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ALMOST AUTOMORPHIC SOLUTIONS OF NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

GISÈLE MASSENGO MOPHOU, GASTON M. N’GUÉRÉKATA

Abstract. In this article, we prove the existence and uniqueness of almost

automorphic solutions to the non-autonomous evolution equation

d

dt
(u(t)−F1(t, B1u(t))) = A(t)(u(t)−F1(t, Bu(t)))+F2(t, u(t), B2u(t)), t ∈ R

where A(t) generates a hyperbolic evolution family U(t, s) (not necessarily
periodic) in a Banach space, and B1, B2 are bounded linear operators. The

results are obtained by means of fixed point methods.

1. Introduction

In [16], the author studied the existence and uniqueness of almost automorphic
mild solution to the equation

d

dt
u(t) = Au(t) + f(t, u(t)), t ∈ R

where A is the generator of an exponentially stable semigroup of operators in a
Banach space X and f : R × X → X is an almost automorphic function with
respect to t ∈ R (in Bochner’s sense [5]). In [6], the authors extended this result
to the hyperbolic case in intermediate Banach spaces. Goldstein and N’Guérékata
[11] have also studied this problem in the very original multi almost automorphic
situation, i.e. when f takes the form f(t, x) = P (t)Q(x). Most of the contributions
to this problem deal with an operator A which is time independent, or A(t) being
periodic. Recently Ding, N’Guérékata and Wei [9] have studied the case where A(t)
is not necessarily periodic.

Our aim in this paper is to continue this study for the more general case of the
following functional differential equation
d

dt
(u(t)− F1(t, B1u(t))) = A(t)(u(t)− F1(t, B1u(t)) + F2(t, u(t), B2u(t)), t ∈ R

(1.1)
where the family {A(t) : t ∈ R} of operators in X generates a hyperbolic evolution
family {U(t, s), t ≥ s}, F1 : R × X → X and F2 : R × X × X → X are two almost
automorphic functions satisfying a suitable Lipschitz condition.
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In the particular case where there exists τ ∈ R such that Bi : BC(R, X) → X are
shift operators Biu(t) := u(t− τ) for all t ∈ R, i = 1, 2, Eq. (1.1) turns out to be a
neutral functional differential equation with delay. Such equations arise as models
in several physical phenomena (see [12, 13, 19] and the reference therein). In [15],
the author studied the existence of periodic solutions of (1.1) assuming that A(t)
is a nonsingular n×n matrix with continuous real-valued functions as its elements.
The same equation is considered in [1] where the existence and uniqueness of a mild
almost periodic solution is established when A(t) generates an exponentially stable
evolution family and F ′2 is bounded. This last condition on F2 is too restrictive when
it comes to applications. So in this paper, we drop it. We will show the existence
and the uniqueness of a mild almost automorphic solution of equation (1.1) under
much broader conditions. We use the Krasnoselskii’s fixed point theorem and the
contraction mapping principle. To the best of our knowledge, the results here are
new even in the context of almost periodicity.

In this article, we denote by (X, ‖ · ‖) a real Banach space and by L(X) the
Banach space of all bounded linear operators from X to itself endowed with the
norm

‖T‖L(X) = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}.
The work is organized as follows. In Section 2, we recall some definitions and

facts on almost automorphic functions and evolutionary process and present our
assumptions. Section 3 is devoted to the results.

2. Preliminaries

Let us first recall some properties of almost automorphic functions. Detailed
presentations can be found in [17, 18].

Definition 2.1 (S. Bochner). Let f : R → X be a bounded continuous function.
We say that f is almost automorphic if for every sequence of real numbers {sn}∞n=1,
we can extract a subsequence {τn}∞n=1 such that

g(t) = lim
n→∞

f(t + τn)

is well-defined for each t ∈ R, and

lim
n→∞

g(t− τn) = f(t)

for each t ∈ R. Denote by AA(R, X) the set of all such functions.

Definition 2.2. A continuous function f : R × X → X is said to be almost auto-
morphic if f(t, x) is almost automorphic in t ∈ R uniformly for all x ∈ B, where B
is any bounded subset of X.

Definition 2.3. A continuous function f : R × X × Y → X is said to be almost
automorphic if f(t, x, y) is almost automorphic in t ∈ R uniformly for all (x, y) ∈ B,
where B is any bounded subset of X× Y.

Clearly when the convergence above is uniform in t ∈ R, f is almost periodic.
The function g is measurable, but not continuous in general.

If the limit in the Definitions above is uniform on any compact subset K ⊂ R,
we say that f is compact almost automorphic.

Theorem 2.4. Assume that f , f1, and f2 are almost automorphic and λ is any
scalar, then the following hold:
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(i) λf and f1 + f2 are almost automorphic,
(ii) fτ (t) := f(t + τ), t ∈ R is almost automorphic,
(iii) f̄(t) := f(−t), t ∈ R is almost automorphic,
(iv) The range Rf of f is precompact, so f is bounded.

For the proof of the above theorem see [17, Theorems 2.1.3 and 2.1.4].

Theorem 2.5. If {fn} is a sequence of almost automorphic X-valued functions
such that fn → f uniformly on R, then f is almost automorphic.

For the proof of the above theorem, see [17, Theorem 2.1.10].

Remark 2.6. If we equip AA(X), the space of almost automorphic functions with
the sup norm

‖f‖∞ = sup
t∈R

‖f(t)‖

then it turns out to be a Banach space. If we denote KAA(X), the space of compact
almost automorphic X-valued functions, then we have

AP (X) ⊂ KAA(X) ⊂ AA(X) ⊂ BC(R, X) ⊂ L∞(R, X). (2.1)

Theorem 2.7. If f ∈ AA(X) and its derivative f ′ exists and is uniformly contin-
uous on R, then f ′ ∈ AA(X).

For the proof of the above theorem, see [17, Theorem 2.4.1].

Theorem 2.8. Let us define F : R → X by F (t) =
∫ t

0
f(s)ds where f ∈ AA(X).

Then F ∈ AA(X) iff RF = {F (t)| t ∈ R} is precompact.

For the proof of the above theorem, see [17, Theorem 2.4.4].
As a big difference between almost periodic functions and almost automorphic

functions we remark that an almost automorphic function is not necessarily uni-
formly continuous, as shown in the following example due to Levitan (see also [4,
Example 3.3])

Example 2.9. The function

f(t) := sin
( 1
2 + cos t + cos

√
2t

)
is almost automorphic, but not uniformly continuous. Therefore, it is not almost
periodic.

We denote respectively by AA(R, X), AA(R × X, X) and AA(R × X × Y, X),
the set of all almost automorphic functions f : R → X, f : R × X → X and
f : R × X × Y → X. With the sup norm supt∈R ‖f(t)‖, supt∈R ‖f(t, x)‖ and
supt∈R ‖f(t, x, y)‖ these spaces turn out to be Banach spaces. We also need to
recall some notation about evolution family.

Definition 2.10. A set {U(t, s) : t ≥ s, t, s ∈ R} of bounded linear operator on X
is called an evolution family (or evolutionary process) if

(i) U(s, s) = I, U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s and t, r, s ∈ R,
(ii) (t, s) ∈ {(τ, σ) ∈ R2 : τ ≥ σ} → U(t, s) is strongly continuous.

Definition 2.11. An evolution family U(t, s) is called hyperbolic (or has exponen-
tial dichotomy) if there are projections P (t), t ∈ R, being uniformly bounded and
strongly continuous in t, and constants N, δ > 0 such that
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(i) U(t, s)P (s) = P (t)U(t, s) for all t ≥ s,
(ii) the restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for all t ≥ s (and we

set UQ(s, t) = UQ(t, s)−1),
(iii) ‖U(t, s)P (s)‖L(X) ≤ Ne−δ(t−s) and ‖UQ(s, t)Q(t)‖L(X) ≤ Ne−δ(t−s) for all

t ≥ s. Here and below Q = I − P.

Observe that if U(t, s) is hyperbolic, then the Green’s function Γ(t, s), corre-
sponding to U(t, s) and P (.) defined by:

Γ(t, s) =

{
U(t, s)P (s), t ≥ s, t, s ∈ R,

−UQ(t, s)Q(s), t < s, t, s ∈ R

satisfies

‖Γ(t, s)‖L(X) =

{
Ne−δ(t−s), t ≥ s, t, s ∈ R,

Neδ(t−s), t < s, t, s ∈ R.
(2.2)

For more details on the exponential dichotomy concept, we refer to [7, 8, 10].
In this paper, A(t), t ∈ R, satisfy the ‘Acquistapace-Terreni’ conditions intro-

duced in [3], that is
(H0) there exist constants λ0 ≥ 0, θ ∈ (π

2 , π), L,K ≥ 0, and α, β ∈ (0, 1] with
α + β > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− λ0), ‖R(λ, A(t)− λ0)‖ ≤
K

1 + |λ|
and

‖(A(t)− λ0)R(λ, A(t)− λ0)[R(λ0, A(t))−R(λ0, A(s))]‖ ≤ L|t− s|α|λ|−β

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C \ {0} : | arg λ| ≤ θ}.

Remark 2.12. If (H0) holds, then there exists a unique evolution family
{U(t, s)}−∞<s≤t<∞ on X, which governs the linear equation

d

dt
v(t) = A(t)v(t).

This follows from [2, Theorem 2.3]; see also [3, 20, 21].

Now we state the following assumptions:
(H1) The evolution family U(t, s) generated by A(t) has an exponential di-

chotomy with constants N, δ > 0, dichotomy projections P (t), t ∈ R, and
Green’s function Γ(t, s).

(H2) For every real sequence (sm), there exists a subsequence (sn) such that

Λ(t, s)x = lim
n→∞

Γ(t + sn, s + sn)x

is well defined for each x ∈ X and t, s ∈ R. Moreover,

lim
n→∞

Λ(t− sn, s− sn)x = Γ(t, s)x

for each x ∈ X and t, s ∈ R.
(H3) F1 ∈ AA(R × X, X) and F2 ∈ AA(R × X × X, X) and there exist positive

constants µ1, µ2, µ3 such that

‖F1(t, u1)− F1(t, u2)‖ ≤ µ1‖u1 − u2‖, u1, u2 ∈ X (2.3)
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and

‖F2(t, u1, v1)− F2(t, u2, v2)‖ ≤ µ2‖u1 − u2‖+ µ3‖v1 − v2‖, (2.4)

where ui, vi ∈ X, i = 1, 2, and t ∈ R.
We refer to [9] for more details on assumption (H2).

3. Main results

Definition 3.1. A continuous function u : R → X is called a mild solution of (1.1)
if

u(t)−F1(t, B1u(t)) = U(t, a)(u(a)−F1(a,B1u(a)))+
∫ t

a

U(t, s)F2(s, u(s), B2u(s))ds

(3.1)
for any t ≥ a, t, a ∈ R.

Lemma 3.2. Assume that (H1)–(H3) hold and u ∈ AA(R, X). Then the functions
defined by φ1(·) := F1(·, B1u(·)) and φ2(·) := F2(·, u(·), B2u(·)) belong to AA(R, X).
Consequently F1 and F2 are bounded functions.

Proof. First let us observe that if u ∈ AA(R, X) then Biu(·) ∈ AA(R, X) [17,
Corollary 2.1.6]. Then in view of [17, Theorem 2.2.5], we deduce the results since
(H3) holds. �

Now, if u is a mild solution of (1.1), then following [7] it can be shown that it
satisfies the representation

u(t)− F1(t, B1u(t)) =
∫

R
Γ(t, s)F2(s, u(s), B2u(s))ds (3.2)

Lemma 3.3. Assume that (H1)–(H3) hold and u ∈ AA(X, R). Then the function
Φ defined by

Φ(t) =
∫ +∞

−∞
Γ(t, s)F2(s, u(s), B2u(s))ds

is in AA(R, X)

Proof. Based on Lemma 3.2 it suffices to apply Theorem 2.2 in [9] with f(·) =
F2(·, u(·), B2u(·)). �

Theorem 3.4. Assume that (H1)–(H3) hold, and

µ1‖B‖+
2N

δ
(µ2 + µ3) < 1. (3.3)

Then (1.1) has a unique almost automorphic mild solution which is given by (3.2).

Proof. Note that the operator Q : AA(R, X) → AA(R, X) given by

(Qu)(t) = F1(t, B1u(t)) +
∫ +∞

−∞
Γ(t, s)F2(s, u(s), B2u(s))ds

is well defined.
Let u ∈ AA(R, X); then in view of Lemma 3.2, the function t → F1(t, B1u(t))

belongs to AA(R, X). Also the function t →
∫ +∞
−∞ Γ(t, s)F2(s, u(s), B2u(s))ds being

in AA(R, X) according to Lemma 3.3; so we deduce that (Qu) ∈ AA(R, X).
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Now we choose r such that

r > sup
t∈R

‖F1(t, 0)‖+
2N

δ
sup
s∈R

‖F2(s, 0, 0)‖+
(
µ1‖B1‖L(X) +

2N

δ
(µ2 + µ3‖B2‖L(X))

)
r

and we set

Br = {u ∈ AA(R, X) : ‖u‖AA(R,X) = sup
t∈R

‖u(t)‖ ≤ r}.

For t ∈ R, we obtain

‖(Qu)(t)‖ ≤ ‖F1(t, B1u(t))‖+
∫ +∞

−∞
‖Γ(t, s)F2(s, u(s), B2u(s))‖ds

≤ ‖F1(t, B1u(t))‖+
∫ t

−∞
Ne−δ(t−s)‖F2(s, u(s), B2u(s))‖ds

+
∫ +∞

t

Ne−δ(s−t)‖F2(s, u(s), B2u(s))‖ds

≤ ‖F1(t, 0)‖+ µ1‖B1u(t))‖

+
∫ t

−∞
Ne−δ(t−s)(‖F2(s, 0, 0)‖+ µ2‖u(s)‖+ µ3‖B2u(s))‖)ds

+
∫ +∞

t

Ne−δ(s−t)(‖F2(s, 0, 0)‖+ µ2‖u(s)‖+ µ3‖B2u(s))‖)ds

≤ sup
t∈R

‖F1(t, 0)‖+ µ1r‖B1‖L(X)

+
[ ∫ t

−∞
Ne−δ(t−s)ds

][
sup
s∈R

‖F2(s, 0, 0)‖+ (µ2 + µ3‖B2‖L(X))r
]

+
[ ∫ +∞

t

Ne−δ(s−t)ds
][

sup
s∈R

‖F2(s, 0, 0)‖+ (µ2 + µ3‖B1‖L(X))r
]

Hence we deduce hat

sup
t∈R

‖(Qu)(t)‖ ≤ sup
t∈R

‖F1(t, 0)‖+
2N

δ
sup
s∈R

‖F2(s, 0, 0)‖

+ (µ1‖B1‖L(X) +
2N

δ
(µ2 + µ3‖B2‖L(X)))r ≤ r.

Thus Qu ∈ Br. This implies that Q(Br) ⊂ Br.
For u, v ∈ Br, we have

‖(Qu)(t)− (Qv)(t)‖
≤ ‖F1(s,B1u(s))− F1(s,B1v(s))‖

+
∫ +∞

−∞
‖Γ(t, s)‖‖F2(s, u(s), B2u(s))− F2(s, v(s), B2v(s))‖ds

≤ µ1‖B1u(s)−B1v(s)‖

+
∫ t

−∞
Ne−δ(t−s)‖F2(s, u(s), B2u(s))− F2(s, v(s), B2v(s))‖ds

+
∫ +∞

t

Ne−δ(s−t)‖F2(s, u(s), B2u(s))− F2(s, v(s), B2v(s))‖ds

≤ µ1‖B1‖L(X)‖u(s))− v(s)‖
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+
2N

δ
(µ2‖u(s)− v(s)‖+ µ3‖B2u(s))−B2v(s)‖)

≤
[
µ1‖B1‖L(X) +

2N

δ
(µ2 + µ3‖B2‖L(X))

]
‖u− v‖AA(R,X).

This implies

sup
t∈R

‖(Qu)(t)− (Qv)(t)‖ ≤
[
µ1‖B1‖L(X) +

2N

δ
(µ2 + µ3)‖B2‖L(X)

]
‖u− v‖AA(R,X)

and since (3.3) holds we deduce that Q is a contraction on Br. Therefore Q has a
unique fixed point u in Br, which is the mild solution of (1.1). �

Corollary 3.5. Consider the neutral functional differential equation
d

dt
(u(t)− F1(t, u(t− τ))) = A(t)u(t) + F2(t, u(t), u(t− τ)), τ, t ∈ R. (3.4)

Assume that (H1)–(H3) hold, and

µ1 +
2N

δ
(µ2 + µ3) < 1.

Then (3.4) has a unique almost automorphic mild solution which is given by (3.2)

Proof. It suffices to consider shift operators Biu(t) := u(t−τ) for all t ∈ R, i = 1, 2,
thus ‖Bi‖L(X) = 1, i = 1, 2. �

Compare the next corollary with [9, Theorem 3.1].

Corollary 3.6. Consider the equation
d

dt
u(t) = A(t)u(t) + f(t, u(t)) (3.5)

and assume that assumptions (H1), (H2) hold. Assume also that f ∈ AA(R×X, X)
and

‖f(t, u)− f(t, v)‖ < µ‖u− v‖, ∀u, v ∈ X, t ∈ R
then (3.5) has a unique mild almost automorphic solution if we let µ < δ

2N .

Proof. It suffices to apply Theorem 3.4 with F1 = 0, τ = 0, and µ2 = µ �
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