\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 49, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/49\hfil An eigenvalue problem] {Remarks on an eigenvalue problem associated with the $p$-Laplace operator} \author[A. G\u al\u a\c tan, C. Lupu, F. Preda\hfil EJDE-2010/49\hfilneg] {Alin G\u al\u a\c tan, Cezar Lupu, Felician Preda} % in alphabetical order \address{Alin G\u al\u a\c tan \newline University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO--70109, \newline Bucharest, Romania} \email{alin9d@yahoo.com} \address{Cezar Lupu \newline University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO--70109, \newline Bucharest, Romania} \email{lupucezar@yahoo.com, lupucezar@gmail.com} \address{Felician Preda \newline Institute of Mathematical Statistics and Applied Mathematics ``Gheorghe Mihoc--Caius Iacob'', Calea 13 Septembrie No. 13, Bucharest 5, RO-050711, Romania} \email{felician.preda@yahoo.com} \thanks{Submitted February 10, 2010. Published April 7, 2010.} \subjclass[2000]{35D05, 35J60, 35J70, 58E05, 15A18, 35P05} \keywords{$p$-Laplace operator; eigenvalue problem; critical point} \dedicatory{Dedicated to Professor Gheorghe Moro\c sanu on his 60-th birthday} \begin{abstract} In this article we study eigenvalue problems involving $p$-Laplace operator and having a continuous family of eigenvalues and at least one isolated eigenvalue. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction and statement of main results} Eigenvalue problems have been studied in various settings lately. The leading example of linear eigenvalue problem is to find all non-trivial solutions of the equation $\Delta u+\lambda u=0$ with boundary values zero in a given bounded domain in $\mathbb{R}^{N}$. This is called a Dirichlet boundary-value problem. In this article we study the eigenvalue problem \begin{equation}\label{e1} \begin{gathered} -\Delta_{p} u=\lambda f(x,u), \quad\text{in } \Omega\\ u=0, \quad\text{on } \partial\Omega\,, \end{gathered} \end{equation} where $\Omega\subset\mathbb{R}^{N}$ is a bounded domain with smooth boundary, $f:\Omega\times\mathbb{R}\to\mathbb{R}$ is a given function and $\lambda$ is a real number. The operator $\Delta_{p}u:=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is called $p$-harmonic, and appears in many contexts in physics reaction-diffusion problems, non-linear elasticity, etc. The $p$-harmonic operator is defined as $$ \Delta_{p}u:=\operatorname{div}(|\nabla u|^{p-2}\nabla u) =|\nabla u|^{p-4}\Big(|\nabla u|^{p-2}\Delta u+(p-2) \sum\frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} \frac{\partial^2 u}{\partial x_{i}\partial x_{j}}\Big), $$ where $1< p< N$. \begin{definition} \label{def1.1} \rm We say that $u\in W_0^{1, p}(\Omega)\setminus\{0\}$ is an eigenfunction of \eqref{e1}, if $$ \int_{\Omega}|\nabla u|^{p-2}\nabla u\nabla v\,dx =\lambda\int_{\Omega}f(x, u)v\,dx, $$ for all $ v\in W_1^{p}(\Omega)$. The corresponding real number $\lambda$ is called the eigenvalue of \eqref{e1}. \end{definition} The Sobolev space $W_0^{1, p}(\Omega)$ is the completion of $C_0^{\infty}(\Omega)$ with respect to the norm $$ \|\varphi\|=\Big(\int_{\Omega}(|\varphi|^{p}+|\operatorname{div} \varphi|^{p})dx\Big)^{1/p}. $$ As usual, the space $C_0^{\infty}(\Omega)$ is the class of smooth functions with compact support in $\Omega$. By standard elliptic regularity theory an eigenfunction is continuous. The smallest eigenvalue of \eqref{e1} can be characterized by the minimum of Rayleigh quotient, $$ \lambda_1=\inf_{u\in W_{0}^{1, p}(\Omega)\setminus\{0\}} \frac{\int_{\Omega}|\nabla u|^pdx}{\int_{\Omega}u^pdx}. $$ The study of eigenvalues involving Laplace and $p$-Laplace operators starts with the following basic problem, which represents a particular case of \eqref{e1}, \begin{equation}\label{e2} \begin{gathered} -\Delta u=\lambda u, \quad\text{in } \Omega\\ u=0, \quad\text{on } \partial\Omega\,. \end{gathered} \end{equation} As mentioned in \cite{Mihailescu-Radulescu2} problem \eqref{e2} goes back to the Riesz-Fredholm theory for compact operators on Hilbert spaces, where it is proved that it has an unbounded sequence of eigenvalues $ 0<\lambda_1<\lambda_{2}\leq\dots\leq\lambda_{n}\dots$. Also, in \cite{Mihailescu-Radulescu2} other eigenvalue problems are mentioned; for example we have problems involving $p(x)$-Laplace operator in the case when $ f(x, u)=|u|^{p(x)-2}u$ where we obtain the nonlinear model equation \begin{equation}\label{e3} \begin{gathered} -\Delta_{p(x)} u=\lambda |u|^{p(x)-2}u, \quad\text{in } \Omega\\ u=0, \quad\text{on } \partial\Omega\,, \end{gathered} \end{equation} where $p(\cdot):\overline{\Omega}\to (1, 2^{*})$ is a given continuous function and $2^{*}$ denotes the critical Sobolev exponent, $$ 2^*= \begin{cases} \frac{2N}{N-2} & \text{if }N\geq 3\\ +\infty &\text{if }N\in\{1,2\}. \end{cases} $$ By specific methods of nonlinear analysis (Ekeland variational principle, mountain pass theorem, etc) many properties are established about problem \eqref{e3}. For further discussions of this problem as well as generalizations and extensions we refer to \cite{Fan,Mihailescu-Radulescu1,Mihailescu-Radulescu2}. In the particular case, when $ f(x,u)=|u|^{p-2}u$ we obtain the eigenvalue problem \begin{equation}\label{e4} \begin{gathered} -\Delta_{p} u=\lambda |u|^{p-2}u, \quad\text{in } \Omega\\ u=0, \quad\text{on } \partial\Omega\,, \end{gathered} \end{equation} which was introduced by Lieb \cite{Lieb} in 1983 and then studied by Lindqvist in \cite{Lindqvist}, \cite{Kawohl-Lindqvist} and a modified eigenvalue problem \eqref{e4} involving the weight function $V(\cdot)$ which changes sign and has nontrivial positive part by Cuesta in \cite{Cuesta}. Inspired by the work of Mih\u ailescu and R\u adulescu from \cite{Mihailescu-Radulescu2}, we study \eqref{e1} in the case when \begin{equation}\label{e5} f(x, t)=\begin{cases} h(x, t) &\text{if }t\geq 0 \\ t &\text{if }t<0, \end{cases} \end{equation} where $h:\Omega\times [0, \infty)\to\mathbb{R}$ is a Carath\'eodory function satisfying the following properties \begin{itemize} \item[(P1)] there exists a positive constant $k\in (0,1)$ such that $|h(x, t)|\leq k\cdot t^{p-1}$, for all $t\geq 0$ and a.e. $x\in\Omega$; \item[(P2)] there exists $t_{0}>0$ such that $ H(x, t_{0})=\int_0^{t_{0}}h(x, s)ds>0$ for a.e. $x\in\Omega$; \item[(P3)] $\lim_{t\to\infty}\frac{h(x, t)}{t^{p-1}}=0$, uniformly in $x$. \end{itemize} These assumptions are related to those used by Diaz and Saa \cite{diazsaa}, to deduce an existence and uniqueness result for a quasilinear problem with Dirichlet boundary condition (see Brezis and Oswald \cite{breosw} for the semilinear case). Examples of functions satisfying properties (P1), (P2) and (P3) are mentioned in \cite{Mihailescu-Radulescu2}. Regarding \eqref{e1}, we also point out the recent work of Pucci and R\u adulescu \cite{Pucci-Radulescu} in which they study the problem for polyharmonic operator provided that $f$ satisfies the same conditions as those in \cite{Mihailescu-Radulescu2}. The main result of this article establishes a property of the \eqref{e1} provided that $f$ is defined as above and satisfies (P1), (P2) and (P3). It and shows that \eqref{e1} has both isolated eigenvalues and a continuous spectrum in a neighborhood of the origin. \begin{theorem} \label{thm1.2} Assume that $f$ is defined by the relation \eqref{e5} and satisfies properties {\rm (P1), (P2), (P3)}. Then the eigenvalue $\lambda_1$ defined by the Rayleigh quotient is isolated, and the corresponding set of eigenvectors form a cone. Moreover, there is no eigenvalue $\lambda\in (0, \lambda_1)$, but there exists $\mu_1>\lambda_1$ such that any $\lambda>\mu_1$ is an eigenvalue of \eqref{e1}. \end{theorem} \section{Proof of the main result} We shall use the method of Stamppachia and for any $u\in W_0^{1,p}(\Omega)$ we denote $ u_{\pm}=\max\{\pm u(x), 0\}$, for all $x\in\Omega$. Then $ u_{+}, u_{-}\in W_{0}^{1, p}(\Omega)$ and $$ \nabla u_+=\begin{cases} 0, &\text{if } u\leq 0\\ \nabla u, &\text{if } u>0\,, \end{cases} \quad \nabla u_-=\begin{cases} 0, &\text{if } u\geq 0\\ \nabla u, &\text{if } u<0\,, \end{cases} $$ It follows that, with $f$ given by \eqref{e5}, \eqref{e1} becomes \begin{equation}\label{e6} \begin{gathered} -\Delta_{p} u=\lambda[h(x,u_+)-u_-], \quad\text{in } \Omega\\ u=0, \quad\text{on } \partial\Omega\,, \end{gathered} \end{equation} and $\lambda>0$ is an eigenvalue of \eqref{e6} if there exists $u\in W_0^{1, p}(\Omega)\setminus\{0\}$ such that \begin{equation}\label{e7} \int_\Omega |\nabla u_+|^{p-2}\nabla u_+\nabla v\,dx -\int_\Omega |\nabla u_-|^{p-2}\nabla u_-\nabla v\,dx -\lambda\int_\Omega[h(x,u_+)-u_-]v\,dx=0\,, \end{equation} for all $v\in W_0^{1, p}(\Omega)$. To prove the main result, Theorem \ref{thm1.2}, we shall begin with the following lemmata. \begin{lemma} \label{lem2.1} There are no eigenvalues of \eqref{e6} in the interval $(0, \lambda_1)$. \end{lemma} \begin{proof} Assume that $\lambda>0$ is an eigenvalue of \eqref{e6} and $u$ is its corresponding eigenfunction. We put $v=u_{+}$ and $ v=u_{-}$ in \eqref{e7} and we infer that \begin{equation}\label{e8} \int_{\Omega}|\nabla u_{+}|^p\,dx =\lambda\int_{\Omega}h(x, u_{+})u_{+}dx \end{equation} and \begin{equation}\label{e9} \int_{\Omega}|\nabla u_{-}|^pdx =\lambda\int_{\Omega}u_{-}^pdx. \end{equation} By property (P1) and relations \eqref{e8} and \eqref{e9}, we obtain $$ \lambda_1\int_{\Omega}u_{+}^pdx \leq\int_{\Omega}|\nabla u_{+}|^pdx =\lambda\int_{\Omega}h(x, u_{+})u_{+}dx\leq\lambda\int_{\Omega}u_{+}^pdx $$ and $$ \lambda_1\int_{\Omega}u_{-}^pdx\leq\int_{\Omega}|\nabla u_{-}|^pdx =\lambda\int_{\Omega}u_{-}^pdx. $$ If $\lambda$ is an eigenvalue of problem \eqref{e6}, then the corresponding eigenvector $u$ is not null and thus, at least one of the eigenfunctions $u_{+}$ and $u_{-}$ is not the zero function. This means that $\lambda$ is an eigenvalue of \eqref{e6}, and by the definition of the Rayleigh quotient, $\lambda\geq\lambda_1$. \end{proof} \begin{lemma} \label{lem2.2} $\lambda_1$ is an eigenvalue of \eqref{e6}, and is isolated. Moreover, the set of eigenvectors corresponding to $\lambda_1$ form a cone. \end{lemma} \begin{proof} Indeed, as we already pointed out, $\lambda_1$ is the smallest eigenvalue of \eqref{e2}, it is simple, that is, all the associated eigenfunctions are merely multiples of each other (see, e.g., Gilbarg and Trudinger \cite{Gilbarg-Trudinger}) and the corresponding eigenfunctions of $\lambda_1$ never change signs in $\Omega$. In other words, there exists $e_1\in W_0^{1, p}(\Omega)\setminus\{0\}$, with $e_1(x)<0$ for any $x\in\Omega$ such that $$ \int_\Omega |\nabla e_1|^{p-2}\nabla e_1\nabla v\,dx -\lambda_1\int_\Omega e_1v\,dx=0\,, $$ for any $v\in W_0^{1, p}(\Omega)$. Thus, we have $(e_1)_+=0$ and $(e_1)=-e_1$ and we deduce that relation \eqref{e7} holds with $u=e_1\in W_0^{1, p}(\Omega)\setminus\{0\}$ and $\lambda=\lambda_1$. In other words, $\lambda_1$ is an eigenvalue of \eqref{e1} and the set of its corresponding eigenvectors lies in a cone of $W_{0}^{1, p}(\Omega)$. Now, we prove that $\lambda_1$ isolated in the set of eigenvalues of problem \eqref{e6}. Indeed, by the Lemma \ref{lem2.1} we have that there does not exist an eigenvalue of \eqref{e6} in the interval $(0, \lambda_1)$. On the other hand it is clear that if $\lambda$ is also an eigenvalue of \eqref{e6} for which $u_{+}$ is not identically zero, then we have $$ \lambda_1\int_\Omega u_+^p\,dx\leq\int_\Omega|\nabla u_+|^p\,dx =\lambda\int_\Omega h(x,u_+)u_+\,dx \leq\lambda k \int_\Omega u_+^p\,dx\,, $$ and thus since $k\in (0,1)$ we have $\lambda\geq\frac{\lambda_1}{k}>\lambda_1$. This means that for any eigenvalue $\lambda\in (0, \lambda_1/k)$ of \eqref{e6} we must have $u_{+}=0$. It follows that $\lambda$ is an eigenvalue of \eqref{e2} with the corresponding eigenfunction negative in $\Omega$. As it has been already noticed, the set of eigenvalues of \eqref{e2} is discrete and $\lambda_1<\lambda_{2}$. Now, let us consider $\epsilon=\min\{\lambda_1/k, \lambda_{2}\}$ and we have that $\epsilon>\lambda_1$ and any $\lambda\in (\lambda_1, \epsilon)$ cannot be an eigenvalue of \eqref{e2} and \eqref{e6} and thus $\lambda_1$ is isolated in the set of eigenvalues of \eqref{e6}. \end{proof} Next, we show that there exists $\mu_1>0$ such that any $\lambda\in(\mu_1,\infty)$ is an eigenvalue of \eqref{e6}. With that end in view, we consider the eigenvalue problem \begin{equation}\label{e10} \begin{gathered} -\Delta_{p} u=\lambda h(x,u_+), \quad\text{in } \Omega\\ u=0, \quad\text{on } \partial\Omega\,, \end{gathered} \end{equation} We say that $\lambda$ is an eigenvalue of \eqref{e10} if there exists $u\in W_0^{1, p}(\Omega)\setminus\{0\}$ such that $$ \int_\Omega |\nabla u|^{p-2}\nabla u\nabla v\,dx -\lambda\int_\Omega h(x,u_+)v\,dx=0\,, $$ for any $v\in W_0^{1, p}(\Omega)$. We notice that if $\lambda$ is an eigenvalue for \eqref{e10} with the corresponding eigenfunction $u$, then taking $v=u_-$ in the above relation we deduce that $u_-=0$, and thus, we find $u\geq 0$. In other words, the eigenvalues of \eqref{e10} possesses nonnegative corresponding eigenfunctions. Moreover, the above discussion show that an eigenvalue of \eqref{e10} is an eigenvalue of \eqref{e6}. Now, for each $\lambda>0$ we define the energy functional associated to \eqref{e10} by $I_\lambda:W_0^{1, p}(\Omega)\rightarrow\mathbb{R}$, $$ I_\lambda(u)=\frac{1}{p}\int_\Omega|\nabla u|^p\,dx -\lambda\int_\Omega H(x,u_+)\,dx\,, $$ where $H(x,t)=\int_0^th(x,s)\,ds$. Standard arguments show that $I_\lambda\in C^1(W_0^{1, p}(\Omega),\mathbb{R})$ with the derivative given by $$ \langle I_\lambda^{\prime}(u),v\rangle =\int_\Omega |\nabla u|^{p-2}\nabla u\nabla v\,dx -\lambda\int_\Omega h(x,u_+)v\,dx\,, $$ for any $u$, $v\in W_0^{1, p}(\Omega)$. Thus, $\lambda>0$ is an eigenvalue of \eqref{e10} if and only if there exists a critical nontrivial point of functional $I_\lambda$. \begin{lemma} \label{lem2.3} The functional $ I_{\lambda}$ defined as above is bounded from below and coercive. Moreover, there exists $\lambda^{\star}>0$ such that assuming that $\lambda\geq\lambda^{\star}$ we have $\inf_{W_{0}^{1, p}(\Omega)}I_{\lambda}<0$. \end{lemma} \begin{proof} By (P3) we deduce that $$ \lim_{t\rightarrow\infty}\frac{H(x,t)}{t^p}=0,\quad \text{uniformly in }\Omega\,. $$ Then for a given $\lambda>0$ and $\lambda_1$ defined as the Rayleigh quotient, there exists a positive constant $C_\lambda>0$ such that $$ \lambda H(x,t)\leq\frac{\lambda_1}{2p}t^p+C_\lambda,\quad \forall\;t\geq 0,\text{ a.e. } x\in\Omega\,. $$ Thus, for any $u\in W_0^{1, p}(\Omega)$, $$ I_\lambda(u)\geq\frac{1}{p}\int_\Omega|\nabla u|^p\,dx -\frac{\lambda_1}{2p}\int_\Omega u^p\,dx-C_\lambda|\Omega| \geq\frac{1}{2p}\|u\|^p-C_\lambda|\Omega|\,, $$ where by $\|\cdot\|_{p}$ is denoted the norm on $W_0^{1, p}(\Omega)$, that is $\|u\|_{p}=(\int_\Omega |\nabla u|^p\,dx)^{1/p}$. This shows that $I_\lambda$ is bounded from below and coercive. Now, we prove the second part of the lemma. We employ the property (P2) which states that there exists $t_{0}>0$ such that $H(x, t_{0})>0$ a.e. for all $x\in\overline{\Omega}$. Let us consider $\Omega_1\subset\Omega$ be a sufficiently large compact subset and $u_{0}\in C_{0}^{1}(\Omega)\subset W_{0}^{1, p}(\Omega)$ such that $u_{0}(x)=t_{0}$ for $x\in\Omega_1$ and $0\leq u_{0}(x)\leq t_{0}$ for any $x\in\Omega-\Omega_1$. By (P1) we have $$ \int_{\Omega}H(x, u_{0})dx\geq\int_{\Omega_1}H(x, t_{0})dx -\int_{\Omega-\Omega_1}ku_{0}^pdx \geq\int_{\Omega}H(x, t_{0})dx-kt_{0}^p|\Omega-\Omega_1|>0. $$ This means that $ I_{\lambda}(u_{0})<0$ for sufficiently large $\lambda>0$ and thus, we obtain $\inf_{W_0^{1,p}(\Omega)}I_{\lambda}<0$. \end{proof} By Lemma \ref{lem2.3}, the functional $I_{\lambda}$ has a negative global minimum for $\lambda>0$ sufficiently large and any large $\lambda>0$ is an eigenvalue of \eqref{e1} and thus is an eigenvalue of \eqref{e6}. By Lemma \ref{lem2.1}, the statement of Theorem \ref{thm1.2} holds. \subsection*{Acknowledgments} The second author is grateful to Department of Mathematics of the Central European University, Budapest for hospitality during February--May 2010 when this research has been completed. C.L. thanks ``Dinu Patriciu" Foundation for support. \begin{thebibliography}{00} \bibitem{Annane} A. Annane; \emph{Simplicite et isolation de la premiere valeur propre du $p$-Laplacian avec poids}, C. R. Acad. Sci. Paris, Ser. I Math., \textbf{305}(1987), 725--728. \bibitem{breosw} H. Brezis, L. Oswald; \emph{Remarks on sublinear elliptic equations}, Nonlinear Anal., T.M.A., {\bf 10}(1986), 55--64. \bibitem{Cuesta} M. Cuesta; \emph{Eigenvalue problems for the $p$-Laplacian with indefinite weight}, Electr. J. Diff. Equ., \textbf{9}(2001), 1--9. \bibitem{diazsaa} J. I. Diaz, J. E. Saa; \emph{Existence et unicit\'e des solutions positives pour certaines \'equations elliptiques quasilin\'eaires}, C. R. Acad. Sci. Paris, Ser. I {\bf 305}(1987), 521--524. \bibitem{Fan} X. Fan; \emph{Remarks on eigenvalue problems involving $p(x)$-Laplacian}, J. Math. Anal. Appl., \textbf{352}(2009), 85--332. \bibitem{Fan-Zhang-Zhao} X. Fan, Q. Zhang, D. Zhao; \emph{Eigenvalues of $p(x)$-Laplacian Dirichlet problem}, J. Math. Anal. Appl., \textbf{302}(2005), 306--317. \bibitem{Filippucci-Pucci-Radulescu} R. Fillipucci, P. Pucci, V. R\u adulescu; \emph{Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions}, Comm. Par. Diff. Equat., \textbf{33}(2008), 706--717. \bibitem{Gilbarg-Trudinger} D. Gilbarg, N. Trudinger; \emph{Elliptic Partial Differential Equations of Second Order}, Springer Verlag, Berlin, 1998. \bibitem{Kawohl-Lindqvist} B. Kawohl, P. Lindqvist; \emph{Positive eigenfunctions for the $p$-Laplace operator revisited}, Analysis(Munich), \textbf{26}(2006), 545--550. \bibitem{Le} A. L\^e; \emph{Eigenvalue problems for the $p$-Laplacian}, Nonlin. Anal., \textbf{64}(2006), 1057--1099. \bibitem{Lieb} E. Lieb; \emph{On the lowest eigenvalue of the Laplacian for the intersection of two domains}, Invent. Math., \textbf{74}(1983), 441--448. \bibitem{Lindqvist} P. Lindqvist; \emph{On the equation $\operatorname{div}(|\nabla u|^{p-2}\nabla u) +\lambda|u|^{p-2}u=0$}, Proc. Amer. Math. Soc., \textbf{109}(1990), 157--164. \bibitem{Liu-Li} S. Liu, S. Li; \emph{On Existence of solutions for asymptotically ``linear" $p$-Lapacian equations}, Bull. London Math. Soc., \textbf{36}(2004), 81--87. \bibitem{Mihailescu-Radulescu1} M. Mih\u ailescu, V. R\u adulescu; \emph{On a nonhomogenous quasilinear eigenvalue problem in Sobolev spaces with variable exponent}, Proc. Amer. Math. Soc., \textbf{135}(2007), 2929--2937. \bibitem{Mihailescu-Radulescu2} M. Mih\u ailescu, V. R\u adulescu; \emph{Sublinear eigenvalue problems associated to the Laplace operator revisited}, Israel J. Math., in press. \bibitem{Mugnai} D. Mugnai; \emph{Bounce on $p$-Laplacian}, Comm. Pure and Appl. Anal., \textbf{2}(2003), 363--371. \bibitem{Pucci-Radulescu} P. Pucci, V. R\u adulescu; \emph{Remarks on a polyharmonic eigenvalue problem}, C. R. Acad. Sci. Paris, Ser. I, \textbf{348}(2010), 161--164. \end{thebibliography} \end{document}