
2r̃

2−s. (2.54)

This, however, leads to a contradiction since, (2.5), (2.54) and (2.53),

M = lim
n→∞

Φ̂(υn) =
(q − p)(2− q)

2pq

(
r̃q−sA(υ̃)− q

s

s− p

q − p

2− s

2− q

B(υ̃)
A(υ̃)

)
r̃sA(υ̃) > 0.

Therefore, υ̃ ∈ G2 as claimed. A similar reasoning as in Case 2 shows that r̃ = r(υ̃).
Finally, by passing to the limit in (2.17) we conclude that υ̃ ∈ S1 and Φ̂(υ̃) = M .
Lemma 2.1 implies that u := r(υ̃)υ̃ ≥ 0 is a solution to (1.5)-(1.6). Therefore, we
have the following result.

Theorem 2.5. Assume that (H0)-(H2) are satisfied, p < s < q < 2 and the set G4

defined in (2.51) is not empty. Then (1.5) -(1.6) admits a non-negative solution
u ∈ C1,δ(Ω) for some δ ∈ (0, 1).

Remark 2.6. We will now give some conditions which guarantee that G4 6= ∅.
Suppose that supp a+ ⊆ supp b. Then there exists υ ∈ S1 such that B(υ) > 0.
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From (2.43) we obtain
p

q

2− q

2− p
r̄(υ)q−pA(υ)− p

s

2− s

2− p
B(υ)r̄(υ)s−p

=
p

q

2− q

2− p

(q − s

2− s

A(υ)
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)− p

s

2− s

2− p
B(υ)

(q − s

2− s

A(υ)
‖∇υ‖2

2

)(s−p)/(2−q)

=
p

q

2− q

2− p

(q − s

2− s

1
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)
q−p
2−q +1

− p

s

2− s

2− p
B(υ)

(q − s

2− s

1
‖∇υ‖2

2

)(s−p)/(2−q)

A(υ)
s−p
2−q .

If we assume that
p

q

2− q

2− p

(q − s

2− s

1
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)
q−p
2−q +1

− p

s

2− s

2− p
B(υ)

(q − s

2− s

1
‖∇υ‖2

2

)(s−p)/(2−q)

A(υ)(s−p)/(2−q) > ‖∇υ‖p
p,

(2.55)

then υ ∈ G4. It is easy to see that if a+(·) is large enough then (2.55) is true.

On the other hand, suppose that (supp a+)\ supp b))o 6= ∅. Then there exists
υ ∈ G1 with B(υ) = 0. From (2.43) we obtain

p

q

2− q

2− p
r̄(υ)q−pA(υ) =

p

q

2− q

2− p

(q − s

2− s

A(υ)
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)

=
p

q

2− q

2− p

(q − s

2− s

1
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)
q−p
2−q +1.

If we assume that
p

q

2− q

2− p

(q − s

2− s

1
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)
q−p
2−q +1 > ‖∇υ‖p

p, (2.56)

then υ ∈ G4. Note that if a+(·) is large enough then (2.56) holds.
Case 4: p < 2 < q < s. In this case we make the additional assumption:
(H3) b(x) ≥ bo > 0 a.e. in Ω.

Let
Q(r, υ) := rq−2A(υ)− rs−2B(υ)− rp−2‖∇υ‖p

p. (2.57)
Then (2.4) is equivalent to

Q(r, υ) = ‖∇υ‖2
2. (2.58)

For every υ ∈ G1 the function Q(·, υ) has a unique critical point r∗ := r∗(υ)
which corresponds to a global maximum with

(q − 2)rq−p
∗ A(υ) + (2− p)‖∇υ‖p

p = (s− 2)rs−p
∗ B(υ). (2.59)

Thus,

r∗(υ) ≥ (
q − 2
s− 2

A(υ)
B(υ)

)
1

s−q . (2.60)

On combining (2.57) with (2.59) we get

Q(r∗(υ), υ) =
q − p

2− p
r∗(υ)q−2A(υ)− s− p

2− p
r∗(υ)s−2B(υ) (2.61)

=
s− q

s− 2
r∗(υ)q−2A(υ)− s− p

s− 2
r∗(υ)p−2‖∇υ‖p

p. (2.62)
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Let
G̃2 := {υ ∈ G1 : ‖∇υ‖2

2 < Q(r∗(υ), υ)}.
Clearly, if υ ∈ G̃2, then (2.4) has exactly two positive solutions r1(υ) and r2(υ)
with r1(υ) < r∗(υ) < r2(υ). As before, let r := r2(υ). Since

r2−q+1Qr(r, υ) = (q − 2)A(υ)− (s− 2)rs−qB(υ)− (p− 2)rp−q‖∇υ‖p
p,

in view of (2.59), we obtain

r2−q+1Qr(r, υ) = (s− 2)B(υ)(rs−q
∗ − rs−q) + (2− p)‖∇υ‖p

p(r
p−q − rp−q

∗ ) < 0,

which implies that r(·) is continuously differentiable. We now define

G5 := {υ ∈ G1 : ‖∇υ‖2
2 <

2
q

s− q

s− 2
A(υ)r∗(υ)q−2 − 2

p

s− p

s− 2
‖∇υ‖p

pr∗(υ)
p−2}, (2.63)

and assume that G5 6= ∅. Since 2
q < 1 and 2

p > 1 we see that G5 ⊆ G̃2, and so
G̃2 6= ∅ as well. Furthermore, G5 ∩ S1 6= ∅ because r satisfies (2.35). If υ ∈ G5,
then by (2.63),

‖∇υ‖2
2 <

2
q

s− q

s− 2
A(υ)r(υ)q−2 − 2

p

s− p

s− 2
‖∇υ‖p

pr(υ)
p−2. (2.64)

On the other hand, (2.7) and (2.64) show that

rp(
1
p
− 1
s
)‖∇υ‖p

p + r2(
1
2
− 1
s
)‖∇υ‖2

2 + rq(
1
s
− 1
q
)A(υ) < 0,

and so Φ̂(υ) < 0. We claim that r(·) is bounded above on G̃2 ∩ S1. Indeed, from
(2.10) we have

r(υ) ≤ (
A(υ)
B(υ)

)1/(s−q), (2.65)

while hypothesis (H3) implies

A(υ) ≤ cB(υ)q/s (2.66)

for every υ ∈ E and some c > 0. At the same time if υ ∈ G̃2, then for some θ > 0,

θ < ‖∇υ‖2
2 <

q − p

2− p
r∗(υ)q−2A(υ) <

q − p

2− p
r(υ)q−2A(υ). (2.67)

From (2.65) and (2.67) we deduce

θ <
q − p

2− p

(A(υ)
B(υ)

)(q−2)/(s−q)

A(υ). (2.68)

Next, by using (2.66) and (2.68), we have

θ <
q − p

2− p
c

s−2
s−qB(υ)

2
s , (2.69)

and so B(·) is bounded away from 0. The claim is proved by reverting to ( 2.65).
Accordingly, Φ̂(υ) is also bounded on G̃2 ∩ S1. Consider the variational problem

M = inf
G̃2∩S1

Φ̂(υ) < 0

and assume that {υn}n∈N is a minimizing sequence in G̃2 ∩ S1. Since {υn}n∈N is
bounded, there exists υ̃ ∈ E such that, at least for a subsequence, A(υn) → A(υ̃) ≥
0 and B(υn) → B(υ̃). By (2.69), υ̃ 6= 0. We may also assume that r∗(υn) → r̃∗
and r(υn) → r̃. Clearly, r̃ > 0 since M = lim infn→∞ Φ̂(υn) < 0. On the other
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hand, A(υ̃) > 0 because, otherwise, this would imply r̃ = 0. Furthermore r̃∗ > 0
by (2.60). We claim that υ̃ ∈ G5. Since

‖∇υ̃‖2
2 ≤ lim sup

n→∞
‖∇υ̃n‖2

2 ≤ lim sup
n→∞

Q(r∗(υn), υn)

≤ lim sup
n→∞

{r∗(υn)q−2A(υn)− r∗(υn)s−2B(υn)}

− lim inf
n→∞

r∗(υn)p−2‖∇υn‖p
p

≤ r̃q−2
∗ A(υ̃)− r̃s−2

∗ B(υ̃)− r̃p−2
∗ ‖∇υ̃‖2

2 = Q(r̃∗, υ̃),

(2.70)

we see that
‖∇υ̃‖2

2 ≤ Q(r∗(υ̃), υ̃). (2.71)

We shall show that strict inequality holds. Indeed, let us suppose

‖∇υ̃‖2
2 = Q(r∗(υ̃), υ̃). (2.72)

Since r̃ > 0, by applying (2.58) for υ = υn and passing to the limit, we also obtain

‖∇υ̃‖2
2 ≤ lim sup

n→∞
‖∇υ̃n‖2

2 ≤ lim sup
n→∞

Q(r(υn), υn)

≤ lim sup
n→∞

{r(υn)q−2A(υn)− r(υn)s−2B(υn)}

− lim inf
n→∞

r(υn)p−2‖∇υn‖p
p

≤ r̃q−2A(υ̃)− r̃s−2B(υ̃)− r̃p−2‖∇υ̃‖p
p = Q(r̃, υ̃).

(2.73)

Consequently, by (2.70), (2.72) and (2.73), we should have r̃ = r̃∗ = r̃∗(υ̃). On the
other hand, by replacing υ by υn in (2.59) and passing to the limit we obtain

(q − 2)r∗(υ̃)q−pA(υ̃) + (2− p)‖∇υ̃‖p
p ≤ (s− 2)r∗(υ̃)s−pB(υ̃).

Since r∗(υ̃) satisfies

(q − 2)r∗(υ̃)q−pA(υ̃) + (2− p)‖∇υ̃‖p
p = (s− 2)r∗(υ̃)s−pB(υ̃),

we deduce that ‖∇υn‖p
p → ‖∇υ̃‖p

p where, by (2.59),

q − 2
2s

r̃qA(υ̃) +
2− p

2s
r̃p‖∇υ̃‖p

p =
s− 2
2s

r̃sB(υ̃). (2.74)

Then, (2.8) and (2.74) yield

M = lim
n→∞

Φ̂(υn) =
(2− p)(s− p)

2ps
r̃p‖∇υ̃‖p

p +
(q − 2)(s− q)

2ps
r̃qA(υ̃) > 0,

which is a contradiction. Therefore, υ̃ ∈ G̃2 as claimed. A similar reasoning as in
Case 2 shows that r̃ ≤ r(υ̃). If we assume that r̃ < r(υ̃), then, since the function

ψ(z) :=
∂

∂z
Φ(zυ̃) = z{‖∇υ̃‖2

2 −Q(z, υ̃)}, (2.75)

is strictly negative for z ∈ (r̃, r(υ̃)), by (2.35) we obtain

M = lim inf
n→∞

Φ(r(υn)υn) ≥ Φ(r̃υ̃) > Φ(r(υ̃)υ̃) = Φ(r(tυ̃)tυ̃) = Φ̂(tυ̃),

contradicting the definition of M . Consequently, υ̃ ∈ S1 and Φ̂(υ̃) = M . Therefore
u := r(υ̃)υ̃ is a solution of (1.5)-(1.6).

Thus, we have proved the following result.
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Theorem 2.7. Assume that conditions (H0)–(H3) are satisfied, p < 2 < q < s and
the set G5 defined in (2.63) is not empty. Then (1.5))-(1.6) admits a non-negative
solution u ∈ C1,δ(Ω) for some δ ∈ (0, 1).

Remark 2.8. We will present a condition which guarantees that G5 6= ∅. From
(2.59), (q − 2

s− 2
A(υ)
B(υ)

)1/(s−q) ≤ r∗(υ),

and so
2
q

s− q

s− 2
A(υ)r∗(υ)q−2 − 2

p

s− p

s− 2
‖∇υ‖p

pr∗(υ)
p−2

≥ 2
q

s− q

s− 2
A(υ)

(q − 2
s− 2

A(υ)
B(υ)

)(q−2)/(s−q)

− 2
p

s− p

s− 2
‖∇υ‖p

p

(q − 2
s− 2

A(υ)
B(υ)

) p−2
s−q

=
2
q

s− q

s− 2

(q − 2
s− 2

)(q−2)/(s−q)

A(υ)(s−2)/(s−q)B(υ)(2−q)/(s−q)

− 2
p

s− p

s− 2

(q − 2
s− 2

) p−2
s−q ‖∇υ‖p

pB(υ)
2−p
s−qA(υ)

p−2
s−q .

Since s−2
s−q >

p−2
s−q , G5 6= ∅ for a+(·) large enough.

Case 5: s < p < q < 2. In this case we define

Q(r, υ) := rq−pA(υ)− rs−pB(υ)− r2−p‖∇υ‖2
2.

For υ ∈ G1, Q(·, υ) has a unique critical point r∗ := r∗(υ) which corresponds to a
global maximum and satisfies

(q − p)rq−s
∗ A(υ) + (p− s)B(υ) = (2− p)r2−s

∗ ‖∇υ‖2
2 (2.76)

and
Q(r∗(υ), υ) =

2− q

2− p
r∗(υ)q−pA(υ)− 2− s

2− p
r∗(υ)s−pB(υ).

From (2.76) we get

r∗(υ) ≥
(q − p

2− p

A(υ)
‖∇υ‖2

2

)1/(2−q)

. (2.77)

Clearly, if υ ∈ G2 then (2.16) has exactly two positive solutions r1(υ), r2(υ) with
r1(υ) < r∗(υ) < r2(υ). We set r := r(υ) to be the greater solution. We have

rp−1Qr(r, υ) = (q − p)A(υ)rq−2 − (s− p)rs−2B(υ)− (2− p)‖∇υ‖2
2,

which, on account of (2.76), yields

rp−1Qr(r, υ) = (q − p)A(υ)(rq−2 − rq−2
∗ ) + (p− s)B(υ)(rs−2 − rs−2

∗ ) < 0.

Therefore, r(·) is continuously differentiable. Let

G6 := {υ ∈ G1 : ‖∇υ‖p
p <

p

q

2− q

2− p
r∗(υ)q−pA(υ)− p

s

2− s

2− p
r∗(υ)s−pB(υ)} (2.78)

and assume that G6 6= ∅. We immediately see that G6 ⊆ G2, since p
q < 1 and so

G2 6= ∅ as well. Moreover, G6 ∩S1 6= ∅ and Φ̂(υ) < 0 for any υ ∈ G6. Indeed, since
r(υ) > r∗(υ), by (2.78) we get

‖∇υ‖p
p <

p

q

2− q

2− p
r(υ)q−pA(υ)− p

s

2− s

2− p
r(υ)s−pB(υ). (2.79)
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At the same time, (2.8) and (2.79) yield

rq 2− p

2p
‖∇υ‖p

p + rq q − 2
2q

A(υ) + rs 2− s

2s
B(υ) < 0,

which proves the assertion. Next, because 2 > q, (2.26) shows that r(·) is bounded
above on G2 ∩ S1. Consequently, Φ̂(υ) is also bounded on G2 ∩ S1. Consider the
variational problem

M = inf
υ∈G2∩S1

Φ̂(υ) < 0.

If {υn}n∈N is a minimizing sequence in G2 ∩ S1 then, there exist υ̃ ∈ E such that,
at least for a subsequence, A(υn) → A(υ̃) ≥ 0 and B(υn) → B(υ̃) ≥ 0, while by
(2.9) we get

0 < ‖∇υ̃‖2
2 ≤ lim inf ‖∇υn‖2

2 ≤ 1.

Since r(·) is bounded on G2 ∩ S1 we may assume that r∗(υn) → r̃∗ and r(υn) → r̃.
Again r̃ > 0 because, otherwise, M = lim infn→∞ Φ̂(υn) = 0, a contradiction. We
also have that A(υ̃) > 0, because, if we assume the contrary, (2.17) yields

r(υn)2−q‖∇υn‖2
2 ≤ A(υn),

and by passing to the limit,

r̃2−q‖∇υ̃‖2
2 ≤ lim inf

n→∞
(r(υn)2−q‖∇υn‖2

2) ≤ lim
n→∞

A(υn) = A(υ̃).

Thus, r̃ = 0, a contradiction. Furthermore r̃∗ > 0 due to (2.77). We claim that
υ̃ ∈ G6. Indeed, if not, then, by applying the same arguments as in the proof of Case
2, we would have r̃ = r̃∗ = r∗(υ̃), while, along a subsequence, ‖∇υn‖2

2 → ‖∇υ̃‖2
2

where, by (2.76)

q − p

2p
r̃sA(υ̃) +

p− s

2p
r̃sB(υ̃) =

2− p

2p
r̃2‖∇υ̃‖2

2. (2.80)

Then (2.5) and (2.80) yield

M = lim
n→∞

Φ̂(υn) =
(q − p)(2− q)

2pq
r̃qA(υ̃) +

(p− s)(2− s)
2ps

r̃sB(υ̃) > 0.

Therefore, υ̃ ∈ G2 as claimed. A similar reasoning as in Case 2 shows that r̃ = r(υ̃).
Finally, by passing to the limit in (2.17) we rederive (2.15) which implies that υ̃ ∈
S1 and Φ̂(υ̃) = M . Thus u := r(υ̃)υ̃ is a solution to (1.5)-(1.6).

Therefore we have proved the following result.

Theorem 2.9. Assume that conditions (H0)–(H2) are satisfied, s < p < q < 2 and
the set G6 defined in (2.78) is not empty. Then (1.5)-(1.6) admits a non-negative
solution u ∈ C1,δ(Ω) for some δ ∈ (0, 1).

Remark 2.10. We will give some conditions which guarantee that G6 6= ∅. Sup-
pose that supp a+) ⊆ supp b). Then there exists υ ∈ S1 such that B(υ) > 0. From
((2.76) (

p− s

2− p

B(υ)
‖∇υ‖2

2

)1/(2−s)

≤ r∗(υ), (2.81)
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and so, in view of (2.81),

p

q

2− q

2− p
r∗(υ)q−pA(υ)− p

s

2− s

2− p
r∗(υ)s−pB(υ)

≥ p

q

2− q

2− p

(q − p

2− p

A(υ)
‖∇υ‖2

2

)(q−p)/(2−s)

A(υ)− p

s

2− s

2− p

(p− s

2− p

B(υ)
‖∇υ‖2

2

)(s−p)/(2−s)

B(υ)

≥ p

q

2− q

2− p

(q − p

2− p

1
‖∇υ‖2

2

)(q−p)/(2−s)

A(υ)
2−p
2−s +1

− p

s

2− s

2− p

(p− s

2− p

1
‖∇υ‖2

2

)(s−p)/(2−s)

B(υ)(2−p)/(2−s).

Note that if
p

q

2− q

2− p

(q − p

2− p

1
‖∇υ‖2

2

)(q−p)/(2−s)

A(υ)
2−p
2−s +1

− p

s

2− s

2− p

(p− s

2− p

1
‖∇υ‖2

2

)(s−p)/(2−s)

B(υ)
2−p
2−s > ‖∇υ‖2

2,

(2.82)

then G6 6= ∅. It is clear that if a+(·) is large compared to b(·) then (2.82) is satisfied.

Suppose now that (supp a+)\ supp b))o 6= ∅. Then there exists υ ∈ S1 with
B(υ) = 0. From (2.76) we have(q − p

2− p

A(υ)
‖∇υ‖2

2

)1/(2−q)

= r∗(υ), (2.83)

and so, in view of (2.83),

p

q

2− q

2− p
r∗(υ)q−pA(υ) =

p

q

2− q

2− p

(q − p

2− p

A(υ)
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)

=
p

q

2− q

2− p

(q − p

2− p

1
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)
2−p
2−q .

If we assume that
p

q

2− q

2− p

(q − p

2− p

1
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ)
2−p
2−q > ‖∇υ‖2

2,

we have

A(υ)
2−p
2−q >

q

p

2− p

2− q

(q − p

2− p

)(p−q)/(2−q)

‖∇υ‖2
2, (2.84)

and so if a+(·) large enough the condition (2.84) is valid implying that G6 6= ∅.
Case 6: s < q < p < 2. In this case we assume that the following condition

holds:

(H4) V := (supp a+\ supp b)o 6= ∅.
We define

Q(r, υ) := rq−pA(υ)− rs−pB(υ)− r2−p‖∇υ‖2
2. (2.85)

Let υ ∈ G1. If B(υ) = 0, the equation (2.10) has a unique solution r(υ) > 0,
while if B(υ) > 0, the function Q(·, υ) has a unique critical point r∗ := r∗(υ) which
corresponds to a global maximum and satisfies

(p− s)B(υ) = (p− q)rq−s
∗ A(υ) + (2− p)r2−s

∗ ‖∇υ‖2
2. (2.86)
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Clearly, if υ ∈ G2, then (2.4) has exactly two positive solutions r1(υ) and r2(υ)
with r1(υ) < r∗(υ) < r2(υ). Let r := r(υ) be the unique solution of (2.4) in case
B(υ) = 0 or the greater solution r2 in case B(υ) > 0. Note that, if B(υ) > 0 then

rp−s+1Qr(r, υ) = (q − p)A(υ)rq−s − (s− p)B(υ)− (2− p)r2−s‖∇υ‖2
2

and so, in view of (2.86), we obtain

rp−s+1Qr(r, υ) = (p− q)A(υ)(rq−s
∗ − rq−s)− (p− 2)‖∇υ‖2

2(r
2−s
∗ − r2−s) < 0,

while if B(υ) = 0, then

rp+1Qr(r, υ) = (q − p)A(υ)rq − (2− p)‖∇υ‖2
2r

2 < 0.

Thus r(·) is continuously differentiable by the implicit function theorem. We now
define

G7 = {υ ∈ G1 : B(υ) = 0} ∪ {υ ∈ G1 : B(υ) > 0 and ‖∇υ‖p
p < Q(r∗(υ), υ)}.

In view of (H1) and (H4), we see that G7 6= ∅ since for any υ ∈ E with supp υ ⊆ V
there holds A(υ) > 0 and B(υ) = 0. We claim that G7 is open. Indeed, let υ̂ ∈ G7

and assume that there exists a sequence {υn}n∈N ⊆ E\G7 with υn → υ̂ strongly
in E. Suppose, without loss of generality, that B(υ̂) = 0 while B(υ̂) > 0 for every
n ∈ N. Therefore,

‖∇υn‖p
p ≥ Q(r∗(υn), υn) for every n ∈ N. (2.87)

Since A(υ̂) > 0, on account of (2.86), r∗(υn) → 0. Combining (2.86) and (2.85) we
obtain

Q(r∗(υ), υ) =
q − s

p− s
r∗(υ)q−pA(υ)− 2− s

p− s
r∗(υ)2−p‖∇υ‖2

2,

and so limn→∞Q(r∗(υn), υn) = +∞, contradicting (2.87). It follows from (2.4)
that r(·) is bounded and so Φ̂(·) is also bounded on G7 ∩ S1. On account of (2.5)
and (H4), M < 0.

Consider the variational problem

M = inf
υ∈G2∩S1

Φ̂(υ) < 0

and assume that {υn}n∈N is a minimizing sequence in G7 ∩ S1. Then there exists
υ̃ ∈ E so that A(υn) → A(υ̃) ≥ 0, B(υn) → B(υ̃) ≥ 0 and

0 ≤ ‖∇υ̃‖p
p ≤ lim inf ‖∇υn‖p

p ≤ 1.

Furthermore, r(υn) → r̃ for a new subsequence. In particular, r̃ > 0 because if
r̃ = 0 then, by (2.5)), M = limn→∞ Φ̂(υn) = 0; a contradiction. We claim that
A(υ̃) > 0. Indeed, from (2.10) we have

‖∇υn‖p
pr(υn)p−q ≤ A(υn),

and by passing to the limit,

‖∇υ̃‖p
pr(υ̃)

p−q ≤ lim inf
n→∞

‖∇υn‖p
pr(υn)p−q ≤ lim

n→∞
A(υn) = A(υ̃).

Thus, if A(υ̃) = 0 then υ̃ = 0. However, this leads to a contradiction because by
(2.2), we should have 0 = Φ(0) ≤ lim infn→∞Φ(r(υn)υn) = M .

We shall show next that υ̃ ∈ G7. Let us assume that B(υ̃) > 0. Since

(p− s)B(υn) = (p− q)rq−s
∗ A(υn) + (2− p)r2−s

∗ ‖∇υn‖2
2,



18 N. E. SIDIROPOULOS EJDE-2010/162

we see that the sequence {r∗(υn)}n∈N is bounded. Thus, up to a further subse-
quence, r∗(υn) → r̃∗ > 0. As before, r̃ = r̃∗ = r∗(υ̃). On the other hand, by
passing to the limit in (2.86) we see that ‖∇υn‖2

2 → ‖∇υ̃‖2
2 and

B(υ̃) =
p− q

p− s
rq−s
∗ (υ̃)A(υ̃) +

2− p

p− s
r2−s
∗ (υ̃)‖∇υ̃‖2

2.

Thus,

M = lim
n→∞

Φ̂(υn) =
(2− s)(2− p)

2ps
r̃2‖∇υ̃‖2

2 + r̃qA(υ̃)
(q − s)(p− q)

psq
> 0,

which is a contradiction. Therefore, υ̃ ∈ G7 as claimed. On the other hand, if
B(υ̃) = 0 then it is obvious that υ̃ ∈ G7. Working as in Case 2 we are lead to the
following result.

Theorem 2.11. Assume that conditions (H0)-(H2), (H4) are satisfied and s <
q < p < 2. Then (1.5)-(1.6) admits a non-negative solution u ∈ C1,δ(Ω) for some
δ ∈ (0, 1).

Case 7: p < q < s < 2. In this case we define

Q(r, υ) := rq−pA(υ)− rs−pB(υ)− r2−p‖∇υ‖2
2.

We see that for υ ∈ G1 the function Q(·, υ) has a unique critical point r∗ := r∗(υ)
satisfying

(q − p)A(υ) = (s− p)r∗(υ)s−qB(υ) + (2− p)r∗(υ)2−q‖∇υ‖2
2. (2.88)

It is clear that (2.4) has two positive solutions r1(υ), r2(υ) with r1(υ) < r∗(υ) <
r2(υ) for every υ ∈ G2. Let r := r2(υ). Then

rp−q+1Qr(r, υ) = (q − p)A(υ)− (s− p)rs−qB(υ)− (2− p)r2−q‖∇υ‖2
2,

which combined with (2.88), gives

rp−q+1Qr(r, υ) = (2− p)‖∇υ‖2
2(r

2−q
∗ − r2−q) + (s− p)B(υ)(rs−q

∗ − rs−q) < 0.

Therefore, the implicit function theorem implies that r(·) is continuously differen-
tiable. Assume that the set

G8 := {υ ∈ G1 : ‖∇υ‖p
p <

p

q

s− q

s− p
r∗(υ)q−pA(υ)}

is not empty. Since q > p, and r(υ)q−p > r∗(υ)q−p, we see that G8 ⊆ G2 and so
G2 6= ∅. If υ ∈ G8, then

‖∇υ‖p
p <

p

q

s− q

s− p
r∗(υ)q−pA(υ) <

p

q

s− q

s− p
r(υ)q−pA(υ)

and so
2− p

p
r(υ)p‖∇υ‖p

p +
q − 2
q

r(υ)qA(υ) < 0. (2.89)

Combining (2.89) with (2.7), we conclude that

Φ̂(υ) < rp(
1
p
− 1
s
)‖∇υ‖p

p + rq(
1
s
− 1
q
)A(υ) < 0.

On the other hand, if υ ∈ G2 ∩ S1, then (2.10) implies

r(υ) ≤
( A(υ)
‖∇υ‖2

2

)1/(2−q)
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and so r(·) is bounded on G2∩S1. Consequently, Φ̂(υ) is also bounded on G2∩S1.
Let

M := inf
υ∈G2∩S1

Φ̂(υ) < 0

and assume that {υn}n∈N is a minimizing sequence in G2 ∩ S1. Then, there exist
υ̃ ∈ E such that, at least for a subsequence, A(υn) → A(υ̃) ≥ 0, B(υn) → B(υ̃) ≥ 0,

0 ≤ ‖∇υ̃‖2 ≤ lim inf ‖∇υn‖2 ≤ 1,

0 ≤ ‖∇υ̃‖p ≤ lim inf ‖∇υn‖p ≤ 1.

We must have υ̃ 6= 0 because, otherwise, 0 = Φ(0) ≤ lim infn→∞Φ(r(υn)υn) = M ,
a contradiction. Since {r(υn)}n∈N is bounded and r∗(υn) < r(υn), n ∈ N, we may
assume that r∗(υn) → r̃∗ and r(υn) → r̃. Since M = lim infn→∞ Φ̂(υn) < 0 we
obtain r̃ > 0. We also have that A(υ̃) > 0, because, if we assume the opposite,
then by

r̃2−q‖∇υ̃‖2
2 ≤ lim inf

n→∞
(r(υn)2−q‖∇υn‖2

2) ≤ lim
n→∞

A(υn) = A(υ̃)

we would get r̃ = 0, a contradiction. Therefore, υ̃ ∈ G1. Also, r̃∗ > 0 by (2.88).
We will show that υ̃ ∈ G2.Working as in Case 2 we conclude that r̃ = r̃∗ = r̃∗(υ̃).
On the other hand, replacing υ by υn in (2.88) and passing to the limit leads to

(q − p)A(υ̃) ≥ (s− p)r∗(υ̃)s−qB(υ̃) + (2− p)r∗(υ̃)2−q‖∇υ̃‖2
2.

However, r∗(υ̃) satisfies

(q − p)A(υ̃) = (s− p)r∗(υ̃)s−qB(υ̃) + (2− p)r∗(υ̃)2−q‖∇υ̃‖2
2,

so we deduce that ‖∇υn‖2
2 → ‖∇υ̃‖2

2. From (2.31) we get

A(υ̃) =
s− p

q − p
r̃s−qB(υ̃) +

2− p

q − p
r̃2−q‖∇υ̃‖2

2. (2.90)

Thus, (2.7) and (2.90) yield

M = lim
n→∞

Φ̂(υn) =
(s− q)(s− p)

pqs
r̃sB(υ̃) +

(2− p)(2− q)
2pq

r̃2‖∇υ̃‖2
2 > 0,

a contradiction, proving the claim. Working as in Case 2 we have r̃ = r(υ̃). Finally,
by passing to the limit in (2.17) we have (2.15), which implies υ̃ ∈ S1 and Φ̂(υ̃) = M .
Therefore, we have the following theorem.

Theorem 2.12. Assume that conditions (H0)-(H2) are satisfied, p < q < s < 2 and
the set G3 defined in (2.23) is not empty. Then (1.5)-(1.6) admits a non-negative
solution u ∈ C1,δ(Ω) for some δ ∈ (0, 1).

Remark 2.13. We will now give some conditions which guarantee that G3 6= ∅.
Suppose that supp a+) ⊆ supp b). Then there exists υ ∈ G1 such that B(υ) > 0.
Since r∗(υ)2−q < r(υ)2−q, (2.88) yields

(q − p)A(υ) < (s− p)r∗(υ)s−qB(υ) + (2− p)r(υ)2−q‖∇υ‖2
2, (2.91)

and so

r∗(υ)s−q >
q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
r(υ)2−q ‖∇υ‖2

2

B(υ)
.
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Consequently,
p

q

s− q

s− p
r∗(υ)q−pA(υ)

>
p

q

s− q

s− p

(
q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
r(υ)2−q ‖∇υ‖2

2

B(υ)

)(q−p)/(s−q)

A(υ).
(2.92)

On the other hand, (2.10) implies

r(υ) ≤
(A(υ)
B(υ)

)1/(s−q)

,

which combined with (2.92) gives

p

q

s− q

s− p

(q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
r(υ)2−q ‖∇υ‖2

2

B(υ)

)(q−p)/(s−q)

A(υ)

>
p

q

s− q

s− p

(q − p

s− p

A(υ)
B(υ)

− 2− p

s− p

(A(υ)
B(υ)

)(2−q)/(s−q) ‖∇υ‖2
2

B(υ)

) q−p
s−q

A(υ).

If a+(·) is large enough, then

p

q

s− q

s− p

(q − p

s− p

A(υ)
B(υ)

− 2− p

s− p
A(υ)(2−q)/(s−q) ‖∇υ‖2

2

B(υ)
2−q
s−q +1

)(q−p)/(s−q)

A(υ) > ‖∇υ‖p
p,

implying that υ ∈ G8. Thus G8 6= ∅.

Suppose next that (supp a+)\ supp b))o 6= ∅. Then there exists υ ∈ S1 with
B(υ) = 0. By (2.88)

r∗(υ) =
(q − p

2− p

A(υ)
‖∇υ‖2

2

)1/(2−q)

,

and so
p

q

s− q

s− p
r∗(υ)q−pA(υ) =

p

q

s− q

s− p

(q − p

2− p

A(υ)
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ).

Therefore, if a+(·) is large enough, then

p

q

s− q

s− p

(q − p

2− p

A(υ)
‖∇υ‖2

2

)(q−p)/(2−q)

A(υ) > ‖∇υ‖p
p,

implying that G8 6= ∅.
Case 8: q > max{p, s, 2}. In this case we shall use the mountain pass theorem.

Lemma 2.14. Φ(·) satisfies the Palais-Smale condition.

Proof. Let {un}∞n=1 be a sequence in E such that |Φ(un)| ≤ C for some C > 0 and
every n ∈ N and Φ′(un) → 0 in H−1(Ω). For ε > 0 and υ ∈ E we have

|〈Φ′(un), υ〉| =
∣∣∣ ∫

|∇un|p−2∇un∇υdx+
∫
∇un∇υdx

−
∫
a(x)un

q−1υdx+
∫
b(x)un

s−1υdx
∣∣∣

≤ ε‖υ‖E .

(2.93)

If υ = un in (2.93), then∫
a(x)un

qdx ≤ ε‖un‖1,k +
∫
|∇un|pdx+

∫
|∇un|2dx+

∫
b(x)un

sdx. (2.94)
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By hypothesis

1
p
‖∇un‖p

p +
1
2
‖∇un‖2

2 −
1
q

∫
a(x)|un|qdx+

1
s

∫
b(x)|un|sdx ≤ C. (2.95)

On combining (2.94) and (2.95) we obtain

1
p
‖∇un‖p

p +
1
2
‖∇un‖2

2 +
1
s

∫
b(x)|un|sdx−

1
q
ε‖un‖E

− 1
q

∫
|∇un|pdx−

1
q

∫
|∇un|2dx−

1
q

∫
b(x)un

sdx ≤ C,

and so

(
1
p
− 1
q
)‖∇un‖p

p + (
1
2
− 1
q
)‖∇un‖2

2 + (
1
s
− 1
q
)
∫
b(x)|un|sdx ≤ C +

1
q
ε‖un‖E .

Since q > max{p, 2, s}, we deduce that

(
1
p
− 1
q
)‖∇un‖p

p + (
1
2
− 1
q
)‖∇un‖2

2 ≤ C +
1
q
ε‖un‖E (2.96)

which implies that the sequence {un}∞n=1 is bounded in E. By passing to a subse-
quence if necessary, we may assume that un → u weakly in E. Consequently,

lim
n→∞

〈Φ′(un)− Φ′(u), un − u〉 = 0. (2.97)

By taking υ = un − u in (2.93) we have∫ (
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u)dx+

∫
(∇un −∇u) (∇un −∇u)dx

= 〈Φ′(un)− Φ′(u), un − u〉 −
∫
|∇un|p−2∇un∇(un − u)dx

−
∫
∇un∇(un − u)dx+

∫
|∇u|p−2∇u∇(un − u)dx+

∫
∇u∇(un − u)dx

−
∫
a(x)|u|q−2u(un − u)dx+

∫
b(x)|un|s−2un(un − u)dx

+
∫
a(x)|un|q−2un(un − u)dx+

∫
b(x)|u|s−2u(un − u)dx.

(2.98)
Since, at least for a subsequence, un → u in Lp(Ω) and L2(Ω), (2.98) yields

lim
n→∞

{∫ (
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u)dx

+
∫

(∇un −∇u) (∇un −∇u)dx
}

= 0.

We now use the inequality

0 ≤
{( ∫

|ϕ|kdx
)1/k′

−
( ∫

|ψ|kdx
)1/k′}{( ∫

|ϕ|kdx
)1/k

−
( ∫

|ψ|kdx
)1/k}

≤
∫ (

|ϕ|k−2ϕ− |ψ|k−2ψ
)
(ϕ− ψ)dx,

which holds for ϕ,ψ ∈ Lk(Ω) and k′ = k/(k− 1), see [10], to conclude that un → u
in E. �
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Lemma 2.15. (i) There exist ρ, α > 0 such that Φ(u) ≥ α if ‖u‖E = ρ.
(ii) There exists u ∈ E with ‖u‖ > ρ and Φ(u) < 0.

Proof. (i) Fix u ∈ E\{0}. Then

Φ(u) ≥ 1
2
‖∇u‖2

2 −
1
q

∫
a(x)|u|qdx.

By the Sobolev embedding and the fact that q > 2 we have

Φ(u) ≥ 1
p
‖u‖2

E − c

q
‖u‖q

E ≥ α > 0,

whenever ‖u‖E = ρ and ρ > 0 is small enough. Now fix v ∈ G1. Then for t > 0

Φ(tv) =
tp

p
‖∇v‖p

p +
t2

2
‖∇v‖2

2 −
tq

q

∫
a(x)|v|qdx+

ts

s

∫
b(x)|v|sdx,

and so limt→∞Φ(tv) = −∞. Thus Φ(tv) < 0 for large enough t. �

By an application of the mountain pass theorem we obtain the following result.

Theorem 2.16. Assume that conditions (H0)–(H4) hold with q > max{p, s, 2}.
Then (1.5)-(1.6) admits a solution.
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