\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 44, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/44\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions for a differential inclusion problem involving the $p(x)$-Laplacian} \author[G. Dai\hfil EJDE-2010/44\hfilneg] {Guowei Dai} \address{Guowei Dai \newline Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China} \email{daigw06@lzu.cn} \thanks{Submitted December 31, 2009. Published March 26, 2010.} \thanks{Supported by grants NNSFC 10971087 and NWNU-LKQN-09-1.} \subjclass[2000]{35J20, 35J70, 35R70} \keywords{$p(x)$-Laplacian; nonsmooth mountain pass theorem; \hfill\break\indent differential inclusion} \begin{abstract} In this article we consider the differential inclusion \begin{gather*} -\mathop{\rm div}(|\nabla u|^{p(x)-2}\nabla u)\in \partial F(x,u) \quad\text{in }\Omega,\\ u=0 \quad \text{on }\partial \Omega \end{gather*} which involves the $p(x)$-Laplacian. By applying the nonsmooth Mountain Pass Theorem, we obtain at least one nontrivial solution; and by applying the symmetric Mountain Pass Theorem, we obtain $k$-pairs of nontrivial solutions in $W_{0}^{1,p(x)}(\Omega)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} Let $\Omega$ be bounded open subset of $\mathbb{R}^{N}$ with a $C^1$-boundary $\partial\Omega$. We consider the differential inclusion problem \begin{equation} \begin{gathered} -\mathop{\rm div}(|\nabla u|^{p(x)-2}\nabla u)\in \partial F(x,u) \quad \text{in }\Omega , \\ u=0\quad \text{on }\partial \Omega, \end{gathered} \label{e1.1} \end{equation} where $p\in C( \overline{\Omega} )$ with $10:\int_{\Omega }|\frac{ u(x)}{\lambda }|^{p(x)}\mathrm{d}x\leq 1\big\} , \] and let \[ W^{1,p(x) }(\Omega ) =\{ u\in L^{p(x) }(\Omega ) :|\nabla u|\in L^{p(x) }(\Omega ) \} \] with the norm \[ \| u\| _{W^{1,p(x)}(\Omega )} = |u|_{L^{p(x)}(\Omega )}+|\nabla u|_{L^{p(x)}(\Omega )}. \] Denote by $W_{0}^{1,p(x) }(\Omega ) $ the closure of $C_{0}^{\infty }(\Omega ) $ in $W^{1,p(x) }(\Omega )$. \begin{proposition}[\cite{f6}] \label{prop2.1} The spaces $L^{p(x)}(\Omega) $, $W^{1,p(x)}(\Omega )$ and $W_{0}^{1,p(x) }(\Omega ) $ are separable and reflexive Banach spaces. \end{proposition} \begin{proposition}[\cite{f6}] \label{prop2.2} Let $\rho (u)=\int_{\Omega }|u(x)|^{p(x)}\mathrm{d}x$, for $u\in L^{p(x)}(\Omega )$. Then: \begin{itemize} \item[(1)] For $u\neq 0$, $|u|_{p(x)}=\lambda$ implies $ \rho (\frac{u}{\lambda })=1$ \item[(2)] $|u|_{p(x)}<1$ $(=1;>1) \Leftrightarrow \rho (u)<1$ $(=1;>1)$ \item[(3)] If $|u|_{p(x)}>1$, then $|u|_{p(x)}^{p^{-}}\leq \rho (u) \leq |u|_{p(x)}^{p^{+}}$ \item[(4)] If $|u|_{p(x)}<1$, then $|u|_{p(x)}^{p^{+}}\leq \rho (u) \leq |u|_{p(x)}^{p^{-}}$ \item[(5)] $\lim_{k\to +\infty }|u_{k}| _{p(x)}=0$ if and only if $\lim_{k\to +\infty }\rho (u_{k})=0$ \item[(6)] $\lim_{k\to +\infty }|u_{k}|_{p(x)}= +\infty$ if and only if $\lim_{k\to +\infty }\rho (u_{k})= +\infty$. \end{itemize} \end{proposition} \begin{proposition}[\cite{f6}] \label{prop2.3} In $W_{0}^{1,p(x) }(\Omega ) $ the Poincar\'e inequality holds; that is, there exists a positive constant $C_{0}$ such that \[ |u|_{L^{p(x)}(\Omega )}\leq C_{0}| \nabla u|_{L^{p(x)}(\Omega )}, \quad \forall u\in W_{0}^{1,p(x) }(\Omega ). \] \end{proposition} So $|\nabla u|_{L^{p(x)}(\Omega )}$ is an equivalent norm in $W_{0}^{1,p(x) }(\Omega)$. We will use the equivalent norm in the following discussion and write $\| u\|=|\nabla u|_{L^{p(x)}(\Omega )}$ for simplicity. \begin{proposition}[\cite{f6}] \label{prop2.4} (1) Assume that the boundary of $\Omega$ possesses the cone property and $p\in C(\overline{\Omega })$. If $q\in C(\overline{\Omega })$ and $1\leq q(x)\leq p^{\ast }(x)$ for $x\in \overline{\Omega }$, then there is a continuous embedding $W^{1,p(x)}(\Omega)\hookrightarrow L^{q(x)}(\Omega )$. When $1\leq q(x)< p^{\ast}(x)$, the embedding is compact, where $p^*(x)=\frac{Np(x)}{N-p(x)}$ if $p(x)0$ depending on $\Omega_{u}$. The generalized directional derivative of $f$ at the point $u\in Y$ in the direction $v\in X$ is \[ f^{0}(u,v)=\limsup_{w\to u,t\to 0}\frac{1}{t}(f(w+tv)-f(w)). \] The generalized gradient of $f$ at $u\in Y$ is \[ \partial f(u)=\big\{u^*\in X^*:\langle u^*,\varphi\rangle \leq f^{0}(u;\varphi) \text{ for all } \varphi\in Y\big\}, \] which is a non-empty, convex and $w^*$-compact subset of $Y^*$, where $\langle\cdot,\cdot\rangle$ is the duality pairing between $Y^*$ and $Y$. We say that $u\in Y$ is a critical point of $f$ if $0\in \partial f(u)$. For further details, we refer the reader to Chang \cite{c1} or Clarke \cite{c3}. \section{Main results} In this section we give two existence theorems for problem \eqref{e1.1}. For simplicity we write $X=W_{0}^{1,p(x)}(\Omega )$, denote by $c$, $c_i$, $l$ and $M$ the general positive constant (the exact value may change from line to line). The precise hypotheses are the followings: \begin{itemize} \item[(HF)] $F:\Omega\times \mathbb{R}\to \mathbb{R}$ is a Borel measurable locally Lipschitz function with $F(x,0)=0$ for a.e. $x\in \Omega$ such that \begin{itemize} \item[(i)] there exists a constant $c>0$ such that for a.e. $x\in\Omega$, all $u\in \mathbb{R}$ and all $\xi(u)\in\partial F(x,u)$ \[ |\xi(u)|\leq c(1+|u|^{\alpha(x)-1}), \] where $\alpha\in C(\overline{\Omega})$ and $p^{+}<\alpha^{-}\leq\alpha(x)0$, $\theta>p^+$ such that \begin{equation} 0<\theta F(x,u)\leq\langle \xi,u\rangle,\quad \text{a.e. } x\in \Omega, \text{ all } u\in X,\; |u|\geq M,\,\; \xi\in \partial F(x,u); \end{equation} \item[(iii)] $F(x,t)=o(|t|^{p^{+}}), t\to 0$, uniformly for a.e. $x\in\Omega$. \end{itemize} \end{itemize} Because $X$ be a reflexive and separable Banach space, there exist $e_i\in X$ and $e_j^*\in X^*$ such that \begin{gather*} X=\overline{\mathop{\rm span}\{e_i:i=1,2, \ldots\}},\quad X^*=\overline{\mathop{\rm span}\{e_j^*:j=1,2,\ldots\}},\\ \langle e_i,e_j^*\rangle = \begin{cases}1,& i=j,\\ 0, &i\neq j. \end{cases} \end{gather*} For convenience, we write $X_i = \mathop{\rm span}\{e_i\}$, $Y_k =\oplus_{i=1}^kX_i$, $Z_k = \overline{\oplus_{i=k}^\infty X_i}$. In the following we need the nonsmooth version of \emph{Palais-Smale} condition. \begin{definition} \label{def3.1} \rm We say that $I$ satisfies the nonsmooth $(\mathrm{PS})_{c}$ condition if any sequence $\{u_{n}\}\subset X$ such that $I(u_{n})\to c$ and $m(u_{n})\to 0$, as $n\to +\infty$, has a strongly convergent subsequence, where $m(u_{n})=\inf\{\| u^*\|_{X^*}:u^*\in \partial I(u_{n})\}$. \end{definition} In what follows we write the $(\mathrm{PS})_{c}$-condition as simply the $\mathrm{PS}$-condition if it holds for every level $c\in \mathbb{R}$ for the \emph{Palais-Smale} condition at level $c$. Let \[ J(u)=\int_{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\mathrm{d}x,\quad \Psi (u)=\int_{\Omega}F(x,u)\mathrm{d}x. \] By a solution of \eqref{e1.1}, we mean a function $u\in X$ to which there corresponds a mapping $\Omega\ni x\to g(x)$ with $g(x)\in \partial F(x,u)$ for a.e. $x\in \Omega$ having the property that for every $\varphi\in X$, the function $x\to g(x)\varphi(x)\in L^1(\Omega)$ and \[ \int_{\Omega}|\nabla u|^{p(x)-2}\nabla u\nabla \varphi \mathrm{d}x=\int_{\Omega}g(x)\varphi(x)\mathrm{d}x. \] By standard argument, we show that $u\in X$ is a solution of \eqref{e1.1} if and only if $0\in I(u)$, where $I(u)=J(u)-\Psi(u)$. Below we give a proposition that will be used later. \begin{proposition}[\cite{f5}] \label{prop3.1} The functional $J:X\to \mathbb{R}$ is convex. The mapping $J':X\to X^{\ast }$ is a strictly monotone, bounded homeomorphism, and is of $(S_{+})$ type; namely $u_{n}\rightharpoonup u$ and $\overline{\lim}_{n\to \infty }(J'(u_{n},u_{n}-u)\leq 0$ implies $u_{n}\to u$. \end{proposition} \begin{theorem} \label{thm3.1} If {\rm (HF)} holds, then \eqref{e1.1} has at least one nontrivial solution. \end{theorem} \begin{theorem} \label{thm3.2} If {\rm (HF)} holds and $F(x,-u)=F(x,u)$ for a.e. $x\in \Omega$ and all $u\in \mathbb{R}$, then \eqref{e1.1} has at least $k$-pairs of nontrivial solutions. \end{theorem} To prove Theorems \ref{thm3.1} and \ref{thm3.2} we need the following generalizations of the classical Mountain pass Theorem (see \cite{c1,g1,k1,k2}) and of the symmetric Mountain pass Theorem \cite{g1,g2}. \begin{lemma} \label{lem3.1} If $X$ is a reflexive Banach space, $I:X\to \mathbb{R}$ is a locally Lipschitz function which satisfies the nonsmooth {\rm (PS)c}-condition, and for some $r>0$ and $e_1\in X $ with $\| e_1\|>r$, $\max\{I(0),I(e_1)\}\leq\inf\{ I(u):\| u\|=r\}$. Then $I$ has a nontrivial critical $u\in X$ such that the critical value $c=I(u)$ is characterized by the following minimax principle \[ c=\inf_{\gamma\in\Gamma}\max_{t\in [0,1]}I(\gamma(t), \] where $\Gamma=\{\gamma\in C([0,1],X): \gamma(0)=0,\gamma(1)=e_1\}$. \end{lemma} \begin{lemma} \label{lem3.2} If $X$ is a reflexive Banach space and $I:X\to \mathbb{R}$ is even locally Lipschitz functional satisfying the nonsmooth {\rm (PS)c}-condition and \begin{itemize} \item[(i)] $I(0) = 0$; \item[(ii)] there exists a subspace $Y\subseteq X$ of finite codimension and number $\beta, \gamma > 0$, such that $\inf \{I(u) : u \in Y \cap \partial B_\gamma (0)\}\geq\beta$, where $B_\gamma = \{u \in X : \| u\| < \gamma\}$ and $\partial B_\gamma=\{u \in X : \| u\| = \gamma\}$; \item[(iii)] there is a finite dimensional subspace $V$ of $X$ with $\mathrm{dim}V>\mathrm{codim}Y$, such that $I(v) \to -\infty$ as $\| v\|\to +\infty$ for any $v\in V$. \end{itemize} Then $I$ has at least $\mathrm{dim} V-\mathrm{codim} Y$ pairs of nontrivial critical points. \end{lemma} \section{Proof main results} Let $\widehat{\Psi}$ denote its extension to $L^{\alpha(x)}(\Omega)$. We know that $\widehat{\Psi}$ is locally Lipschitz on $L^{\alpha(x)}(\Omega)$. In fact, by Proposition \ref{prop2.5}, for $u$, $v\in L^{\alpha(x)}(\Omega)$, we have \begin{equation} |\widehat{\Psi}(u)-\widehat{\Psi}(v)| \leq\Big(C_1|1|_{\alpha'(x)}+C_2\max_{w\in U}|w^{\alpha(x)-1}|_{\alpha'(x)}\Big)|u-v|_{\alpha(x)}, \end{equation} where $U$ is an open neighborhood involving $u$ and $v$, $w$ in the open segment joining $u$ and $v$. However, since $\rho(1)=|\Omega|$, by Proposition \ref{prop2.2}, we have \begin{equation} |1|_{\alpha'(x)}<\infty. \end{equation} Meanwhile, since \begin{align*} \rho(w^{\alpha(x)-1}) &= \int_\Omega |w^{\alpha(x)-1}|^{\alpha'(x)}\mathrm{d}x\\ &\leq \int_\Omega |w|^{\alpha(x)}\mathrm{d}x \\ &\leq 2^{\alpha^+}(\int_\Omega | u|^{\alpha(x)}\mathrm{d}x+\int_\Omega | u|^{\alpha(x)}\mathrm{d}x) < \infty, \end{align*} by Proposition \ref{prop2.2}, we also have $| w^{\alpha(x)-1}|_{\alpha'(x)}<\infty$. Then, using Proposition \ref{prop2.4} and \cite[Theorem 2.2]{c1}, we have that ${\Psi}=\widehat{\Psi}|_{X}$ is also locally Lipschitz, and $\partial{\Psi}(u)\subseteq\int_{\Omega}\partial F(x,u)\mathrm{d}x$ (see \cite{k3}), where $\widehat{\Psi}|_{X}$ stands for the restriction of $\widehat{\Psi}$ to $X$. The interpretation of $\partial{\Psi}(u)\subseteq\int_{\Omega}\partial F(x,u)\mathrm{d}x$ is as follows: For every $\xi\in\partial{\Psi}(u)$ there corresponds a mapping $\xi(x)\in\partial F(x,u)$ for a.e. $x\in \Omega$ having the property that for every $\varphi\in X$ the function $\xi(x)\varphi(x)\in L^1(\Omega)$ and $\langle g, \varphi\rangle=\int_{\Omega}\xi(x)\varphi(x)\mathrm{d}x$ (see \cite{k3}). Therefore, $I$ is a locally Lipschitz functional and we can use the nonsmooth critical point theory. \begin{lemma} \label{lem4.1} If hypotheses {\rm (i)} and {\rm (ii)} hold, then $I$ satisfies the nonsmooth {\rm (PS)}-condition. \end{lemma} \begin{proof} Let $\{u_{n}\}_{n\geq1}\subseteq X$ be a sequence such that $|I(u_{n})|\leq c$ for all $n\geq1$ and $m(u_{n})\to 0$ as $n\to \infty$. Then, from (ii), we have \begin{align*} c&\geq I(u_n)=\int_\Omega\frac{|\nabla u_n|^{p(x)}}{p(x)}\mathrm{d}x-\int_\Omega F(x,u)\mathrm{d}x\\ &\geq \frac{\| u_n\|^{p^-}}{p^+}-\int_\Omega \frac{1}{\theta}\langle \xi(u_n),u_n\rangle\mathrm{d}x-c_1\\ &\geq \big(\frac{1}{p^+}-\frac{1}{\theta}\big)\| u_n\|^{p^-}+\int_\Omega \frac{1}{\theta}(\| u_n\|^{p^-}-\langle \xi(u_n),u_n\rangle)\mathrm{d}x-c_1\\ &\geq \big(\frac{1}{p^+}-\frac{1}{\theta}\big)\| u_n\|^{p^-}- \frac{1}{\theta}\| \xi\|_{X^*}\| u_n\|-c_1. \end{align*} Hence $\{u_{n}\}_{n\geq1}\subseteq X$ is bounded. Thus by passing to a subsequence if necessary, we may assume that $u_{n}\rightharpoonup u$ in $X$ as $n\to \infty$. We have \[ \langle J'(u_{n}),u_{n}-u\rangle -\int_{\Omega}\xi_{n}(x)(u_{n}-u)\mathrm{d}x \leq\varepsilon_{n}\| u_{n}-u\| \] with $\varepsilon_{n}\downarrow0$, where $\xi_n\in \partial\Psi(u_n)$. From Chang \cite{c1} we know that $\xi_n\in L^{\alpha'(x)}(\Omega)$ ($\alpha'(x)=\frac{\alpha(x)}{\alpha(x)-1}$). Since $X$ is embedded compactly in $L^{\alpha(x)}(\Omega)$, we have that $u_{n}\to u$ as $n\to \infty$ in $L^{\alpha(x)}(\Omega)$. So using Proposition \ref{prop2.5}, we have \begin{equation} \int_{\Omega}\xi_{n}(x)(u_{n}-u)\,dx\to 0 \quad \text{as } n\to \infty. \end{equation} Therefore we obtain $\limsup_{n\to \infty}\langle J'(u_{n}),u_{n}-u\rangle\leq0$. But we know that $J'$ is a mapping of type ($S_{+}$). Thus we have \[ u_{n}\to u \quad \text{in } X. \] \end{proof} \begin{lemma} \label{lem4.2} If hypotheses {\rm (i), (iii)} hold, then there exist $r>0$ and $\delta>0$ such that $I(u)\geq\delta>0$ for every $u\in X$ and $\| u\|=r$. \end{lemma} \begin{proof} Let $\varepsilon>0$ be small enough such that $\varepsilon c_{0}^{p^{+}}\leq\frac{1}{2p^{+}}$, where $c_{0}$ is the embedding constant of $X\hookrightarrow L^{p^+}(\Omega)$. From hypothesis (i) and (iii), we have \begin{equation} \label{e4.4} F(x,t) \leq\varepsilon|t|^{p^{+}}+c(\varepsilon)|t|^{\alpha(x)}. \end{equation} Therefore, for every $u\in X$, we have \begin{align*} I(u)&\geq \frac{1}{p^{+}}\| u\|^{p^{+}}-\varepsilon c_{0}^{p^{+}}\| u\|^{p^{+}}-c(\varepsilon)\| u\|^{\alpha^{-}} \\ &\geq \frac{1}{2p^{+}}\| u\|^{p^{+}}-c(\varepsilon)\| u\|^{\alpha^{-}}, \end{align*} when $\| u\|\leq 1$. So we can find $r>0$ small enough and $\delta>0$ such that $I(u)\geq\delta>0$ for every $u\in X$ and $\| u\|=r$. \end{proof} \begin{lemma} \label{lem4.3} If hypotheses {\rm (ii)} holds, then there exists $u_1\in X$ such that $I(u_1)\leq0$. \end{lemma} \begin{proof} From (ii), there exist $M>0$, $c_2>0$ such that (see \cite[p. 298]{g1}) \[ F(x,u)\geq c_2|u|^{\theta} \] for all $|u|> M$ and a.e. $x\in \Omega$. Thus for $1M\}}F(x,tu)\mathrm{d}x+ \int_{\{t|u|\leq M\}}F(x,tu)\mathrm{d}x \\ &\geq c_2t^{\theta}\int_{\{t|u|> M\}}| u|^{\theta}\mathrm{d}x-c_3. \end{align*} Therefore, for $t>1$, we have \begin{equation} \label{e4.5} \begin{aligned} I(tu)&\leq \frac{1}{p^{-}}t^{p^{+}}\int_{\Omega}|\nabla u|^{p(x)}\mathrm{d}x-c_2t^{\theta}\int_{\{t| u|> M\}}|u|^{\theta}\mathrm{d}x+c_3\\ &= \frac{1}{p^{-}}t^{p^{+}}\int_{\Omega}|\nabla u|^{p(x)}\mathrm{d}x-c_2t^{\theta}\int_{\Omega}| u|^{\theta}\mathrm{d}x+c_2t^{\theta}\int_{\{t|u|\leq M\}}|u|^{\theta}\mathrm{d}x+c_3. \end{aligned} \end{equation} Noting that $c_2t^{\theta}\int_{\{t|u|\leq M_{3}\}}| u|^{\theta}$ is bounded, it follows that \[ I(tu)\to -\infty\quad \text{as } t\to +\infty. \] \end{proof} \begin{proof}[Proof of Theorem \ref{thm3.1}] Using Lemma \ref{lem3.1} and Lemmas \ref{lem4.1}-\ref{lem4.3}, we can find an $u\in X$ such that $I(u)>0$ (hence $u\neq0$) and $0\in\partial I(u)$. Hence $u\in X$ is a nontrivial solution of \eqref{e1.1}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm3.2}] Firstly, we can easily see that $I$ is even functional on $X$. We claim that $I(u)\to -\infty$ as $\| u\|\to +\infty$, for any $u\in Y_k$. We assume $\| u\|\geq1$. From \eqref{e4.4}, we have \[ I(u)\leq\frac{1}{p^{-}}\| u\|^{p^{+}}-c_4| u|_{\theta}^{\theta}+c_4\int_{\{|u|\leq M\}}| u|^{\theta}\mathrm{d}x+c_5. \] Since $Y_k$ is finite dimensional, all norms of $Y_k$ are equivalent. For $p^+<\theta$, we get $I(u)\to -\infty$ as $\| u\|\to +\infty$. We can apply Lemma \ref{lem3.2} with $V=Y_k$ and $Y=X$. From Lemma \ref{lem4.1} and Lemma \ref{lem4.2}, we get $k$-pairs of nontrivial critical points, which are solutions of \eqref{e1.1}. \end{proof} We remark that using the same method as in hte proof of Theorems \ref{thm3.1} and \ref{thm3.2}, we can obtain the same results for the corresponding differential inclusion problems with Neumann boundary data. As an example of a nonsmooth potential function $F(x,u)$ satisfying (HF), we have \[ F(x,u)=\frac{1}{p^+}|u|^{p^+}+\frac{1}{\alpha(x)}| u|^{\alpha(x)}. \] Then we can check that it satisfies all hypotheses of Theorem \ref{thm3.1}. Note that in this case. $\partial F(x,u)=|u|^{p^+-1}\mathop{\rm sgn}(u) +|u|^{\alpha(x)-1}\mathop{\rm sgn}(u)$, where \[ \mathop{\rm sgn}(u)= \begin{cases} 1, & \text{if }u>0, \\ [-1,1] &\text{if } u=0,\\ -1& \text{if } u<0. \end{cases} \] Moreover, it is obvious that $F(x,-u)=F(x,u)$. So $F$ satisfies all the hypotheses in Theorem \ref{thm3.2}. \begin{thebibliography}{00} \bibitem{a1} S. N. Antontsev and S. I. Shmarev; \emph{A Model Porous Medium Equation with Variable Exponent of Nonlinearity: Existence, Uniqueness and Localization Properties of Solutions}, Nonlinear Anal. 60 (2005), 515--545. \bibitem{a2} S. N. Antontsev and J. F. Rodrigues; \emph{On Stationary Thermo-rheological Viscous Flows}, Ann. Univ. Ferrara, Sez. 7, Sci. Mat. 52 (2006), 19--36. \bibitem{c1} K. C. Chang; \emph{Variational methods for nondifferentiable functionals and their applications to partial differential equations}, J. Math. Anal. Appl. 80 (1981), 102--129. \bibitem{c2} Y. Chen, S. Levine and M. Rao; \emph{Variable exponent, linear growth functionals in image restoration}, SIAM J. Appl.Math. 66 (4) (2006), 1383--1406. \bibitem{c3} F. H. Clarke (1983); \emph{Optimization and Nonsmooth Analysis}, Wiley, New York. \bibitem{d1} G. Dai; \emph{Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian}, Nonlinear Analysis 70 (2009) 2297--2305. \bibitem{d2} G. Dai; \emph{Infinitely many solutions for a hemivariational inequality involving the $p(x)$-Laplacian}, Nonlinear Analysis 71 (2009) 186--195. \bibitem{d3} G. Dai; \emph{Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian}, Nonlinear Analysis 70 (2009) 3755--3760. \bibitem{d4} G. Dai; \emph{Infinitely many solutions for a $p(x)$-Laplacian equation in $\mathbb{R}^{N}$}, Nonlinear Analysis 71 (2009) 1133--1139. \bibitem{d5} G. Dai; \emph{Infinitely many solutions for a differential inclusion problem in $\mathbb{R}^{N}$ involving the $p(x)$-Laplacian}, Nonlinear Analysis 71 (2009) 1116--1123. \bibitem{d6} L. Diening, P. H\"{a}st\"{o} and A. Nekvinda; \emph{Open problems in variable exponent Lebesgue and Sobolev spaces, in: P. Dr\'{a}bek}, J. R\'{a}kosn\'{\i}k, FSDONA04 Proceedings, Milovy, Czech Republic, 2004, pp.38--58. \bibitem{f1} X. L. Fan; \emph{On the sub-supersolution methods for $p(x)$-Laplacian equations}, J. Math. Anal. Appl. 330 (2007), 665--682. \bibitem{f2} X. L. Fan, Q. H. Zhang and D. Zhao; \emph{Eigenvalues of $p(x)$-Laplacian Dirichlet problem}, J. Math. Anal. Appl. 302 (2005), 306--317. \bibitem{f3} X. L. Fan and X. Y. Han; \emph{Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$}, Nonlinear Anal. 59 (2004), 173--188. \bibitem{f4} X. L. Fan, J. S. Shen and D. Zhao; \emph{Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega )$}, J. Math. Anal. Appl. 262 (2001), 749--760. \bibitem{f5} X. L. Fan and Q. H. Zhang; \emph{Existence of solutions for $p(x)$ -Laplacian Dirichlet problems}, Nonlinear Anal. 52 (2003), 1843--1852. \bibitem{f6} X. L. Fan and D. Zhao; \emph{On the Spaces $L^{p(x)}$ and $W^{m,p(x)}$}, J. Math. Anal. Appl. 263 (2001), 424--446. \bibitem{g1} L. Gasi\'{e}ski and N. S. Papageorgiou; \emph{Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems}, Chapman and Hall/CRC, Boca Raton (2005). \bibitem{g2} L. Gasi'nski and N. S. Papageorgiou; \emph{Multiple solutions for semilinear hemivariational inequalies at resonance}. Publ. Math. Debrecen 59 (2001) 121--146. \bibitem{g3} M. Galewski; \emph{A new variational for the $p(x)$-Laplacian equation}, Bull. Austral. Math. Soc. 72 (2005), 53--65. \bibitem{h1} P. Harjulehto and P. H\"{a}st\"{o}; \emph{An overview of variable exponent Lebesgue and Sobolev spaces}, Future Trends in Geometric Function Theory (D. Herron (ed.), RNC Work- shop), Jyv\"{a}skyl\"{a}, 2003, 85--93. \bibitem{k1} N. C. Kourogenis and N. S. Papageorgiou; \emph{Nonsmooth crical point theory and nonlinear elliptic equation at resonance}, KODAI Math. J. 23 (2000), 108--135. \bibitem{k2} N. C. Kourogenis and N. S. Papageorgiou; \emph{Existence theorems for elliptic hemivariational inequalities involving the $p$-laplacian}, Abstract and Applied Analysis, 7:5 (2002), 259--277. \bibitem{k3} A. Krist\'{a}ly; \emph{Infinitely many solutions for a differential inclusion problem in $\mathbb{R}^{N}$}, J. Differ. Equations 220 (2006) 511--530. \bibitem{r1} M. R\.{u}\u{z}i\u{c}ka; \emph{Electro-rheological Fluids: Modeling and Mathematical Theory}, Springer-Verlag, Berlin, 2000. \bibitem{s1} S. Samko; \emph{On a progress in the theory of Lebesgue spaces with variable exponent Maximal and singular operators}, Integral Transforms Spec. Funct. 16 (2005), 461--482. \bibitem{z1} V. V. Zhikov; \emph{Averaging of functionals of the calculus of variations and elasticity theory}, Math. USSR. Izv. 9 (1987), 33--66. \bibitem{z2} V. V. Zhikov (V. V. Jikov), S. M. Kozlov, O. A. Oleinik; \emph{Homogenization of Differential Operators and Integral Functionals} (Translated from the Russian by G. A. Yosifian), Springer-Verlag, Berlin, 1994. \bibitem{z3} V. V. Zhikov; \emph{On some variational problems}, Russian J. Math. Phys. 5 (1997), 105--116. \end{thebibliography} \end{document}