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TRANSPORT OPERATOR ON PHASE SPACES WITH FINITE
TIME OF SOJOURN PROPERTY

MOHAMED BOULANOUAR

Abstract. In this article, the transport operator with general boundary con-

ditions is discussed. According to a smallness hypothesis on the boundary
operator and to finite time of sojourn property of phase spaces, we prove that

the transport operator generates a strongly continuous semigroup and we give

its upper bound.

1. Introduction

This article concerns the transport equation
∂f

∂t
(x, v) = −v · ∇xf(x, v), (x, v) ∈ Ω (1.1)

where, Ω = X × V with X ⊂ Rn (n > 1) is a bounded open subset with smooth
boundary ∂X and dµ is a Radon measure on Rn with bounded support V . If we
denote by Γ− (resp. Γ+) the incoming (resp. outgoing) part of the phase space
boundary Γ = ∂X × V , then the boundary condition is modelled as

f(t)
∣∣
Γ−

= K
(
f(t)

∣∣
Γ+

)
(1.2)

where, f(t)
∣∣
Γ−

(resp. f(t)
∣∣
Γ+

) is the incoming (resp. outgoing) particle flux. The
boundary operator K is bounded linear into suitable function spaces on Γ− and Γ+

(for more explanations see next Section). All known boundary conditions (vacuum,
specular reflections, periodic, . . . ) are special examples of our general context.

If ‖K‖ 6 1, it is well known, in the pioneer works [1, 9, 10], that the transport
model (1.1)–(1.2) is governed by a strongly continuous semigroup of contractions.
However, the case ‖K‖ > 1 has been rarely studied and some contributions are
made in [2, 3, 5, 6]. There is another contribution made in [8] (see last Section).

The difficulty concerning the case ‖K‖ > 1 is closely related to the increasing
number of, on one hand, the incoming particles whose the time of sojourn τ(x, v)
may be arbitrary small and on the other hand, to the particles in X of which the
time of sojourn t(x, v) may be arbitrary big. In order to take into account such as
particles, we intuitively have to set hypotheses on the geometry of (X,V ) and on
the boundary operators K. So, the first hypothesis concerns boundary operators
K satisfying
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(H1) There exists ε0 > 0 such that ‖Kχε0‖L(L1(Γ+),L1(Γ−)) < 1, where the char-
acteristic operator χε0 ∈ L(L1(Γ+)) is defined by

χε0ψ(x, v) =

{
ψ(x, v) if τ(x, v) 6 ε0

0 otherwise.
(1.3)

The second hypothesis acts on the geometry of V in the following sense
(H2) 0 6∈ V

which intuitively leads us to set our definition

Definition 1.1. The phase space (X,V ) has finite time of sojourn property if

Tmax := sup
(x,v)∈Ω

t(x, v) <∞. (1.4)

Clearly, the hypothesis (H2) implies that velocities cannot vanish; therefore Def-
inition 1.1 holds because of the boundedness of X. For instance, let the phase space(
(0, 1) × (a, b)

)
(a > 0) be related to a model of cell dynamic populations already

studied in [7]. The phase space
(
(0, 1) × (a, b)

)
(a > 0) fulfils the definition above

because of Tmax = 1
a <∞.

In this paper, we discuss the case ‖K‖ > 1 and at this end, we suppose that the
hypotheses (H1) and (H2) hold. So, we prove that the transport model (1.1)–(1.2)
is governed by a strongly continuous semigroup and we give its upper bound. We
end this paper by remarks and comments.

2. Setting of the problem

In this section we state preparatory Lemmas for the next Section. Let us consider
the Banach space L1(Ω) whose natural norm is

‖ϕ‖1 =
∫

Ω

|ϕ(x, v)| dx dµ(v) (2.1)

where, Ω = X × V . We set n(x) the outer unit normal at x ∈ ∂X, where, the
boundary ∂X is equipped with the Lebesgue measure dγ and we denote

Γ± = {(x, v) ∈ Γ : ±v · n(x) > 0},
where Γ = ∂X × V . For each (x, v) ∈ Ω, we set

t(x, v) = inf{t : t > 0, x− tv 6∈ X},
the time of sojourn in X, and

θ(x, v) = t(x, v) + t(x,−v),
the chord of sojourn. Similarly, if (x, v) ∈ Γ+ we set

τ(x, v) = inf{t : t > 0, x− tv 6∈ X}.
Next, we introduce the partial Sobolev space

W 1(Ω) = {ϕ ∈ L1(Ω) : v · ∇xϕ ∈ L1(Ω), θ−1ϕ ∈ L1(Ω)}
whose norm is

‖ϕ‖W 1(Ω) = ‖v · ∇xϕ‖1 + ‖θ−1ϕ‖.
Finally, we consider the trace spaces L1(Γ±) endowed with the norm

‖ϕ‖L1(Γ±) =
∫

Γ±

|ϕ(x, v)|dξ
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where, dξ = |v ·n(x)|dγdµ(v). In this context, we define the following trace mapping

γ+ϕ = ϕ|Γ+ and γ−ϕ = ϕ|Γ−
for which we have our new result.

Lemma 2.1 ([3]). The trace mappings

γ+ : W 1(Ω) → L1(Γ+) and γ− : W 1(Ω) → L1(Γ−)

are continuous, surjective and admit continuous lifting operators.

Let K be a bounded linear operator from L1(Γ+) into L1(Γ−). So, it is clear
that above Lemma allows us to give a sense to the following transport operator

TKϕ = −v · ∇xϕ on the domain

D(TK) = {ϕ ∈W 1(Ω) : γ−ϕ = Kγ+ϕ}.
(2.2)

If the boundary operator satisfies K = 0, then the corresponding operator T0 is
defined as follows

T0ϕ = −v · ∇xϕ on the domain

D(TK) = {ϕ ∈W 1(Ω) : γ−ϕ = 0}
(2.3)

has some properties summarized next.

Lemma 2.2. We have

(1) The operator T0 generates, on L1(Ω), a strongly continuous semigroup of
contractions (U0(t))t>0. Furthermore, U0(t) is a positive operator; i.e.,
U0(t)ϕ > 0 for all ϕ ∈ (L1(Ω))+.

(2) Let λ > 0 be fixed. Then, for all ϕ ∈ (L1(Ω))+−{0} we have (λ−T0)−1ϕ ∈
(L1(Ω))+ − {0} and γ+(λ− T0)−1ϕ ∈ (L1(Γ+))+ − {0}.

(3) Let λ > 0. Then

‖(λ− T0)−1g‖1 6
‖g‖1
λ

, (2.4)

‖θ−−1(λ− T0)−1g‖1 6 ‖g‖1 (2.5)

for all g ∈ L1(Ω).

Proof. The items (1), (2) and (3) follow easily from

(λ− T0)−1g(x, v) =
∫ t(x,v)

0

e−λsg(x− sv, v)ds

where, λ > 0 and g ∈ L1(Ω). �

Lemma 2.3. Let A be the operator

Aψ(x, v) = ψ(x− τ(x, v)v, v). (2.6)

Then A is a positive isometry from L1(Γ−) to L1(Γ+); i.e.,

‖Aψ‖L1(Γ+) = ‖ψ‖L1(Γ−) (2.7)

for all ψ ∈ L1(Γ+).
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Proof. Let ψ ∈ L1(Γ+) . As u(x, v) = ψ(x − t(x, v)v, v) is the unique solution of
the boundary value problem

v · ∇xu = 0
γ−u = ψ .

Then multiplying the first equation by (sgnu) and using

(sgnu)v · ∇xu = v · ∇x(|u|), (2.8)

we obtain v · ∇x(|u|) = 0. Integrating this equation over Ω and using Green’s
identity, we obtain ∫

Γ+

|γ+u(x, v)|dξ =
∫

Γ−

|γ−u(x, v)|dξ;

therefore, ∫
Γ+

|Aψ(x, v)|dξ =
∫

Γ−

|ψ(x, v)|dξ

whence (2.7). The positivity of A is obvious. �

3. Generation Theorem

In this section, we are only concerned with boundary operators whose norm
satisfies ‖K‖ > 1. So, according to (H1)–(H2), we prove that the transport operator
TK given by (2.2) generates, on L1(Ω), a strongly continuous semigroup. Before
we state this main goal, we have to show the following lemmas.

Lemma 3.1. Let K be a boundary operator with ‖K‖ > 1 and suppose that (H1)
holds. Let Kλ (λ > 0) be the operator

Kλψ := K(αλψ), (3.1)

where
αλ(x, v) = e−λτ(x,v).

Then Kλ is a bounded linear operator from L1(Γ+) to L1(Γ−). Furthermore, we
have

λ > ω0 =⇒ ‖Kλ‖ < 1, (3.2)

‖Kω0‖ 6 1, (3.3)

where
ω0 =

1
ε0

ln ‖K‖. (3.4)

Moreover, if K is a positive operator, then Kλ is also a positive operator.

Proof. Let λ > 0. For all ψ ∈ L1(Γ+) we obviously have χ2
ε0

= χε0 which implies

αλψ = χ2
ε0

(αλψ) + χε0
(αλψ);

therefore,
Kλψ = Kχε0(χε0αλψ) +Kχε0

(αλψ),
where the characteristic operator χε0 is given by (1.3), and χε0

is the characteristic
operator

χε0
ψ(x, v) =

{
ψ(x, v) if τ(x, v) > ε0

0 otherwise.
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This implies

‖Kλψ‖L1(Γ−) 6 ‖Kχε0(χε0αλψ)‖L1(Γ−) + ‖Kχε0
(αλψ)‖L1(Γ−)

6 ‖Kχε0‖‖χε0αλψ‖L1(Γ+) + ‖K‖‖χε0
(αλψ)‖L1(Γ+)

6 ‖Kχε0‖‖χε0ψ‖L1(Γ+) + e−λε0‖K‖‖χε0
ψ‖L1(Γ+)

≤ max{‖Kχε0‖, e−λε0‖K‖}{‖χε0ψ‖+ ‖χε0
ψ‖}

= {‖Kχε0‖, e−λε0‖K‖}‖ψ‖L1(Γ+)

which leads to
‖Kλ‖ 6 max{‖Kχε0‖, e−λε0‖K‖}.

Now, the above relation clearly implies

‖Kλ‖ < 1 if λ > ω0

and ‖Kω0‖ 6 1. Finally, if K is a positive operator, the positivity of the operator
Kλ is then obvious. The proof is now achieved. �

Thanks Lemma above, the resolvent operator of (2.2) is given as follows.

Lemma 3.2. Let K be a boundary operator whose satisfying ‖K‖ > 1, and suppose
that (H1) holds. Then, for all λ > ω0, we have λ ∈ ρ(TK) and

(λ− TK)−1g(x, v) = (λ− T0)−1g(x, v)+

e−λt(x,v)(I −KλA)−1Kγ−(λ− T0)−1g(x− t(x, v)v, v)
(3.5)

for almost all (x, v) ∈ Ω and for all g ∈ L1(Ω) , where, A is the operator given
by (2.6). Furthermore, if K is a positive operator, (λ − TK)−1 is then a positive
operator for all λ > ω0.

Proof. Let λ > ω0. For all g ∈ L1(Ω) , the general solution of

λϕ = −v · ∇xϕ+ g, (3.6)

is given by

ϕ(x, v) = e−λt(x,v)ψ(x− t(x, v)v, v) + (λ− T0)−1g(x, v), (3.7)

for almost all (x, v) ∈ Ω, where T0 is already studied in Lemma 2.2 and ψ is any
function of L1(Γ−). In the sequel, let us prove that ϕ ∈ D(TK).

Integrating (3.7) over Ω, a simple calculation together with (2.4) give us

‖ϕ‖1 6
∫

Ω

e−λt(x,v)|ψ(x− t(x, v)v, v)| dx dµ(v) + ‖(λ− T0)−1g‖1

6
1
λ
‖ψ‖L1(Γ−) +

‖g‖1
λ

<∞

which implies, by (3.6), that

‖v · ∇xϕ‖1 6 λ‖ϕ‖1 + ‖g‖1 <∞.

Multiplying (3.7) by θ−1 and integrating it over Ω, a simple calculation together
with (2.5) lead to

‖θ−1ϕ‖1 6 ‖ψ‖L1(Γ−) + ‖g‖1 <∞;

therefore, ϕ ∈W 1(Ω). Next, ϕ satisfies γ−ϕ = Kγ−ϕ if and only if ψ satisfies

ψ = KλAψ +Kγ−(λ− T0)−1g. (3.8)
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By (2.7) and (3.2) we obtain

‖KλA‖ 6 ‖Kλ‖ ‖A‖ < 1; (3.9)

therefore, (3.8) admits the unique solution

ψ = (I −KλA)−1Kγ−(λ− T0)−1g

which we put in (3.7) to obtain (3.5). In order to achieve the proof, it suffices to
show the positivity of the operator (λ− TK)−1.

Let g ∈ (L1(Ω))+ and note that the positivity of the operator K implies that of
the operator Kλ. By (3.5) and the second item of Lemma 2.2 we obtain

(λ− TK)−1g(x, v) > e−λt(x,v)(I −KλA)−1Kγ+(λ− T0)−1g(x− t(x, v)v, v)

for almost all (x, v) ∈ Ω. Thanks to (3.9) we have

(I −KλA)−1K = (
∞∑

n=0

; (KλA)n)K > IK = K

therefore,

(λ− TK)−1g(x, v) > e−λt(x,v)Kγ+(λ− T0)−1g(x− t(x, v)v, v)

for almost all (x, v) ∈ Ω. Finally, the positivity of K and the second item of Lemma
2.2 clearly imply the positivity of (λ− TK)−1g. The proof is now achieved. �

Now, we are ready to state the main result of this work.

Theorem 3.3. Let K be a boundary operator with ‖K‖ > 1, and suppose that
(H1)–(H2) hold. Then, the transport operator TK given by (2.2) generates, on
L1(Ω), a strongly continuous semigroup (UK(t))t>0 satisfying

‖UK(t)g‖1 6 eω0(Tmax+t)‖g‖1 t > 0, (3.10)

for all g ∈ L1(Ω), where, Tmax and ω0 are given by (1.4) and (3.4). Furthermore,
if K is a positive operator, (UK(t))t>0 is positive too.

Proof. First, let us define on L1(Ω) the norm

|||g|||1 =
∫

Ω

|g(x, v)|h(x, v) dx dµ(v) (3.11)

where, h(x, v) = eω0t(x,v). By (H2), (1.4) holds; therefore, the norms (2.1) and
(3.11) are equivalent because

‖g‖1 6 |||g|||1 6 eω0Tmax‖g‖1 (3.12)

for all g ∈ L1(Ω).
Next, let λ > ω0 and g ∈ L1(Ω). Thanks to Lemma 3.2 we obtain that

ϕ = (λ− TK)−1g ∈ D(TK) (3.13)

is the unique solution of λϕ = TKϕ+ g. Therefore ϕ satisfies

λϕ = −v · ∇xϕ+ g, (3.14)

γ−ϕ = Kγ−ϕ. (3.15)

Multiplying (3.14) by (sgnϕ)h and integrating it over Ω,

λ|||ϕ|||1 = −
∫

Ω

v · ∇x(|ϕ|)h(x, v) dx dµ(v) +
∫

Ω

((sgnϕ)hg)(x, v) dx dµ(v)

:= I + J.
(3.16)
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Integrating by parts,

I = −
∫

Ω

v · ∇x(|hϕ|)(x, v) dx dµ(v) + ω0

∫
Ω

|(hϕ)(x, v)| dx dµ(v)

=
∫

Γ−

|γ−(hϕ)(x, v)|dξ −
∫

Γ+

|γ+(hϕ)(x, v)|dξ + ω0|||ϕ|||1

=
∫

Γ−

|γ−ϕ(x, v)|dξ −
∫

Γ+

|γ+(hϕ)(x, v)|dξ + ω0|||ϕ|||1.

By (3.15) and the fact that (γ+h)αω0 = 1, we obtain

I =
∫

Γ−

|Kγ+ϕ(x, v)|dξ −
∫

Γ+

|γ+(hϕ)(x, v)|dξ + ω0|||ϕ|||1

=
∫

Γ−

|K(αω0γ+(hϕ))(x, v)|dξ −
∫

Γ+

|γ+(hϕ)(x, v)|dξ + ω0|||ϕ|||1

=
∫

Γ−

|Kω0(γ+(hϕ))(x, v)|dξ −
∫

Γ+

|γ+(hϕ)(x, v)|dξ + ω0|||ϕ|||1

6 (‖Kω0‖ − 1)‖γ+(hϕ)‖L1(Γ+) + ω0|||ϕ|||1;
therefore

I 6 ω0|||ϕ|||1 (3.17)
because of (3.3). For the term J , we obviously have

J =
∫

Ω

((sgnϕ)hg)(x, v) dx dµ(v) 6 |||g|||1. (3.18)

Putting now (3.13), (3.17) and (3.18) in (3.16) we obtain

|||(λ− TK)−1g|||1 6
|||g|||1

(λ− ω0)
.

Thanks to Hille-Yosida’s theorem, the operator TK generates on L1(Ω) a strongly
continuous semigroup (UK(t))t>0 satisfying

|||UK(t)g|||1 6 etω0 |||g|||1 t > 0 (3.19)

for all g ∈ L1(Ω). Now (3.10) follows from (3.12) and (3.19). In order to achieve
the proof, it suffices to show the positivity of the semigroup (UK(t))t>0.

Let g ∈ (L1(X × V ))+ and t > 0. Lemma 3.2 leads to

(
n

t
− TK)−1g > 0

for n large enough. Now, the exponential formula

UK(t)g = lim
n→∞

[
n

t
(
n

t
− TK)−1]ng > 0

achieves the proof. �

We finish this section by giving an example of a boundary operator K satisfying
our hypothesis (H1).

Lemma 3.4. Let K ∈ L(L1(Γ+), L1(Γ−)) be a Maxwell boundary operator; i.e.,
K = C +B where,

Cψ(x, v) =
∫

Γ+

k(x, v, x′, v′)ψ(x′, v′)|v′ · n(x′)|dγ(x′)dµ(v′) (x, v) ∈ Γ−
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with k > 0 and B ∈ L(L1(Γ+), L1(Γ−)) is a given operator such that ‖B‖ < 1. If

lim sup
ε→0

ess sup
{τ(y,v′)6ε}

∫
Γ−

k(x, v, y, v′)|v · n(x)|dγ(x)dµ(v′) < 1− ‖B‖,

then the hypothesis (H1) holds.

Proof. It is clear that there exists ε0 > 0 such that

‖Cχε0‖ = ess sup
{τ(y,v′)6ε0}

∫
Γ−

k(x, v, y, v′)|v · n(x)|dγ(x)dµ(v′) < 1− ‖B‖;

therefore
‖Kχε0‖ 6 ‖Cχε0‖+ ‖Bχε0‖ < 1− ‖B‖+ ‖B‖ = 1.

The proof is achieved. �

4. Remarks and Comments

As we pointed in the introduction, this section deals with some remarks and
comments on [8], using our notation.

Remark 4.1. In [8, page 288, line 14], the authors claim that the traces ψ|Γ±
(= γ±ψ) of ψ in

W1(Ω) =
{
ϕ ∈ L1(Ω), v · ∇xϕ ∈ L1(Ω)

}
,

are well defined and belong to L1(Γ±). According to our Lemma 2.1, this claim is
incorrect.

Remark 4.2. Note that [8, Theorem 5.2] is incorrect. Indeed, the authors consider
positive boundary operators K satisfying

(H1)
lim
ε→0

‖Kχε‖L(L1(Γ+),L1(Γ−)) < 1

where the characteristic operator χε0 is given by (1.3), and
(H2)

‖Kψ‖L1(Γ−) > ‖ψ‖L1(Γ+)

for all ψ ∈ (L1(Γ+))+.
According to (H1)–(H2), the authors claim that the operator TK defined by

TKϕ = −v · ∇xϕ on the domain

D(TK) = {ϕ ∈ W1(Ω), γ−ϕ = Kγ+ϕ}

generates, on L1(Ω), a strongly continuous semigroup.
However, by (H1), there exist ε0 > 0 and

0 < α < 1 (4.1)

such that
‖Kχε0‖L(L1(Γ+),L1(Γ−)) < α (4.2)

which implies that
‖Kχε0ψ‖L1(Γ−) < α‖ψ‖L1(Γ+) (4.3)

for all ψ ∈ L1(Γ+). Next, let us consider ψ ∈ (L1(Γ+))+ such that χε0ψ 6= 0. Now,
clearly the fact that χ2

ε0
= χε0 together with the hypothesis (H2) and (4.3) lead us

to
‖χε0ψ‖ = ‖χ2

ε0
ψ‖ 6 ‖K(χ2

ε0
ψ)‖ = ‖Kχε0(χε0ψ)‖ < α‖χε0ψ‖
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whence 1 < α which contradicts (4.1). Therefore, there are no positive boundary
operators K satisfying simultaneously (H1) and (H2).

Finally, note that (4.1) and (4.2) imply

‖Kχε0‖L(L1(Γ+),L1(Γ−)) < 1,

and our hypothesis (H1) holds.
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