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COMPARISON THEOREMS FOR SECOND-ORDER NEUTRAL
DIFFERENTIAL EQUATIONS OF MIXED TYPE

TONGXING LI

Abstract. Three comparison theorems are established for the oscillation of
the second-order neutral differential equations of mixed type`
r(t)[x(t)+p1(t)x(t−σ1)+p2(t)x(t+σ2)]′

´′
+q1(t)x(t−σ3)+q2(t)x(t+σ4) = 0.

Our results are new even when p2(t) = q2(t) = 0. An example is provided to
illustrate the main results.

1. Introduction

This article concerns the oscillatory behavior of the second-order linear neutral
differential equation of mixed type

(r(t)[x(t) + p1(t)x(t− σ1) + p2(t)x(t + σ2)]′)
′+ q1(t)x(t−σ3)+ q2(t)x(t+σ4) = 0,

(1.1)
for t ≥ t0.

We will use the following conditions:
(H1) r ∈ C1([t0,∞), R), r(t) > 0 for t ≥ t0;
(H2) pi ∈ C([t0,∞), [0, ai]), where ai are constants for i = 1, 2;
(H3) qj ∈ C([t0,∞), [0,∞)), and qj are not eventually zero on any half line

[t∗,∞) for t∗ ≥ t0, j = 1, 2;
(H4) σi ≥ 0 are constants, for i = 1, 2, 3, 4.
We put z(t) = x(t) + p1(t)x(t − σ1) + p2(t)x(t + σ2). By a solution of (1.1),

we mean a function x ∈ C([Tx,∞), R) for some Tx ≥ t0 which has the properties
that z ∈ C1([Tx,∞), R) and rz′ ∈ C1([Tx,∞), R) and satisfying (1.1) on [Tx,∞).
We consider only those solutions x of (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0
for all T ≥ Tx. We assume that (1.1) possesses such a solution. As is customary,
a solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [t0,∞);
otherwise, it is called non-oscillatory. Equation (1.1) is said to be oscillatory if all
its solutions are oscillatory.

Recently, there has been much research activity concerning the oscillation and
non-oscillation of solutions of varietal types of differential equations. We refer the
reader to [2, 3, 4, 6, 7, 11, 17, 18, 21, 25, 26] and the references cited therein.
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Džurina [7] presented sufficient conditions for the oscillation of the second-order
differential equation with mixed argument( 1

r(t)
u′(t)

)′ + p(t)u(τ(t)) + q(t)u(σ(t)) = 0, t ≥ t0.

Some oscillation results for the second-order neutral differential equation

(r(t)|z′(t)|γ−1z′(t))′ + q(t)|x(σ(t))|γ−1x(σ(t)) = 0,

where z(t) = x(t) + p(t)x(τ(t)) and t ≥ t0 were obtained by [8, 10, 16, 19].
Regarding the oscillatory behavior of neutral differential equations with mixed

arguments; see e.g., the papers [1, 9, 12, 13, 14, 23, 24]. Agarwal and Grace [1]
studied the oscillation of the even-order equation

(x(t) + ax(t− τ)− bx(t + τ))(n) + q(t)x(t− g) + p(t)x(t + h) = 0.

Džurina et al. [9] established some oscillation criteria for the mixed neutral equation

(x(t) + p1x(t− τ1) + p2x(t + τ2))
′′ = q1(t)x(t− σ1) + q2(t)x(t + σ2).

Grace and Lalli [12] examined the oscillatory behavior for the second-order equation

(x(t) + λx(t− τ))′′ = q(t)x(t− σ) + p(t)x(t + β).

Grace [13] obtained some oscillation theorems for the odd-order neutral differential
equation

(x(t) + p1x(t− τ1) + p2x(t + τ2))
(n) = q1x(t− σ1) + q2x(t + σ2).

Grace [14] and Yan [23] established several sufficient conditions for the oscillation
of solutions of odd-order neutral functional differential equation

(x(t) + cx(t− h) + Cx(t + H))(n) + qx(t− g) + Qx(t + G) = 0.

Yan [24] considered the oscillation of even-order mixed neutral differential equation

(x(t)− c1x(t− h1)− c2x(t + h2))
(n) + qx(t− g1) + px(t + g2) = 0.

To the best of our knowledge, there are only few results on the oscillation of
(1.1). It is interesting to study (1.1) since it has some applications in the study
of vibrating masses attached to an elastic bar (see [15]). The aim of this paper
is to establish some oscillation results for (1.1). The organization of this paper is
as follows: In Section 2, we reduce the problem of the oscillation of (1.1) to the
oscillation of the first-order inequalities under the case when∫ ∞

t0

1
r(t)

dt = ∞. (1.2)

In Section 3, we give an example and a remark to illustrate our results.
Below, when we write a functional inequality without specifying its domain of

validity we assume that it holds for all sufficiently large t.
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2. Main results

In the following, we will establish some oscillation criteria for (1.1).
Throughout this paper, we denote

Q(t) = Q1(t) + Q2(t),

Q1(t) = min{q1(t), q1(t− σ1), q1(t + σ2)},
Q2(t) = min{q2(t), q2(t− σ1), q2(t + σ2)}.

Theorem 2.1. Assume that (1.2) holds. Further, assume that

[y(t) + a1y(t− σ1) + a2y(t + σ2)]′ + Q(t)
( ∫ t−σ3

t1

1
r(s)

ds
)
y(t− σ3) ≤ 0 (2.1)

has no eventually positive solution for all sufficiently large t1, t1 ≥ t0. Then (1.1)
is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(t − σ1) > 0, x(t + σ2) > 0,
x(t− σ3) > 0 and x(t + σ4) > 0 for all t ≥ t1. Then z(t) > 0 for t ≥ t1. In view of
(1.1), we obtain

(r(t)z′(t))′ = −q1(t)x(t− σ3)− q2(t)x(t + σ4) ≤ 0, t ≥ t1. (2.2)

Thus, r(t)z′(t) is non-increasing function. Consequently, it is easy to conclude that
there exist two possible cases of the sign of z′(t), that is, z′(t) > 0 or z′(t) < 0
eventually. If there exists t2 ≥ t1 such that z′(t2) < 0, then from (2.2), we see that

r(t)z′(t) ≤ r(t2)z′(t2) < 0, t ≥ t2.

Integrating the above inequality from t2 to t, we obtain

z(t) ≤ z(t2) + r(t2)z′(t2)
∫ t

t2

1
r(s)

ds.

Letting t →∞, we obtain limt→∞ z(t) = −∞ due to (1.2), which is a contradiction.
Thus, there exists a t2 ≥ t1 such that

z′(t) > 0 (2.3)

for t ≥ t2. Using (1.1), for all sufficiently large t, we have

(r(t)z′(t))′ + q1(t)x(t− σ3) + q2(t)x(t + σ4) + a1(r(t− σ1)z′(t− σ1))′

+ a1q1(t− σ1)x(t− σ1 − σ3) + a1q2(t− σ1)x(t + σ4 − σ1)

+ a2(r(t + σ2)z′(t + σ2))′ + a2q1(t + σ2)x(t + σ2 − σ3)

+ a2q2(t + σ2)x(t + σ2 + σ4) = 0.

Thus
(r(t)z′(t))′ + a1(r(t− σ1)z′(t− σ1))′ + a2(r(t + σ2)z′(t + σ2))′

+ Q1(t)z(t− σ3) + Q2(t)z(t + σ4) ≤ 0.
(2.4)

By (2.3), we have z(t + σ4) ≥ z(t− σ3). Then, from (2.4), we obtain

(r(t)z′(t))′+a1(r(t−σ1)z′(t−σ1))′+a2(r(t+σ2)z′(t+σ2))′+Q(t)z(t−σ3) ≤ 0. (2.5)

It follows from (2.2) that

z(t) = z(t2) +
∫ t

t2

r(s)z′(s)
r(s)

ds ≥ r(t)z′(t)
∫ t

t2

1
r(s)

ds. (2.6)
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Set y(t) = r(t)z′(t) > 0. From (2.5) and (2.6), we see that y is an eventually
positive solution of

[y(t) + a1y(t− σ1) + a2y(t + σ2)]′ + Q(t)y(t− σ3)
∫ t−σ3

t2

1
r(s)

ds ≤ 0.

This completes the proof. �

Theorem 2.2. Assume that (1.2) holds and

u′(t) + Q(t)

∫ t−σ3

t1
1

r(s) ds

1 + a1 + a2
u(t + σ1 − σ3) ≤ 0 (2.7)

has no eventually positive solution for all sufficiently large t1, t1 ≥ t0. Then (1.1)
is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(t − σ1) > 0, x(t + σ2) > 0,
x(t− σ3) > 0 and x(t + σ4) > 0 for all t ≥ t1. Then z(t) > 0 for t ≥ t1. Proceeding
as in the proof of Theorem 2.1, we obtain that y(t) = r(t)z′(t) > 0 is non-increasing
and satisfies inequality (2.1). Define

u(t) = y(t) + a1y(t− σ1) + a2y(t + σ2) > 0.

Then
u(t) ≤ (1 + a1 + a2)y(t− σ1).

Substituting the above formulas into (2.1), we find u is an eventually positive
solution of

u′(t) + Q(t)

∫ t−σ3

t1
1

r(s) ds

1 + a1 + a2
u(t + σ1 − σ3) ≤ 0.

The proof is complete. �

From Theorem 2.2 and [18, Theorem 2.1.1], we establish the following corollary.

Corollary 2.3. Assume that (1.2) holds, σ1 − σ3 < 0 and

lim inf
t→∞

∫ t

t+σ1−σ3

Q(u)
( ∫ u−σ3

t1

1
r(s)

ds
)

du >
1 + a1 + a2

e
(2.8)

for all sufficiently large t1, t1 ≥ t0. Then (1.1) is oscillatory.

Theorem 2.4. Assume that (1.2) holds and

w′(t)− Q(t + σ1)
1 + a1 + a2

( ∫ t+σ1

t1

du

r(u− σ1)

)
w(t + σ1 − σ3) ≥ 0 (2.9)

has no eventually positive solution for all sufficiently large t1, t1 ≥ t0. Then (1.1)
is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(t − σ1) > 0, x(t + σ2) > 0,
x(t− σ3) > 0 and x(t + σ4) > 0 for all t ≥ t1. Then z(t) > 0 for t ≥ t1. Proceeding
as in the proof of Theorem 2.1, we obtain (2.2)–(2.5) for t ≥ t2 ≥ t1. Integrating
(2.5) from t to ∞ yields

r(t)z′(t)+a1r(t−σ1)z′(t−σ1)+a2r(t+σ2)z′(t+σ2) ≥
∫ ∞

t

Q(s)z(s−σ3) ds. (2.10)
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Since r(t)z′(t) is non-increasing, we get

r(t)z′(t)+a1r(t−σ1)z′(t−σ1)+a2r(t+σ2)z′(t+σ2) ≤ (1+a1+a2)r(t−σ1)z′(t−σ1).
(2.11)

In view of (2.10) and (2.11), we have

z′(t− σ1) ≥
1

(1 + a1 + a2)r(t− σ1)

∫ ∞

t

Q(s)z(s− σ3) ds. (2.12)

Integrating (2.12) from t2 to t, we see that

z(t− σ1) ≥
∫ t

t2

1
(1 + a1 + a2)r(u− σ1)

∫ ∞

u

Q(s)z(s− σ3) dsdu

≥
∫ t

t2

1
1 + a1 + a2

Q(s)z(s− σ3)
∫ s

t2

1
r(u− σ1)

du ds.

Thus

z(t) ≥ 1
1 + a1 + a2

∫ t+σ1

t2

Q(s)z(s− σ3)
∫ s

t2

1
r(u− σ1)

du ds.

Let

w(t) =
1

1 + a1 + a2

∫ t+σ1

t2

Q(s)z(s− σ3)
∫ s

t2

1
r(u− σ1)

du ds > 0.

Then z(t) ≥ w(t) and

w′(t) =
1

1 + a1 + a2
Q(t + σ1)z(t + σ1 − σ3)

∫ t+σ1

t2

1
r(u− σ1)

du

≥ 1
1 + a1 + a2

Q(t + σ1)w(t + σ1 − σ3)
∫ t+σ1

t2

1
r(u− σ1)

du.

Hence, we find w is an eventually positive solution of

w′(t)− Q(t + σ1)
1 + a1 + a2

( ∫ t+σ1

t2

du

r(u− σ1)

)
w(t + σ1 − σ3) ≥ 0.

This completes the proof. �

Due to Theorem 2.4 and [18, Theorem 2.4.1], we obtain the following corollary.

Corollary 2.5. Assume that (1.2) holds, σ1 − σ3 > 0 and

lim inf
t→∞

∫ t+σ1−σ3

t

Q(u + σ1)
( ∫ u+σ1

t1

1
r(s− σ1)

ds
)

du >
1 + a1 + a2

e
(2.13)

for all sufficiently large t1, t1 ≥ t0. Then (1.1) is oscillatory.

3. Example and remark

For an application of our results, we will give the following example. Consider
the equation

[x(t) + a1x(t− σ1) + a2x(t + σ2)]′′ +
α

t
x(t− σ3) +

β

t
x(t + σ4) = 0, t ≥ t0, (3.1)

where a1, a2, α and β are positive constants.
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Let r(t) = 1, p1(t) = a1, q1(t) = α/t and q2(t) = β/t. Then Q1(t) = α/(t + σ2),
Q1(t) = β/(t + σ2) and Q(t) = (α + β)/(t + σ2). Assume that σ3 > σ1. Since

lim inf
t→∞

∫ t

t+σ1−σ3

Q(u)
( ∫ u−σ3

t1

1
r(s)

ds
)

du = (α + β)(σ3 − σ1),

we conclude that (3.1) is oscillatory if

(α + β)(σ3 − σ1) >
1 + a1 + a2

e
due to Corollary 2.3.

Suppose that σ3 < σ1. Since

lim inf
t→∞

∫ t+σ1−σ3

t

Q(u + σ1)
( ∫ u+σ1

t1

1
r(s− σ1)

ds
)

du = (α + β)(σ1 − σ3),

we conclude that (3.1) is oscillatory if

(α + β)(σ1 − σ3) >
1 + a1 + a2

e
due to Corollary 2.5.

Remark 3.1. The equation

[x(t) + a1x(t− σ1)]′′ + q1(t)x(t− σ3) = 0, σ1 < σ3, t ≥ t0 (3.2)

is a special case of (1.1). Applying results of [25, Theorem 2] and [26, Corollary 1],
we obtain a sufficient condition for (3.2) to be oscillatory, that is, if a1 < 1 and

lim inf
t→∞

∫ t

t−σ3

q1(s)(s− σ3) ds >
1

(1− a1)e
, (3.3)

then (3.2) is oscillatory.
Note that Corollary 2.3 transforms (3.3) into

lim inf
t→∞

∫ t

t+σ1−σ3

Q1(s)(s− σ3 − t1) ds >
1 + a1

e
, (3.4)

for all sufficiently large t1, t1 ≥ t0, where Q1(t) = min{q1(t), q1(t− σ1)}. Since
1

(1− a1)e
>

1 + a1

e

for a1 > 0, our results improve their results in some sense. Moreover, our results
can be applied to (3.2) when a1 ≥ 1.
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