\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 164, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/164\hfil Growth of solutions] {Growth of solutions to higher order linear homogeneous differential equations in angular domains} \author[N. Wu\hfil EJDE-2010/164\hfilneg] {Nan Wu} \address{Nan Wu \newline Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China} \email{wunan07@gmail.com} \thanks{Submitted February 23, 2010. Published November 17, 2010.} \thanks{Supported by grant 10871108 from the NSF of China} \subjclass[2000]{30D10, 30D20, 30B10, 34M05} \keywords{Meromorphic solutions; Nevanlinna theory; order} \begin{abstract} In this article, we discuss the growth of meromorphic solutions to higher order homogeneous differential equations in some angular domains, instead of the whole complex plane. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction and statement of main results} By a transcendental meromorphic function, we mean a function that is meromorphic on the whole complex plane, and is not a rational function; in other words, $\infty$ is an essential singular point. We assume the reader is familiar with the Nevanlinna theory of meromorphic functions and basic notation such as: Nevanlinna characteristic $T(r,f)$, integrated counting function $N(r,f)$, and proximity function $m(r,f)$, and the deficiency $\delta(a,f)$ of $f(z)$. For the details, see \cite{Hayman,Yang}. The order $\lambda$ and the lower order $\mu$ are defined as follows: $$ \lambda(f)=\limsup_{r\to\infty}\frac{\log T(r,f)}{\log r},\quad \mu(f)=\liminf_{r\to\infty}\frac{\log T(r,f)}{\log r}. $$ It is known the growth of meromorphic solutions of differential equations with meromorphic coefficients in the complex plane $\mathbb{C}$ attracted a lot research. In this article, we discuss the growth of meromorphic solutions of differential equations with transcendental meromorphic coefficients in a proper subset of $\mathbb{C}$. Let $f(z)$ be a meromorphic function in an angular region $\overline{\Omega}(\alpha,\beta)=\{z:\alpha\leq\operatorname{arg} z\leq\beta\}$. Recall the definition of Ahlfors-Shimizu characteristic in an angle (see \cite{Tsuji}). Set $$ \Omega(r)=\Omega(\alpha,\beta)\cap\{z:1<|z|0$. For $q$ pair of real numbers $\{\alpha_j,\beta_j\}$ satisfying \eqref{1.1} and \begin{equation}\label{thmeq1.1} \sum_{j=1}^q(\alpha_{j+1}-\beta_j)<\frac{4}{\sigma} \arcsin\sqrt{\delta/2} \end{equation} where $\sigma>0$ with $\mu\leq\sigma\leq\lambda$. If $A_j(z)(j=1,2,\dots,n)$ are meromorphic functions in $\mathbb{C}$ with $T(r,A_j)=o(T(r,A_0))$, then every solution $f\not\equiv0$ to the equation $$ A_nf^{(n)}+A_{n-1}f^{(n-1)}+\dots+A_0f=0 $$ has the order $\sigma_X(f)=+\infty$ in $X=\cup_{j=1}^q\{z: \alpha_j\leq\operatorname{arg} z\leq\beta_j\}$. \end{theorem} If we remove the condition $\mu(A_0)<\infty$ in Theorem \ref{thm1.1}, we can establish the following result. \begin{theorem} \label{thm1.2} Let $A_0(z)$ be a meromorphic function in $\mathbb{C}$ with nonzero order $0<\lambda\leq\infty$ and $\delta(\infty,A_0)>0$. Suppose that for $q$ directions $\operatorname{arg} z=\alpha_j(1\leq j\leq q)$, satisfying $$ -\pi\leq\alpha_1<\alpha_2<\dots<\alpha_q<\pi, \alpha_{q+1} =\alpha_1+2\pi, $$ $A_j(z)$, $j=1,2,\dots,n$, are meromorphic functions in $\mathbb{C}$ with finite lower order and $T(r, A_j)=o(T(r, A_0))$. Then every solution $f\not\equiv0$ to the equation $$ A_nf^{(n)}+A_{n-1}f^{(n-1)}+\dots+A_0f=0 $$ has order $\sigma_X(f)=+\infty$ in $X=\mathbb{C}\backslash\cup_{j=1}^q\{z:\operatorname{arg} z=\alpha_j\}$. \end{theorem} The method in this paper was firstly used by Zheng \cite{Zheng} to investigate the growth of transcendental meromorphic functions with radially distributed values. \section{Some auxiliary results} To prove the theorems, we give some lemmas. The following result is from \cite{Yang01,JH01,Zheng}. \begin{lemma}\label{lem1.1} Let $f(z)$ be a transcendental meromorphic function with lower order $\mu<\infty$ and order $0<\lambda\leq\infty$, then for any positive number $\mu\leq\sigma\leq\lambda$ and any set $E$ with finite measure, there exist a sequence $\{r_n\}$, such that \begin{itemize} \item[(1)] $r_n\notin E$, $\lim_{n\to\infty}\frac{r_n}{n}=\infty$; \item[(2)] $\liminf_{n\to\infty}\frac{\log T(r_n,f)}{\log r_n}\geq\sigma$; \item[(3)] $T(t,f)<(1+o(1))(\frac{2t}{r_n})^\sigma T(r_n/2,f)$, $t\in[r_n/n,nr_n]$; \item[(4)] $T(t,f)/t^{\sigma-\varepsilon_n} \leq2^{\sigma+1}T(r_n,f)/r_n^{\sigma-\varepsilon_n}$, $1\leq t\leq nr_n$, $\varepsilon_n=[\log n]^{-2}$. \end{itemize} \end{lemma} We recall that $\{r_n\}$ is called the P\'{o}lya peaks of order $\sigma$ outside $E$. Given a positive function $\Lambda(r)$ satisfying $\lim_{r\to\infty}\Lambda(r)=0$. For $r>0$ and $a\in\mathbb{C}$, define $$ D_\Lambda(r,a)=\{\theta\in[-\pi,\pi):\log^+ \frac{1}{|f(re^{i\theta})-a|}>\Lambda(r)T(r,f)\}, $$ and $$ D_\Lambda(r,\infty)=\{\theta\in[-\pi,\pi):\log^+ |f(re^{i\theta})|>\Lambda(r)T(r,f)\}. $$ The following result is called the spread relation, which was conjectured by Edrei \cite{Edrei} and proved by Baernstein \cite{Baernstein}. \begin{lemma}\label{lem1.2} Let $f(z)$ be transcendental and meromorphic in $\mathbb{C}$ with the finite lower order $\mu<\infty$ and the positive order $0<\lambda\leq\infty$ and has one deficient values $a\in\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$. Then for any sequence of P\'{o}lya peaks $\{r_n\}$ of order $\sigma>0,\mu\leq\sigma\leq\lambda$ and any positive function $\Lambda(r)\to0$ as $r\to+\infty$, we have $$ \liminf_{n\to\infty} \operatorname{meas} D_\Lambda(r_n,a) \geq\min\{2\pi, \frac{4}{\sigma}\arcsin\sqrt{\delta(a,f)/2}\}. $$ \end{lemma} To make it clearly, we give the definition of $\mathbb{R}$-set on the complex plane $\mathbb{C}$. \begin{definition} \label{def2.2} \rm Let $B(z_n, r_n)=\{z: |z-z_n|m_i\geq0$ for $i=1,2,\dots,j$, and let $\varepsilon>0$ and $\delta>0$ be given constants. Then there exists $K>0$ depending only on $f,\varepsilon,\delta$ such that \begin{equation}\label{2.1a} \Big|\frac{f^{(n)}(z)}{f^{(m)}(z)}\Big| 0$. Then given $\varepsilon>0$, we have $$ \operatorname{meas} E(r,f)>\frac{1}{T^\varepsilon(r,f)[\log r]^{1+\varepsilon}}, r\notin F, $$ where $$ E(r,f)=\{\theta\in[-\pi,\pi): \log^+|f(re^{i\theta})|>\frac{\delta}{4}T(r,f)\} $$ and $F$ is a set of positive real numbers with finite logarithmic measure depending on $\varepsilon$. \end{lemma} \section{Proof of the Theorems} \begin{proof}[Proof of Theorem \ref{thm1.1}] We suppose that there exists a nontrival meromorphic solution $f$ such that $\sigma_{\alpha_j,\beta_j}(f)<+\infty$, $j=1,2,\dots, q$. In view of Lemma \ref{lem1.4}, there exists a constant $M>0$ not depending on $z$ such that \[ \left|\frac{f^{(j)}(z)}{f(z)}\right|<|z|^M,\quad j=1,2,\dots,n\,. \] for all $z\in\Omega(\alpha_j+\varepsilon,\beta_j-\varepsilon)$, $j=1,2,\dots,q$, except for a $\mathbb{R}$-set $E$. For $E$, we can define a set $F=\{r>0| \exists z\in E, s.t. |z|=r\}$ thus $$\operatorname{meas} F<\infty.$$ (I) $\lambda(A_0)>\mu(A_0)$. Then $\lambda(A_0)>\sigma\geq\mu(A_0)$. By the inequality \eqref{thmeq1.1}, we can take a real number $\varepsilon>0$ such that \begin{equation}\label{2.1} \sum_{j=1}^q(\alpha_{j+1}-\beta_j+2\varepsilon)+2\varepsilon <\frac{4}{\sigma+2\varepsilon}\arcsin\sqrt{\delta/2}, \end{equation} where $\alpha_{q+1}=2\pi+\alpha_1$, and $$ \lambda(A_0)>\sigma+2\varepsilon>\mu(A_0). $$ Applying Lemma \ref{lem1.1} to $A(z)$ gives the existence of the P\'{o}lya peak $\{r_n\}$ of order $\sigma+2\varepsilon$ of $A(z)$ such that $r_n\notin F$, and then from Lemma \ref{lem1.2} for sufficiently large $n$ we have \begin{equation}\label{2.2} \operatorname{meas} D(r_n,\infty)>\frac{4}{\sigma+2\varepsilon}\arcsin \sqrt{\delta/2}-\varepsilon. \end{equation} We can assume for all the $n$, above holds. Set $$ K:=\operatorname{meas} (D(r_n,\infty)\cap\cup_{j=1}^q(\alpha_j+\varepsilon, \beta_j-\varepsilon)). $$ Then from \eqref{2.1} and \eqref{2.2} it follows that \begin{align*} K&\geq \operatorname{meas}(D(r_n,\infty))-\operatorname{meas}([0,2\pi)\backslash \cup_{j=1}^q(\alpha_j+\varepsilon,\beta_j-\varepsilon))\\ &=\operatorname{meas}(D(r_n,\infty))-\operatorname{meas}(\cup_{j=1}^q(\beta_j -\varepsilon,\alpha_{j+1}+\varepsilon))\\ &=\operatorname{meas}(D(r_n,\infty))-\sum_{j=1}^q(\alpha_{j+1}-\beta_j +2\varepsilon)>\varepsilon>0. \end{align*} It is easy to see that there exists a $j_0$ such that for infinitely many $n$, we have \begin{equation}\label{2.3} \operatorname{meas}(D(r_n,\infty)\cap(\alpha_{j_0}+\varepsilon,\beta_{j_0} -\varepsilon))>\frac{K}{q}. \end{equation} We can assume for all the $n$, \eqref{2.3} holds. We define a real function by \[ \Lambda(r)^2=\max\left\{\frac{T(r_n,A_j)}{T(r_n,A_0)}, \frac{\log r_n}{T(r_n,A_0)}; j=1,2,\dots,n\right\}, \] for $ r_n\leq r\frac{K}{q}\Lambda(r_n)T(r_n, A_0). \end{aligned} \end{equation} Thus, we have \begin{equation}\label{2.5} \begin{split} &\int_{\alpha_{j_0}+\varepsilon}^{\beta_{j_0}-\varepsilon} \log^+|A_0(r_ne^{i\theta})|d\theta\\ &\leq\int_{\alpha_{j_0}+\varepsilon}^{\beta_{j_0}-\varepsilon} \sum_{j=1}^n\left(\log^+\left|\frac{f^{(j)}(r_ne^{i\theta})} {f(r_ne^{i\theta})}\right|+\log^+|A_j(r_ne^{i\theta})|\right) d\theta\\ &=\Big(\int_{D_\Lambda'(r_n)}+\int_{D_n}\Big) \sum_{j=1}^n\left(\log^+\left|\frac{f^{(j)}(r_ne^{i\theta})}{f(r_n e^{i\theta})}\right|+\log^+|A_j(r_ne^{i\theta})|\right)d\theta\\ &\leq\int_{\alpha_{j_0}+\varepsilon}^{\beta_{j_0}-\varepsilon} \sum_{j=1}^n\log^+|A_j(r_ne^{i\theta})|d\theta+O(\log r_n)\\ &\leq \sum_{j=1}^nT(r_n, A_j)+O(\log r_n)\\ &\leq \Lambda^2(r_n)T(r_n, A_0). \end{split} \end{equation} Therefore, $$ \frac{K}{q}\Lambda(r_n)<\Lambda^2(r_n). $$ This contradicts that $\Lambda(r)\to 0$. (II) $\lambda(A_0)=\mu(A_0)$. Then $\lambda(A_0)=\sigma=\mu(A_0)$. By the same argument as in (I) with all the $\sigma+2\varepsilon$ replaced by $\sigma$, we can derive a contradiction. The proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] Applying Lemma \ref{lem1.1} to $A_0(z)$ confirms the existence of a sequence $\{r_n\}$ of positive numbers such that $r_n\notin E$ and \begin{equation}\label{3.6} \operatorname{meas} E(r_n, A_0)>\frac{1}{T^\varepsilon(r_n,A_0)[\log r_n]^{1+\varepsilon}}, \end{equation} where $E(r_n, A_0)$ is defined as in Lemma \ref{lem1.5}. Set $$ \varepsilon_n=\frac{1}{2q+1}\frac{1}{T^\varepsilon(r_n,A_0)[\log r_n]^{1+\varepsilon}}. $$ Then for \eqref{3.6} it follows that \begin{align*} &\operatorname{meas} (E(r_n, A_0)\cap\cup_{j=1}^q(\alpha_j+\varepsilon_n, \alpha_{j+1}-\varepsilon_n))\\ &\geq \operatorname{meas} E(r_n, A_0) -\operatorname{meas}(\cup_{j=1}^q(\alpha_j+\varepsilon_n, \alpha_{j+1}-\varepsilon_n))\\ &\geq(2q+1)\varepsilon_n-2q\varepsilon_n=\varepsilon_n>0. \end{align*} so that there exists a $j$ such that for infinitely many $n$, we have \begin{equation}\label{3.7} \operatorname{meas} E_n>\frac{\varepsilon_n}{q}, \end{equation} where $E_n=E(r_n, A_0)\cap(\alpha_j+\varepsilon_n, \alpha_{j+1}-\varepsilon_n)$. We can assume that \eqref{3.7} holds for all the $n$. Thus \begin{equation}\label{3.8} \begin{split} \int_{\alpha_j+\varepsilon_n}^{\alpha_{j+1}-\varepsilon_n}\log^+ |A_0(r_ne^{i\theta})|d\theta&\geq\int_{E_n}\log^+|A_0(r_ne^{i\theta})|d\theta\\ &\geq \operatorname{meas}(E_n)\frac{\delta}{4}T(r_n, A_0)\\ &\geq \frac{\delta\varepsilon_n}{4q}T(r_n, A_0). \end{split} \end{equation} On the other hand, \begin{equation}\label{3.9} \int_{\alpha_j+\varepsilon_n}^{\alpha_{j+1}-\varepsilon_n}\log^+ |A_0(r_ne^{i\theta})|d\theta<\sum_{j=1}^n T(r_n, A_j)+O(\log r_n) \end{equation} Combining \eqref{3.8} and \eqref{3.9} gives $$ \varepsilon_n T(r_n, A_0)\leq \frac{4q}{\delta}\sum_{j=1}^n T(r_n, A_j)+O(\log r_n), $$ so that $$ T^{1-\varepsilon}(r_n, A_0)\leq\frac{4q(2q+1)}{\delta} [\log r_n]^{1+\varepsilon}\sum_{j=1}^n T(r_n, A_j)+O(\log^{2+\varepsilon} r_n), $$ we have $\mu(A_0)\leq\max_{1\leq j\leq q}(\mu(A_j))/(1-\varepsilon)$. By the same method as in Theorem \ref{thm1.1}, we obtain a contradiction, which completes the proof. \end{proof} \begin{thebibliography}{00} \bibitem{Baernstein} A. Baerstein; \emph{Proof of Edrei's spead conjecture}, Proc. London Math. Soc, 26 (1973), pp. 418-434. \bibitem{Edrei} A. Edrei; \emph{Sums of deficiencies of meromorphic functions}, J. Analyse Math., I. 14 (1965), pp. 79-107; II. 19 (1967), pp. 53-74. \bibitem{Goldberg} A. A. Goldberg and I. V. Ostrovskii; \emph{The distribution of values of meromorphic functions} (in Russian), Izdat. Nauk. Moscow 1970. \bibitem{Hayman} W. K. Hayman; \emph{Meromorphic Functions}, Oxford, 1964. \bibitem{Laine} I. Laine; \emph{Nevanlinna Theory and Complex Differential Equations}, W. de Gruyter, Berlin, 1993. \bibitem{Tsuji} M. Tsuji; \emph{Potential theory in modern function theory}, Maruzen Co. LTD Tokyo, 1959. \bibitem{Yang} L. Yang; \emph{Value Distribution And New Research}, Springer-Verlag, Berlin, 1993. \bibitem{Wu} S. J. Wu; \emph{Estimates for the logarithmic derivative or a meromorphic function in an angle, and their application}. Proceeding of international conference on complex analysis at the Nankai Institute of Mathematics, 1992, pp. 235-241. \bibitem{Wu1} S. J. Wu; \emph{On the growth of solution of second order linear differential equation in an angle}. Complex Variable., 24 (1994), pp. 241-248. \bibitem{Xu} J. F. Xu, H. X. Yi; \emph{Solutions of higher order linear differential equations in an angle}, Applied Mathematics Letters, Volume 22, Issue 4, April 2009, pp. 484-489. \bibitem{Xu1} J. F. Xu, H. X. Yi; \emph{On uniqueness of meromorphic functions with shared four values in some angular domains}, Bull. Malays. Math. Sci. Soc., (2) 31(2008), pp. 57-65. \bibitem{Yang01} L. Yang; \emph{Borel directions of meromorphic functions in an angular domain}, Science in China, Math. Series(I) (1979), pp. 149-163. \bibitem{JH01} J. H. Zheng; \emph{Value Distribution of Meromorphic Functions}, Springer-Verlag, Berlin, 2010. \bibitem{Zheng} J. H. Zheng; \emph{On transcendental meromorphic functions with radially distributed values}, Sci. in China Ser. A. Math., 47. 3 (2004), pp. 401-416. \bibitem{JH02} J. H. Zheng; \emph{On uniqueness of meromorphic functions with shared values in some angular domains}, Canad J. Math., 47 (2004), pp. 152-160. \bibitem{JH03} J. H. Zheng; \emph{On uniqueness of meromorphic functions with shared values in one angular domains}, Complex variables, 48 (2003), pp. 777-785. \end{thebibliography} \end{document}