\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 37, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/37\hfil An inverse boundary-value problem] {An inverse boundary-value problem for semilinear elliptic equations} \author[Z. Sun\hfil EJDE-2010/37\hfilneg] {Ziqi Sun} \address{Ziqi Sun \newline Department of Mathematics and Statistics, Wichita State University, Wichita, KS 67260-0033, USA} \email{ziqi.sun@wichita.edu} \thanks{Submitted January 31, 2010. Published March 14, 2010.} \subjclass[2000]{35R30} \keywords{Inverse Problem; Dirichlet to Neumann map} \begin{abstract} We show that in dimension two or greater, a certain equivalence class of the scalar coefficient $a(x,u)$ of the semilinear elliptic equation $\Delta u\,+a(x,u)=0$ is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient $a(x,u)$ can be determined by the Dirichlet to Neumann map under some additional hypotheses. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \section{Introduction} In this article, we study the inverse boundary-value problem (IBVP) for the semilinear equation \begin{equation} \label{e1.1} \begin{gathered} L_a(u):=\Delta u+a(x,u)=0\quad\text{in } \Omega\subset \mathbb{R}^n,\\ u|_{\partial\Omega}=f,\quad f\in C^{2,\alpha}(\partial\Omega), \end{gathered} \end{equation} where $0<\alpha<1$ and $\Omega\subset \mathbb{R}^n$ is a bounded domain with smooth boundary. We assume that the coefficient of the equation satisfies \begin{gather} a(x,u), a_u(x,u)\in C^\alpha(\bar\Omega\times R), \label{e1.2}\\ a_u(x,u)\leq 0. \label{e1.3} \end{gather} Then the Dirichlet problem \eqref{e1.1} has an unique solution $u\in C^{2,\alpha}(\bar\Omega)$ \cite{GT,LaUr}. We define the nonlinear Dirichlet to Neumann map $\Lambda_a$: \[ \Lambda_a(f)=\frac{\partial u}{\partial\nu}\Big|_{\partial\Omega}, \] where $\nu$ is the unit outer normal on the boundary $\partial\Omega$. The inverse problem is to recover $a(x,u)$ from knowledge of $\Lambda_a$. It was shown in \cite{IS} that if $a(x,u)$ satisfies the condition \begin{equation} \label{e1.4} a(x,0)=0, \end{equation} then the uniqueness holds for the above inverse problem. In this paper we shall study the above inverse problem without the assumption \eqref{e1.4}. We first observe that in the general case, the Dirichlet to Neumann map $\Lambda_a$ does not determine the coefficient $a$ uniquely. To see the nonuniqueness, let $a$ be a coefficient satisfying \eqref{e1.2} and \eqref{e1.3} and let $\phi$ be a function satisfying \begin{equation} \label{e1.5} \phi(x)\in C^{2,\alpha}(\bar\Omega), \quad \phi|_{\partial \Omega}=\nabla \phi|_{\partial\Omega}=0. \end{equation} Define the transformation $T_\phi$ by \begin{equation} \label{e1.6} (T_\phi a)(x,u)=a(x,u+\phi(x))+\Delta\phi(x) \end{equation} Then the new coefficient $T_\phi a$ satisfies the same assumptions \eqref{e1.2} and \eqref{e1.3}. It is easy to check that $L_{T_\phi a}(u-\phi)=0$, and the assumption $\phi|_{\partial \Omega}=\nabla\phi|_{\partial\Omega}=0$ implies \[ (u-\phi)|_{\partial\Omega}=u|_{\partial\Omega},\quad \frac{\partial(u-\phi)}{\partial\nu}\Big|_{\partial\Omega} =\frac{\partial u}{\partial\nu}\Big|_{\partial\Omega}. \] Therefore, \begin{equation} \label{e1.7} \Lambda_{T_\phi a}=\Lambda_a. \end{equation} We define in the set of coefficients satisfying \eqref{e1.2} and \eqref{e1.3} an equivalence relation induced by $T_\phi$ as follows: \begin{equation} \label{e1.8} a\sim\tilde{a} \quad\text{if}\quad \tilde{a}=T_\phi a. \end{equation} Then we see from the above discussion that $\Lambda_a$ remains the same for any coefficient in the equivalence class $[a]$. Therefore, the correct uniqueness question for \eqref{e1.1} in the general setting is to ask whether $\Lambda_a$ determines $[a]$ uniquely. The main purpose of this article is to give an affirmative answer to this question. To state the result, let us define for each coefficient $a$, a set $E_a\in \mathbb{R}^n\times R$ by \begin{equation} \label{e1.9} E_a=((x,u)\subset\Omega\times R; \,\exists\text{ solution $u$ of \eqref{e1.1} with }u=u(x)), \end{equation} and the transformation of $E_a$ by $T_\phi$ by \begin{equation} \label{e1.10} T_\phi E_a =((x,u+\phi(x))\subset\Omega\times R; \,\exists\text{ solution $u$ of \eqref{e1.1} with }u=u(x)). \end{equation} \begin{theorem} \label{thm1} Given $a(x,u)$ and $\tilde{a}(x,u)$ satisfying the conditions \eqref{e1.2} and \eqref{e1.3}. If $\Lambda_a=\Lambda_{\tilde{a}}$, then there is a function $\phi$ satisfying \eqref{e1.5} such that \begin{gather} \label{e1.11} E_{\tilde{a}}=T_{-\phi} E_a, \\ \label{e1.12} \tilde{a}(x,u)=T_\phi a(x,u)\quad \text{on }E_{\tilde{a}}. \end{gather} \end{theorem} As the example illustrates in \cite{IS}, in general the set $E_a$ in \eqref{e1.9} may be a proper subset, and thus \eqref{e1.12} is the best one can hope for. Another purpose of this article is to generalize the uniqueness result proven in \cite{IS}. The condition \eqref{e1.4} implies that zero is a constant solution of the equation \eqref{e1.1}. Thus, the equation \eqref{e1.1} with the coefficient $a$ satisfying \eqref{e1.4} must carry a common solution $u\equiv0$. We shall show that the uniqueness holds in the general case as long as a common solution, not necessarily $u\equiv0$, exists. \begin{theorem} \label{thm2} Given $a(x,u)$ and $\tilde{a}(x,u)$ satisfying the conditions \eqref{e1.2} and \eqref{e1.3}. Assume that the equation \eqref{e1.1} carries a common solution for both coefficients $a$ and $\tilde{a}$. If $\Lambda_a=\Lambda_{\tilde{a}}$, then \begin{gather} \label{e1.13} E_a=E_{\tilde{a}}, \\ \label{e1.14} a(x,u)=\tilde{a}(x,u)\quad \text{on } E_a. \end{gather} \end{theorem} Similar problems have been studied for various semilinear and quasilinear elliptic equations and systems \cite{I1, I2, IN, Su, SuU, HSu, M}. We refer to the survey papers \cite{Su2, U} for other recent developments in the field of inverse boundary value problems for semilinear and quasilinear elliptic equations. The proof of both theorems are based on a linearization argument and the uniqueness result for the linear elliptic equations. In the next section, we give a proof of Theorems \ref{thm1} and \ref{thm2}. \section{Proofs of Theorems} Let $u_f$ be the unique solution to \eqref{e1.1}. Using the argument in \cite{Su2} that is based on Schauder's estimate, we can show that the map $f\to u_f$ is differentiable in the space $C^{2,\delta}(\bar\Omega)$ for any $\delta$ with $0<\delta<\alpha$. Let $g\in C^{2,\alpha}(\partial\Omega)$. Denote by $u^\ast$ the unique solution to the linear problem \begin{equation} \label{e2.1} \Delta u^\ast+a_u(x,u_f)u^\ast=0,\quad u^\ast|_{\partial\Omega}=g. \end{equation} Then for any $\delta$, $0<\delta<\alpha$, \begin{equation} \label{e2.2} \lim_{t\to 0} \|\frac{u_{f+tg}-u_f}{t} -u^\ast\|_{C^{2,\delta}(\bar\Omega)}=0. \end{equation} We denote by $\dot{u}_{f,g}$ the solution $u^\ast$ in \eqref{e2.1} as the derivative of $u$ at $f$ in the direction $g$. Similarly, we have that $u_{f+tg}$ is differentiable in $t$ at any value of $t$ under the $C^{2,\delta}(\bar\Omega)$ norm, $0<\delta<\alpha$, and the derivative, denoted by $\dot{u}_{f+tg,g}$, satisfies \begin{equation} \label{e2.3} \Delta\dot{u}_{f+tg}+a_u(x,\nabla u_{f+tg})\cdot\nabla\dot{u}_{f+tg,g}=0,\quad \dot{u}_{f+tg,g}|_{\partial\Omega}=g. \end{equation} \begin{proof}[Proof of Theorem \ref{thm1}] Given $a(x,u)$ and $\tilde{a}(x,u)$ satisfying the conditions \eqref{e1.2} and \eqref{e1.3}. We denote by $u_f$ the unique solution of \eqref{e1.1} and by $\tilde{u}_f$ the unique solution of \eqref{e1.1} with $a$ replaced by $\tilde{a}$, where $a$ and $\tilde{a}$ are two semilinear coefficients assumed in Theorem \ref{thm1}. Under the assumption that $\Lambda_a=\Lambda_{\tilde{a}}$, we have that \begin{equation} \label{e2.4} \frac{\partial u_f}{\partial \nu}\Big|_{\partial\Omega}=\frac{\partial\,\tilde{u}_f}{\partial \nu}\Big|_{\partial\Omega} \end{equation} for each $f\in C^{2,\alpha}(\partial\Omega)$. Then for any $g\in C^{2,\alpha}(\partial\Omega)$, \begin{equation} \label{e2.5} \frac{\partial u_{f+tg}}{\partial \nu}\Big|_{\partial\Omega}=\frac{\partial\tilde{u}_{f+tg}}{\partial \nu}\Big|_{\partial\Omega},\,\forall t\in\mathbb{R}. \end{equation} Differentiating \eqref{e2.5} in $t$ at $t=0$, we get \begin{equation} \label{e2.6} \frac{\partial\dot{u}_{f,g}}{\partial \nu}\Big|_{\partial\Omega}=\frac{\partial\,\dot{\tilde{u}}_{f,g}}{\partial \nu}\Big|_{\partial\Omega}, \end{equation} where $\dot{u}_{f,g}$ and $\dot{\tilde{u}}_{f,g}$ satisfy \begin{gather} \label{e2.7} \Delta\dot{u}_{f,g}+a_u(x,u_f)\dot{u}_{f,g}=0,\quad \dot{u}_{f,g}|_{\partial\Omega}=g, \\ \label{e2.8} \Delta \dot{\tilde{u}}_{f,g}+\tilde{a}_u(x,\tilde{u}_f)\dot{\tilde{u}}_{f,g}=0,\quad \dot{\tilde{u}}_{f,g}|_{\partial\Omega}=g. \end{gather} Since for a fixed $f\in C^{2,\alpha}(\partial\Omega)$, \eqref{e2.6} holds for all $g\in C^{2,\alpha}(\partial\Omega)$, we have that the Dirichlet to Neumann maps of \eqref{e2.7} and \eqref{e2.8} must be equal; i.e. \begin{equation} \label{e2.9} \Lambda_{a_u(x,u_f)}^\ast=\Lambda_{\tilde{a}_u(x,\tilde{u}_f)}^\ast. \end{equation} Then the uniqueness results established in \cite{NSU} can be applied to obtain \begin{equation} \label{e2.10} a_u(x,u_f)=\tilde{a}_u(x,\tilde{u}_f) \quad \text{on } \Omega, \end{equation} and consequently, \begin{equation} \label{e2.11} \dot{u}_{f,g}(x)= \dot{\tilde{u}}_{f,g}(x)\,\, \text{on}\, \Omega. \end{equation} Replacing $f$ by $tf$ and $g$ by $f$ in \eqref{e2.11} we get \begin{equation} \label{e2.12} \dot{u}_{tf,f}(x)= \dot{\tilde{u}}_{tf,f}(x)\quad \text{on } \Omega,\; \forall t\in\mathbb{R}. \end{equation} In other words, \[ d/dt(u_{tf}(x))=d/dt(\tilde{u}_{tf}(x))\quad \text{on }\Omega,\; \forall t\in\mathbb{R}. \] Thus, there is a function $\phi\in C^{2,\alpha}(\bar\Omega)$, independent of $t$, such that \begin{equation} \label{e2.13} u_f(x)=\tilde u_f(x)+\phi(x),\quad x\in\Omega. \end{equation} Clearly, the function $\phi$ is independent of $f$, since by \eqref{e2.12}, each $f$ carries the same $\phi$ as $f=0$ does. Since \eqref{e2.13} holds for all $f$, we have that \eqref{e2.13} implies \eqref{e1.11}. Also, combining \eqref{e2.4} with \eqref{e2.13}, we see that $\phi$ satisfies the boundary condition in \eqref{e1.5}. Substituting the right hand side of \eqref{e2.13} in \eqref{e1.1}, we obtain \begin{equation} \label{e2.14} \Delta (\tilde{u}_f+\phi)+a(x,\tilde{u}_f+\phi)=0. \end{equation} Since \begin{equation} \label{e2.15} \Delta \tilde{u}_f+\tilde{a}(x,\tilde{u}_f)=0, \end{equation} combining \eqref{e2.14} with \eqref{e2.15} yields \[ \tilde{a}(x,\tilde{u}_f)=a(x,\tilde{u}_f+\phi)+\Delta \phi, \] which implies \eqref{e1.12}. This completes the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] Repeating the argument used in the proof of Theorem \ref{thm1}, yields that \eqref{e2.13} holds for all $f$. Since there is a common solution, we have that the function $\phi$ must be the zero function. Thus, for all $f$, \begin{equation} \label{e2.16} u_f(x)=\tilde u_f(x),\quad x\in\Omega. \end{equation} This shows that $E_a=E_{\tilde{a}}$, which is \eqref{e1.13}. Substituting \eqref{e2.16} in \eqref{e1.1}, we obtain that for all $f$, \[ a(x,u_f)=\tilde{a}(x,\tilde{u}_f), \quad x\in\Omega. \] Therefore, \[ a(x,u)=\tilde{a}(x,u), \quad (x,u)\in E_a. \] This completest the proof. \end{proof} \begin{thebibliography}{00} \bibitem{B} A. L. Bukhgeim; \emph{Recovering the potential from Cauchy data in two dimensions}, J. Inverse Ill-Posed Problems, {\bf 16} (2008), 19-34. \bibitem{GT} D. Gilbarg and N. Trudinger; \emph{Elliptic partial differential equations of second order,} Springer-Verlag, 1982. \bibitem{HSu} D. Hervas and Z. Sun; \emph{An inverse boundary value problem for quasilinear elliptic equations,} Comm. in PDE. {\bf 27} (2002), 2449-2490. \bibitem{I1} V. Isakov; \emph{On uniqueness in inverse problems for semilinear parabolic equations,} Arch. Rat. Mech. Anal. {\bf 124} (1993), 1-12. \bibitem{I2} V. Isakov; \emph{Uniqueness of recovery of some systems of semilinear partial differential equations,} Inverse Problems, {\bf 17} (2001) 607-618. \bibitem{IN} V. Isakov and A. Nachman; \emph{Global uniqueness for a two-dimensional semilinear elliptic inverse problem,} Trans. of AMS, {\bf 347} (1995), 3375-3390. \bibitem{IS} V. Isakov and J. Sylvester; \emph{Global uniqueness for a semilinear elliptic inverse problem,} Comm. Pure Appl. Math. {\bf 47} (1994), 1403-1410. \bibitem{LaUr} O. Ladyzhenskaia and N. Ural'tseva; \emph{Linear and quasilinear elliptic equations,} Academic Press, New York, 1968. \bibitem{M} J. Myers; \emph{Uniqueness of source for a class of semilinear elliptic equations,} Inverse Problems, {\bf 25} (2009). \bibitem{NSU} A. Nachman, J. Sylvester, and G. Uhlmann; \emph{An n-dimensional Borg-Levinson theorem,} Comm. Math. Phys., {\bf 115} (4), (1988), 595-605. \bibitem{Su} Z. Sun; \emph{On a quasilinear inverse boundary value problem,} Math. Z. {\bf 221} (1996), 293-305. \bibitem{Su2} Z. Sun; \emph{Inverse boundary value problems for elliptic equations,} Advances in Mathematics and Its Applications, Univ. of Sci. Tech. China, (2008), 154-175. \bibitem{SuU} Z. Sun and G. Uhlmann; \emph{Inverse problems in quasilinear anisotropic media,} Amer. J. of Math. {\bf 119} (1997), 771-797. \bibitem{U} G. Uhlmann; \emph{Electrical impedance tomography and Calder´on’s problem,} Inverse Problems 25 (2009). \end{thebibliography} \end{document}