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GROWTH AND OSCILLATION OF DIFFERENTIAL
POLYNOMIALS IN THE UNIT DISC

ABDALLAH EL FARISSI, BENHARRAT BELAÏDI, ZINELAÂBIDINE LATREUCH

Abstract. In this article, we give sufficiently conditions for the solutions and

the differential polynomials generated by second-order differential equations

to have the same properties of growth and oscillation. Also answer to the
question posed by Cao [6] for the second-order linear differential equations in

the unit disc.

1. Introduction and main results

The study on value distribution of differential polynomials generated by solutions
of a given complex differential equation in the case of complex plane seems to have
been started by Bank [1]. Since then a number of authors have been working on the
subject. Many authors have investigated the growth and oscillation of the solutions
of complex linear differential equations in C, see [2, 4, 7, 10, 13, 17, 18, 19, 21, 25, 28].
In the unit disc, there already exist many results [3, 5, 6, 8, 9, 15, 16, 20, 23, 24, 29],
but the study is more difficult than that in the complex plane. Recently, Fenton-
Strumia [11] obtained some results of Wiman-Valiron type for power series in the
unit disc, and Fenton-Rossi [12] obtained an asymptotic equality of Wiman-Valiron
type for the derivatives of analytic functions in the unit disc and applied to ODEs
with analytic coefficients.

In this article, we assume that the reader is familiar with the fundamental results
and the standard notation of the Nevanlinna’s theory on the complex plane and
in the unit disc D = {z : |z| < 1}, see [14, 18, 22, 24, 26, 27]. In addition, we
will use λ(f)(λ2(f)) and λ(f)(λ2(f)) to denote respectively the exponents (hyper-
exponents) of convergence of the zero-sequence and the sequence of distinct zeros
of a meromorphic function f , ρ(f) to denote the order and ρ2(f) to denote the
hyper-order of f . See [9, 15, 20, 24] for notation and definitions.

Definition 1.1. The type of a meromorphic function f in D with order 0 < ρ(f) <
∞ is defined by

τ(f) = lim sup
r→1−

(1− r)ρ(f)T (r, f).
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Consider the linear differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0, (1.1)

where A0, A1, . . . , Ak−1 are analytic functions in D, and k is an integer, k ≥ 1.

Theorem 1.2 ([5]). Let A0(z), . . . , Ak−1(z), the coefficients of (1.1), be analytic
in D. If max{ρ(Aj) : j = 1, . . . , k − 1} < ρ(A0), then ρ(A0) 6 ρ2(f) 6 αM for all
solutions f 6≡ 0 of (1.1), where αM = max{ρM (Aj) : j = 0, . . . , k − 1}.

Recall that the order of an analytic function f in D is defined by

ρM (f) = lim sup
r→1−

log+ log+M(r, f)
log 1

1−r

,

where M(r, f) = max|z|=r |f(z)|. The following two statements hold [24, p. 205].
(a) If f is an analytic function in D, then ρ(f) 6 ρM (f) 6 ρ(f) + 1.
(b) There exist analytic functions f in D which satisfy ρM (f) 6= ρ(f). For

example, let µ > 1 be a constant, and set

ψ(z) = exp{(1− z)−µ},
where we choose the principal branch of the logarithm. Then ρ(ψ) = µ− 1
and ρM (ψ) = µ, see [9].

In contrast, the possibility that occurs in (b) cannot occur in the whole plane C,
because if ρ(f) and ρM (f) denote the order of an entire function f in the plane C
(defined by the Nevanlinna characteristic and the maximum modulus, respectively),
then it is well know that ρ(f) = ρM (f).

Theorem 1.3 ([5]). Under the hypotheses of Theorem 1.2, if ρ2(Aj) < ∞, (j =
0, . . . , k − 1), then every solution f 6≡ 0 of (1.1) satisfies λ2(f − z) = ρ2(f).

Consider a linear differential equation of the form

f ′′ +A1(z)f ′ +A0(z)f = F, (1.2)

where A1(z), A0(z) 6≡ 0, F (z) are analytic functions in the unit disc D = {z : |z| <
1}. It is well-known that all solutions of equation (1.2) are analytic functions in D
and that there are exactly two linearly independent solutions of (1.2); see [15].

Many important results have been obtained on the fixed points of general tran-
scendental meromorphic functions for almost four decades, see [28]. However, there
are few studies on the fixed points of solutions of differential equations, specially in
the unit disc. Chen [7] studied the problem on the fixed points and hyper-order of
solutions of second order linear differential equations with entire coefficients. After
that, there were some results which improve those of Chen, see [2, 10, 19, 21, 25]. It
is natural to ask what can be said about similar situations in the unit disc D. Re-
cently, Cao [6] investigated the fixed points of solutions of linear complex differential
equations in the unit disc.

The main purpose of this article is to give sufficiently conditions for the solutions
and the differential polynomials generated by the second order linear differential
equation (1.2) to have the same properties of the growth and oscillation. Also, we
answer to the following question posed by Cao [6]:

How about the fixed points and iterated order of differential poly-
nomial generated by solutions of linear differential equations in the
unit disc?
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Before we state our results, we denote

α0 = d0 − d2A0, β0 = d2A0A1 − (d2A0)′ − d1A0 + d′0, (1.3)

α1 = d1 − d2A1, β1 = d2A
2
1 − (d2A1)′ − d1A1 − d2A0 + d0 + d′1, (1.4)

h = α1β0 − α0β1, (1.5)

ψ(z) =
α1

(
ϕ′ − (d2F )′ − α1F

)
− β1(ϕ− d2F )

h
, (1.6)

where A0, A1, d0, d1, d2, ϕ and F are analytic functions in the unit disc D = {z :
|z| < 1} with finite order.

Theorem 1.4. Let A1(z), A0(z) 6≡ 0 and F be analytic functions in D, of finite
order. Let d0, d1, d2 be analytic functions in D that are not all equal to zero with
ρ(dj) < ∞ (j = 0, 1, 2) such that h 6≡ 0, where h is defined by (1.5). If f is
an infinite order solution of (1.2) with ρ2(f) = ρ, then the differential polynomial
gf = d2f

′′ + d1f
′ + d0f satisfies

ρ(gf ) = ρ(f) = ∞, ρ2(gf ) = ρ2(f) = ρ. (1.7)

Theorem 1.5. Let A1(z), A0(z) 6≡ 0 and F be analytic functions in D of finite
order. Let d0(z), d1(z), d2(z) be analytic functions in D which are not all equal to
zero with ρ(dj) < ∞ (j = 0, 1, 2) such that h 6≡ 0, and let ϕ(z) be an analytic
function in D with finite order such that ψ(z) is not a solution of (1.2). If f is
an infinite order solution of (1.2) with ρ2(f) = ρ, then the differential polynomial
gf = d2f

′′ + d1f
′ + d0f satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(gf ) = ρ(f) = ∞, (1.8)

λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(gf ) = ρ2(f) = ρ. (1.9)

Remark 1.6. In Theorem 1.5, if we do not have the condition ψ(z) is not a
solution of (1.2), then the conclusions of Theorem 1.5 does not hold. For example,
the functions f1(z) = 1−z and f2(z) = (1−z) exp(exp 1

1−z ) are linearly independent
solutions of the equation

f ′′ +A1(z)f ′ +A0(z)f = 0, (1.10)

where

A0(z) = −
exp 1

1−z

(1− z)3
− 1

(1− z)3
, A1(z) = −

exp 1
1−z

(1− z)2
− 1

(1− z)2
.

Clearly f = f1 + f2 is a solution of (1.10). Set d2 = d1 ≡ 0 and d0 = 1
1−z . Then

gf = d0f , h = −d2
0 and ψ(z) = ϕ

d0
. If we take ϕ = d0f1, then ψ(z) = f1 is a

solution of (1.10) and we have

λ(gf − ϕ) = λ(d0f − d0f1) = λ(d0f2) = λ(exp(exp
1

1− z
)) = 0.

On the other hand,

ρ(gf ) = ρ(d0f) = ρ(d0f1 + d0f2) = ρ(1 + exp(exp
1

1− z
)) = ∞.

Theorem 1.7. Let A1(z), A0(z) 6≡ 0 and F be finite order analytic functions in
D such that all solutions of (1.2) are of infinite order. Let d0(z), d1(z), d2(z) be
analytic functions in D which are not all equal to zero with ρ(dj) <∞ (j = 0, 1, 2)
such that h 6≡ 0, and let ϕ(z) be an analytic function in D with finite order. If
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f is a solution of (1.2) with ρ2(f) = ρ, then the differential polynomial gf =
d2f

′′ + d1f
′ + d0f satisfies (1.8) and (1.9).

Remark 1.8. In Theorems 1.4, 1.5, 1.7, if we do not have the condition h 6≡ 0,
then the differential polynomial can be of finite order. For example, if d2(z) 6≡ 0, is
a finite order analytic function in D and d0(z) = A0(z)d2(z), d1(z) = A1(z)d2(z),
then h ≡ 0 and gf = F (z)d2(z) is of finite order.

In the following we give an application of the above results.

Corollary 1.9. Let A0(z), A1(z), d0, d1, d2 be analytic functions in D such that
max{ρ(A1), ρ(dj) (j = 0, 1, 2)} < ρ(A0) = ρ (0 < ρ <∞), τ(A0) = τ (0 < τ <∞),
and let ϕ 6≡ 0 be an analytic function in D with ρ(ϕ) < ∞. If f 6≡ 0 is a solution
of equation (1.10), then the differential polynomial gf = d2f

′′ + d1f
′ + d0f satisfies

λ(gf − ϕ) = λ(gf − ϕ) = ρ(gf ) = ρ(f) = ∞, (1.11)

αm > λ2(gf − ϕ) = λ2(gf − ϕ) = ρ2(gf ) = ρ2(f) > ρ(A0), (1.12)

where αM = max{ρM (Aj) : j = 0, 1}.

Remark 1.10. The special case ϕ(z) = z in the above theorems reduces to the
fixed points of the differential polynomial gf .

2. Auxiliary Lemmas

Lemma 2.1 ([5]). Let f(z) be a meromorphic solution of the equation

L(f) = f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = F (z), (2.1)

where k is an positive integer, A0, . . . , Ak−1, F 6≡ 0 are meromorphic functions in
D such that max{ρi(F ), ρi(Aj) (j = 0, . . . , k − 1)} < ρi(f), (i = 1, 2). Then,

λi(f) = λi(f) = ρi(f) (i = 1, 2). (2.2)

Using the properties of the order of growth see [3, Proposition 1.1] and the
definition of the type, we easily obtain the following result which we omit the
proof.

Lemma 2.2. Let f and g be meromorphic functions in D such that 0 < ρ(f),
ρ(g) <∞ and 0 < τ(f), τ(g) <∞. Then the following two statements hold:

(i) If ρ(f) > ρ(g), then

τ(f + g) = τ(fg) = τ(f). (2.3)

(ii) If ρ(f) = ρ(g) and τ(f) > τ(g), then

ρ(f + g) = ρ(fg) = ρ(f) = ρ(g). (2.4)

Lemma 2.3. Let A0(z), A1(z), d0, d1, d2 be analytic functions in D such that
max{ρ(A1), ρ(dj), (j = 0, 1, 2)} < ρ(A0) = ρ (0 < ρ <∞), τ(A0) = τ (0 < τ <∞).
Then h 6≡ 0, where h is given by (1.5).

Proof. First we suppose that d2(z) 6≡ 0. Set

h = α1β0 − α0β1 = (d1 − d2A1)(d2A0A1 − (d2A0)′ − d1A0 + d′0)

− (d0 − d2A0)(d2A
2
1 − (d2A1)′ − d1A1 − d2A0 + d0 + d′1).

(2.5)
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Now check all the terms of h. Since the term d2
2A

2
1A0 is eliminated, by (2.5) we can

write
h = −d2

2A
2
0 − d0d2A

2
1 + (d′1d2 + 2d0d2 − d′2d1 − d2

1)A0

+ (d′2d0 − d2d
′
0 + d0d1)A1 + d1d2A0A1 − d1d2A

′
0

+ d0d2A
′
1 + d2

2A
′
0A1 − d2

2A0A
′
1 + d′0d1 − d0d

′
1 − d2

0.

(2.6)

By d2 6≡ 0, A0 6≡ 0 and Lemma 2.2 we get from (2.6) that ρ(h) = ρ(A0) = ρ > 0,
then h 6≡ 0.

Now suppose d2 ≡ 0, d1 6≡ 0. Using a similar reasoning as above we get h 6≡ 0.
Finally, if d2 ≡ 0, d1 ≡ 0, d0 6≡ 0, then we have h = −d2

0 6≡ 0. �

3. Proof of main results

Proof of Theorem 1.4. Suppose that f is a solution of (1.2) with ρ(f) = ∞ and
ρ2(f) = ρ. Substituting f ′′ = F −A1f

′ −A0f into gf , we have

gf − d2F = (d1 − d2A1)f ′ + (d0 − d2A0)f. (3.1)

Differentiating both sides of (3.1) and using that f ′′ = F −A1f
′−A0f , we obtain

g′f − (d2F )′ − (d1 − d2A1)F = [d2A
2
1 − (d2A1)′ − d1A1 − d2A0 + d0 + d′1]f

′

+ [d2A0A1 − (d2A0)′ − d1A0 + d′0]f.
(3.2)

Then, by (1.3), (1.4), (3.1) and (3.2), we have

α1f
′ + α0f = gf − d2F, (3.3)

β1f
′ + β0f = g′f − (d2F )′ − (d1 − d2A1)F. (3.4)

Set
h = α1β0 − α0β1

= (d1 − d2A1)(d2A
2
1 − (d2A1)′ − d1A1 − d2A0 + d0 + d′1)

− (d0 − d2A0)(d2A0A1 − (d2A0)′ − d1A0 + d′0).

(3.5)

By the condition h 6≡ 0 and (3.3)-(3.5), we obtain

f =
α1

(
g′f − (d2F )′ − α1F

)
− β1(gf − d2F )

h
. (3.6)

If ρ(gf ) <∞, then by (3.6) we obtain ρ(f) <∞ and this is a contradiction. Hence
ρ(gf ) = ∞.

Now, we prove that ρ2(gf ) = ρ2(f) = ρ. By gf = d2f
′′ + d1f

′ + d0f, we obtain
ρ2(gf ) 6 ρ2(f) and by (3.6), we have ρ2(f) 6 ρ2(gf ). Hence ρ2(gf ) = ρ2(f) =
ρ. �

Proof of Theorem 1.5. Suppose that f is a solution of (1.2) with ρ(f) = ∞ and
ρ2(f) = ρ. Set w(z) = gf − ϕ. Since ρ(ϕ) < ∞, then by Theorem 1.4, we
have ρ(w) = ρ(gf ) = ρ(f) = ∞ and ρ2(w) = ρ2(gf ) = ρ2(f) = ρ. To prove
λ(gf − ϕ) = λ(gf − ϕ) = ∞ and λ2(gf − ϕ) = λ2(gf − ϕ) = ρ, we need to prove
only λ(w) = λ(w) = ∞ and λ2(w) = λ2(w) = ρ. By gf = w + ϕ, and using (3.6),
we have

f =
α1w

′ − β1w

h
+ ψ(z), (3.7)
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where α1, β1, h, ψ(z) are defined in (1.3)-(1.6). Substituting (3.7) into equation
(1.2), we obtain

α1

h
w′′′ + φ2w

′′ + φ1w
′ + φ0w = F −

(
ψ′′ +A1(z)ψ′ +A0(z)ψ

)
= A, (3.8)

where φj (j = 0, 1, 2) are meromorphic functions in D with ρ(φj) <∞ (j = 0, 1, 2).
Since ψ(z) is not a solution of (1.2), it follows that A 6≡ 0. Then, by Lemma
2.1, we obtain λ(w) = λ(w) = ρ(w) = ∞ and λ2(w) = λ2(w) = ρ2(w) = ρ; i.e.,
λ(gf − ϕ) = λ(gf − ϕ) = ∞ and λ2(gf − ϕ) = λ2(gf − ϕ) = ρ. �

Proof of Theorem 1.7. By the hypotheses of Theorem 1.7, all solutions of (1.2) are
of infinite order. From (1.6), we see that ψ(z) is of finite order, then ψ(z) is not a
solution of equation (1.2). By Theorem 1.5, we obtain Theorem 1.7. �

Proof of Corollary 1.9. By Theorem 1.2, all solutions f 6≡ 0 of (1.10) are of infinite
order and satisfy

ρ(A0) 6 ρ2(f) 6 max{ρM (A0), ρM (A1)}.
Also, by Lemma 2.3, we have h 6≡ 0. Then, by using Theorem 1.7 we obtain
Corollary 1.9. �
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Zinelaâbidine Latreuch
Department of Mathematics, Laboratory of Pure and Applied Mathematics, University

of Mostaganem, B. P. 227 Mostaganem, Algeria
E-mail address: z.latreuch@gmail.com


	1. Introduction and main results
	2. Auxiliary Lemmas
	3. Proof of main results
	Acknowledgements

	References

