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STOCHASTICALLY PERTURBED ALLELOPATHIC
PHYTOPLANKTON MODEL

SYED ABBAS, MALAY BANERJEE

Abstract. In this article we have considered a stochastic delay differential

equation model for two species competitive phytoplankton system with allelo-
pathic stimulation. We have extended the deterministic model system to a

stochastic delay differential equation model system by incorporating multi-

plicative white noise terms in the growth equations for both species. We have
studied the mean square stability of coexisting state using a suitable Lyapunov

functional. Numerical simulation results are provided to validate the analytical

findings.

1. Introduction

The freely floating and weakly swimming organisms within aquatic environment
are known as plankton. The plant species of plankton community are known as
phytoplankton and they are acting as a basic food source within any aquatic en-
vironment. They play crucial role towards the regulation of global carbon cycle
and which in turn has a significant impact on the climate. Growth and density of
phytoplankton within aquatic environment are controlled by variation of available
nutrients, intensity of sunlight, temperature gradient, salinity of water, environ-
mental forcing due to seasonal change and many other factors (for details, see [14]).
Apart from these factors, the change in phytoplankton population density of one
species has the ability to affect the growth of one or more phytoplankton species
by producing allelopathic toxins or stimulators, known as allelo-chemicals. Allelo-
chemicals released by a particular species of phytoplankton have positive as well
as negative feedbacks on the growth of other phytoplankton species. Allelopathy is
the effect of one phytoplankton species on the growth of one or more phytoplank-
ton species by releasing allelo-chemicals into the habitat are known as ‘allelopa-
thy’ [30]. These allelo-chemicals are one of the responsible factors for phytoplank-
ton ‘bloom’. A dramatic increase in the density of one or more phytoplankton
species followed by sudden collapse is known as ‘phytoplankton bloom’. In last two
decades several harmful phytoplankton blooms are reported in various literatures
and this issue have received considerable scientific attention from various researchers
[2, 5, 6, 8, 16, 28, 29, 31, 36].

2000 Mathematics Subject Classification. 93E15, 34C23, 37B25, 34K50.

Key words and phrases. Stability; bifurcation; Lyapunov functional; stochastic perturbation.
c©2010 Texas State University - San Marcos.
Submitted May 18, 2010. Published July 21, 2010.

1



2 S. ABBAS, M. BANERJEE EJDE-2010/98

The first mathematical model for allelopathic interaction between two competing
phytoplankton species was introduced by Maynard-Smith [23] and described by
Lotka-Volterra type competition model as follows,

du(t)
dt

= u(t)(k1 − α1u(t)− β12v(t)− γ1u(t)v(t)),

dv(t)
dt

= v(t)(k2 − α2v(t)− β21u(t)− γ2u(t)v(t)),
(1.1)

subject to the non-negative initial condition u(0) ≡ u0 ≥ 0 and v(0) ≡ v0 ≥ 0.
u(t) and v(t) stand for the densities of two phytoplankton species at any instant
of time ‘t’. k1, k2 are the cell proliferation rates measured per unit of time, α1, α2

are the intra-specific competition rates for first and second species respectively, β12,
β21 stand for interspecific competition rates for limited resources [6, 23]. γ1 and
γ2 are the toxic inhibition rates for the first and second species respectively. All
parameters are positive. Basic dynamical results for the above model system was
carried out by Chattopadhyay [13] and obtained the role of toxic inhibition by either
species on the stability behavior of two phytoplankton population. Mukhopadhyay
et al. [24] have considered similar model for two different cases, namely γ1, γ2 > 0
as well as γ1, γ2 < 0. The later case corresponds to the positive feedback of allelo-
chemicals towards the growth of other phytoplankton species. Both the ordinary
differential equation model fail to capture the oscillatory growth of phytoplankton
population. The oscillatory growth of either phytoplankton species is resulted from
the following delay differential equation (DDE) model of two interacting species

du(t)
dt

= u(t)(k1 − α1u(t)− β12v(t) + γ1u(t)v(t)),

dv(t)
dt

= v(t)(k2 − α2v(t)− β21u(t) + γ2u(t− τ)v(t)),

where both the species stimulates the growth of the other. τ is the discrete time
delay taking care of the fact that the phytoplankton cells are not capable of releas-
ing toxic substances immediately after cell proliferation, rather delayed by some
time time interval required for maturation of the cell before start producing toxic
substances. Solution of this delay differential equation model shows oscillatory dy-
namics, the stable coexisting state becomes unstable through Hopf-bifurcation and
small amplitude periodic solution results in around the interior equilibrium point.

Recently we have studied the interaction of two phytoplankton population where
one phytoplankton species release allelo-chemicals within the aquatic environment,
which acts as a stimulator to the growth of other species [1]. Our study was based
upon the following DDE model

du(t)
dt

= u(t)(k1 − α1u(t)− β12v(t))

dv(t)
dt

= v(t)(k2 − α2v(t)− β21u(t) + γu(t− τ)v(t)),

subjected to the biologically feasible initial condition u(t) = φ(t) > 0 for t ∈ [−τ, 0],
v(0) = v0 > 0. In [1] we have established the existence-uniqueness of solutions, local
asymptotic stability of various equilibria, persistence of both species and existence
of small amplitude periodic solution through Hopf-bifurcation.

The purpose of the present paper is to consider the dynamics of a mathematical
model of two competing phytoplankton species where one species releases auxin
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and this auxin stimulate the growth of second phytoplankton species and second
one is not a toxic species. After performing some basic dynamical analysis of the
ordinary differential equation model system we extend it to a delay differential
equation model to understand the effect of time delay (required for maturation of
the species before producing toxic substances) on the dynamics of the model system.
Finally we construct a two dimensional stochastic delay differential equation model
system to understand the effect of environmental fluctuation on the time evolution
of both the species. The more on hereditary systems, interested readers may consult
[17, 18, 21]. The organization of this paper is as follows: In section 2 we describe
the basic model system for two competitive phytoplankton species and study the
related dynamical behavior of both delayed and non delayed model systems; in
section 3 we will consider the stability of solution in probability for stochastic delay
differential equation model system by using the technique of the paper [32] by
Shaikhet and Kolmanovskii and Shaikhet general method of lyapunov functionals
construction [9, 19, 20, 26, 33, 34, 35]. Finally in section 4 we will discuss the basic
outcomes of our analytical findings and their ecological interpretations.

2. Basic Model

The basic model considered in this paper is governed by the following two di-
mensional nonlinear coupled ordinary differential equation model for two competing
phytoplankton species

du(t)
dt

= u(t)(k1 − α1u(t)− β12v(t))

dv(t)
dt

= v(t)(k2 − α2v(t)− β21u(t) + γu(t)v(t)),
(2.1)

subjected to the biologically feasible initial condition u(0) ≡ u0 ≥ 0 and v(0) ≡
v0 ≥ 0. All parameters involved with (2.1) are positive and have same interpre-
tation as we have mentioned in introduction, γ denotes the rate of allelopathic
substance released by the first phytoplankton species. The functions present on
the right-hand side of system (2.1) are continuous functions of the variables in
R2

+ = [(u, v) : u, v ≥ 0]. Straightforward computation shows that they are lo-
cally Lipschitian on R2

+ and hence the solutions of (2.1) with nonnegative initial
conditions exist and are unique. It is also easy to verify that these solutions can
be extended for all t > 0 and stay nonnegative at all future time. By uniqueness
principle the solution starting from (u0, 0) will remain on u-axis as t → +∞ and
analogous result hold for the choice of initial condition on v-axis. These results
combining with the positivity of solutions starting from an interior point of first
quadrant imply R2

+ is the invariant set for the model system (2.1). Here we state the
boundedness of solutions for the model system (2.1) with positive initial condition,
proof of these results can be found in [1].

Lemma 2.1. If α1α2 − γk1 > 0 then any solution (u(t), v(t)) of system (2.1) with
(u0, v0) ∈ Int(R2

+) satisfies

lim sup
t→∞

u(t) ≤ k1

α1
≡ M1, lim sup

t→∞
v(t) ≤ α1k2

α1α2 − γk1
≡ M2.

Lemma 2.2. If parameters involved with the model system satisfy the restrictions
α1α2 > γk1, k1 > β12M2 and k2α1 > k1β21 then solutions of the system (2.1) with
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(u0, v0) ∈ Int(R2
+) satisfies

lim inf
t→∞

u(t) ≥ k1 − β12M2

α1
≡ m1, lim inf

t→∞
v(t) ≥ k2α1 − k1β21

α1α2
≡ m2.

The model system (2.1) have three equilibrium points on the boundary of first
quadrant and they exist with out any restriction on the system parameters. E0 ≡
(0, 0) is trivial equilibrium point, and two axial equilibrium points are E10 = (

k1

α1
, 0)

and E01 = (0,
k2

α2
). Coexisting equilibrium point is the point(s) of intersection of

two nullclines α1u + β12v = k1 and α2v + β21u − γuv = k2 within the interior of
first quadrant. Here we consider the parametric restriction under which interior
equilibrium point is unique. If we denote the unique interior equilibrium point by
E∗ ≡ (u∗, v∗) then

v∗ =
k1 − α1u∗

β12
(2.2)

and u∗ is the positive root of the quadratic equation

α1γx2 + (β12β21 − k1γ − α1α2)x + k1α2 − β12k2 = 0. (2.3)

The parametric restriction k1α2 < β12k2 and u∗ < k1/α1 imply uniqueness and
feasible of E∗. Existence of more than one equilibrium point and no interior equilib-
rium point is not considered here. Through out this paper we will restrict ourselves
to the parameter values which will admit unique interior equilibrium point.

2.1. Local Stability Analysis. Exhaustive analysis and detailed discussion re-
garding stability behavior of axial equilibria and interior equilibrium point for the
system (2.1) can be found in [1]. For convenience and smooth readability of this
paper the local asymptotic stability analysis around unique interior equilibrium
point is carried out here.

The Jacobian matrix associated with the model system (2.1) evaluated at E∗ is
given by

J(E∗) =
(

k1 − 2α1u∗ − β12v∗ −u∗β12

−v∗β21 + γv∗
2 k2 + 2γu∗v∗ − 2α2v∗ − β21u∗

)
(2.4)

The characteristic equation for J(E∗) is

λ2 −A1λ + A2 = 0 where A1 = tr(J∗) and A2 = det(J∗). (2.5)

Applying the Routh-Hurwitz criterion, we find conditions for the local asymp-
totic stability of E∗ as

tr(J∗) < 0 and det(J∗) > 0. (2.6)

Using the algebraic relations k1 = α1u∗ + β12v∗ and k2 + γu∗v∗ = α2v∗ + β21u∗
it is easy to see, that the stability conditions can be put into the following form,

γ <
α1

v∗
+

α2

u∗
and α1α2 − β12β21 > (u∗α1 − v∗β12)γ. (2.7)

For the model system under consideration, it is difficult to find out the local stability
conditions in terms of parameters explicitly. Now we validate the analytical findings
with help of a numerical example. For this purpose we choose the parameter values
k1 = 2, k2 = 1, α1 = 0.07, α2 = 0.08, β12 = 0.05, β21 = 0.015 and γ = 0.003
[1]. Fig. 1 shows that two nullclines intersect at the interior equilibrium point
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E∗(13.85, 20.61). The two conditions mentioned in (2.7) are satisfied for the chosen
parameter values. Fig. 2 depicts that the interior equilibrium point is locally
asymptotically stable.

0 5 10 15 20
10

15

20

25

30

35

40

u →

v 
→

Figure 1. u-nullcline and v-nullcline intersect at interior equilib-
rium point E∗.
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Figure 2. Time evolution of u(t) and v(t) obtained from numer-
ical simulation, local asymptotic stability of E∗(13.85, 20.61).

2.2. Delayed Model System. Now we extend the ordinary differential equation
model system to a delay differential equation model by introducing a discrete time
delay parameter. The delay parameter is introduced due to the assumption that
every phytoplankton cell of the first species is capable to produce toxic substance
after a time period measured from their time of birth [1, 24]. This assumption leads
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us to the following system of nonlinear coupled delay differential equations,

du(t)
dt

= u(t)(k1 − α1u(t)− β12v(t))

dv(t)
dt

= v(t)(k2 − α2v(t)− β21u(t) + γu(t− τ)v(t)),
(2.8)

subjected to the biologically reasonable initial conditions:

u(t) = φ(t) > 0 for t ∈ [−τ, 0], v(0) = v0 > 0. (2.9)

Here, τ > 0 is the discrete time delay parameter, and φ ∈ C0([−τ, 0]; R+) is a given
function.

The delayed system (2.8) has the same equilibrium points as the non-delayed
model system [15]. Linearizing the model system (2.8) around interior equilibrium
point (u∗, v∗) we get the following system of linear equations in terms of perturba-
tion variables x and y are as follows

dx(t)
dt

= Ax(t) + By(t),

dy(t)
dt

= Cx(t) + Dy(t) + Ex(t− τ),
(2.10)

where

A = k1 − 2α1u∗ − β12v∗, B = −u∗β12, C = −v∗β21,

D = k2 + 2γu∗v∗ − 2α2v∗ − β21u∗, E = γv∗
2.

The characteristic equation associated with the linear system (2.10) is

∆(λ, τ) = λ2 − (A + D)λ + (AD −BC)−BEe−λτ = 0. (2.11)

To study the local asymptotic stability properties of E∗, we have to consider the
nature of the real parts of the roots of characteristic equation (2.11). Following the-
orem states the conditions required for local asymptotic stability of E∗ irrespective
to the magnitude of delay parameter ‘τ ’, detailed proof of this result can be found
in [1].

Theorem 2.3. Interior equilibrium point E∗ remains locally asymptotically stable
for all τ ≥ 0 whenever following conditions are satisfied:

(1) The real part of the roots of ∆(λ, 0) = 0 are negative.
(2) For all real µ and all τ ≥ 0, ∆(iµ, τ) 6= 0.

The conditions of above theorem are satisfied when coefficients of (2.5) satisfy
following restrictions,

A + D < 0, AD −BC > BE, |AD −BC| > |BE|. (2.12)

The stability properties of E∗ under the parametric restriction (AD − BC)2 <
(BE)2 depends upon the magnitude of τ . It is established in [1], if A + D < 0,
then in the parametric region BE < AD − BC < −BE the interior equilibrium
point E∗ remains locally asymptotically stable for 0 < τ < A+D

BE ≡ τ0. For τ ≥ τ0,
E∗ is unstable and small amplitude periodic solution bifurcates from E∗ through
Hopf-bifurcation.
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3. Stability Analysis of Stochastic Delay Differential Equation
Model

The stochastic delay differential equation model corresponding to the determinis-
tic delay differential equation model (2.8) is constructed by introducing stochastic
perturbation terms into the growth equation of both species. Assuming the en-
vironmental driving forces are directly proportional to (u(t) − u∗) and (v(t) − v∗)
respectively we get the following stochastic delay differential equation model system

du(t) = u(t)[k1 − α1u(t)− β12v(t)]dt + σ1(u(t)− u∗)dw1(t)

dv(t) = v(t)[k2 − α2v(t)− β21u(t) + γu(t− τ)v(t)]dt + σ2(v(t)− v∗)dw2(t),
(3.1)

subjected to the initial conditions u(0), v(0) > 0. In above model system σ1, σ2 are
two positive real constants known as intensity of environmental fluctuations and
w1(t), w2(t)) are two independent standard Wiener processes [25]. Consider the
transformation y1(t) = u(t)− u∗ and y2(t) = v(t)− v∗, this will center the system
around the positive equilibrium point. Thus we obtain

dy1(t) = (y1(t) + u∗)[−α1y1(t)− β12y2(t)]dt + σ1y1(t)dw1(t)

dy2(t) = (y2(t) + v∗)[(γu∗ − α2)y2(t)− β21y1(t) + γv∗y1(t− τ)

+ γy2(t)y1(t− τ)]dt + σ2y2(t)dw2(t).
(3.2)

To study the local stability of the system (3.1), we only need to study the stability
of zero solution of the system (3.2). Consider the linear part of the system (3.2),

dy1(t) = u∗[−α1y1(t)− β12y2(t)]dt + σ1y1(t)dw1(t)

dy2(t) = v∗[(γu∗ − α2)y2(t)− β21y1(t) + γv∗y1(t− τ)]dt + σ2y2(t)dw2(t).
(3.3)

Before proceeding further we establish the existence and uniqueness of solutions
for the stochastic model system (3.1) using [25, Th. 2.2]. Two functions f ≡
(f1, f2)T and g ≡ (g1, g2)T are defined as follows

f1(t, U) = u(t)(k1 − α1u(t)− β12v(t)),

f2(t, U) = v(t)(k2 − α2v(t)− β21u(t) + γu(t− τ)v(t)),

g1(t, U) = σ1(u(t)− u∗), g2(t, U) = σ2(v(t)− v∗),

where U = (u(t), v(t)). One can easily verify that f(t, U) and g(t, U) are Lipschitz
continuous. Using the positivity of u(t), v(t) and as all parameters involved with
f(t, U) are positive, we can write

f1(t, U) ≤ k1u(t),

and

f2(t, U) ≤ v(t)(k2 − α2v(t)− β21u(t) + γM1v(t))

≤ v(t)(k2 − (α2 − γM1)v(t)− β21u(t))

≤ k2v(t),

whenever α2 − γM1 ≥ 0, (see Lemma 1). Calculating the norm of f, we get

|f(t, U)|2 = |f1(t, U)|2 + |f2(t, U)|2 ≤ k2
1u

2(t) + k2
2v

2(t) ≤ K2(1 + |U |2),
where K = max{k1, k2}. Calculating the norm for g, we get

|g(t, U)|2 = |g1(t, U)|2 + |g2(t, U)|2
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≤ σ2
1(u(t) + u∗)2 + σ2

2(v(t) + v∗)2

≤ 2σ2
1(u2(t) + u∗2) + 2σ2

2(v2(t) + v∗2)

≤ 2 max{σ2
1 , σ2

2}(v∗
2 + u∗2)

(
1 +

u2(t) + v2(t)
u∗2 + v∗2

)
≤ 2 max{σ2

1 , σ2
2}max

{
1,

1
u∗2 + v∗2

}
(u∗2 + v∗2)(1 + u2(t) + v2(t))

≤ M(1 + |U |2).

Hence both the conditions of [25, Th. 2.2] are satisfied. Hence the solutions of the
stochastic delay differential equation (3.1) exist uniquely.

The stability analysis carried our here is based on the paper of Shaikhet [32].
The interested reader may see the paper of Shaikhet [32] for detailed analysis. To
show the asymptotic mean square stability of the zero solution of system (3.2), we
need to construct the Lyapunov functional for the system. Consider the neutral
form of the system (3.3):

dy1(t)
dt

= −u∗α1y1(t)− u∗β12y2(t) + σ1y1(t)ẇ1(t),

d

dt

[
y2(t) + γv∗2

∫ t

t−τ

y1(s)ds
]

= v∗(γu∗ − α2)y2(t) + v∗(γv∗ − β21)y1(t) + σ2y2(t)ẇ2(t).

(3.4)

The auxiliary system corresponding to system (3.4) is

dx1(t)
dt

= −u∗α1x1(t) + σ1x1(t)ẇ1(t),

dx2(t)
dt

= v∗(γu∗ − α2)x2(t) + σ2x2(t)ẇ2(t).
(3.5)

The generating operator L for the system (3.5) acting on a suitably defined func-
tional V is given by

LV (t, x) =
∂V (t, x(t))

∂t
+ AT (x(t))

∂V (t, x(t))
∂x

+
1
2

Trace
(
BT (x(t))

∂2V (t, x(t))
∂2x

B(x(t))
)
,

where

A =
(
−α1u

∗ 0
0 (γu∗ − α2)v∗

)
, B =

(
σ1 0
0 σ2

)
,

and
∂V

∂x
= col

( ∂V

∂x1
,

∂V

∂x2

)
,

∂2V

∂2x
=

( ∂2V

∂xi∂xj

)
i,j=1,2

.

For more details on stochastic calculus, one may consult [22].

Lemma 3.1. The zero solution of the system (3.5) is asymptotically mean square
stable if

σ2
1 < 2u∗α1, σ2

2 < 2v∗(α2 − γu∗).
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Proof. Consider the function X = x2
1 + x2

2. We show that X works as a Lyapunov
function for system (3.5). Let L0 be the generating operator of the system (3.5)
corresponding to Lyapunov functional X. Then we have

L0X = 2x1(−u∗α1x1(t)) + 2x2(−v∗(α2 − γu∗)x2(t)) + σ2
1x2

1 + σ2
2x2

2

= −(2u∗α1 − σ2
1)x2

1(t)− (2v∗(α2 − γu∗)− σ2
2)x2

2(t).

Let
M = min{2u∗α1 − σ2

1 , 2v∗(α2 − γu∗)− σ2
2},

then we have
L0X ≤ −M(x2

1(t) + x2
2(t)) = −M |x(t)|2,

where x(t) = (x1(t), x2(t)). Thus the zero solution of system (3.5) is asymptotically
mean square stable. �

To analyze the mean square stability of E∗ we consider the functional V1 in order
to construct Lyapunov functional as follows,

V1 = y2
1(t) +

(
y2(t) + γv∗2

∫ t

t−τ

y1(s)ds
)2

.

The Lyapuniv functional for the system (3.3) is given by V1 + V2. Calculating LV1

and after simplification we get

LV1 ≤ −[2(α1)u∗ − σ2
1 − (β12)u∗ − (β21 − γv∗)v∗ + γv∗3(β21 − γv∗)τ ]y2

1(t)

− [2(α2 − γu∗)v∗ − σ2
2 − (β12)u∗ − (β21 − γv∗)v∗ + γv∗3(α2 − γu∗)τ ]y2

2(t)

− γv∗3[(α2 − γu∗) + (β21 − γv∗)]
∫ t

t−τ

y2
1(s)ds.

Next we choose V2 as follows

V2 = γv∗3[(γu∗ − α2) + (γv∗ − β21)]
∫ t

t−τ

(θ − t + τ)y2
1(θ)dθ.

Then calculating LV for V = V1 + V2 we have

LV ≤ −[2(α1)u∗ − σ2
1 − (β12)u∗ − (β21 − γv∗)v∗ + γv∗3(β21 − γv∗)τ

+ γv∗3((α2 − γu∗) + (β21 − γv∗))τ ]y2
1(t)

− [2(α2 − γu∗)v∗ − σ2
2 − (β12)u∗ − (β21 − γv∗)v∗ + γv∗3(α2 − γu∗)τ ]y2

2(t).
(3.6)

Thus we have the functional V = V1 + V2. So we conclude that if both quantities
inside the square bracket of (3.6) are positive, then the zero solution of system (3.3)
is asymptotically mean square stable according to [32, Th. 1]. Expressions under
square bracket in (3.6) can be put into the following form:

σ2
1 < 2α1u

∗ − (β12)u∗ − (β21 − γv∗)v∗ + γv∗3((α2 − γu∗) + 2(β21 − γv∗))τ

σ2
2 < 2(α2 − γu∗)v∗ − (β12)u∗ + γv∗3(α2 − γu∗)τ.

(3.7)

The conditions (3.7) are well defined if

2α1u
∗ − (β12)u∗ − (β21 − γv∗)v∗ + γv∗3((α2 − γu∗) + 2(β21 − γv∗))τ > 0

and
2(α2 − γu∗)v∗ − (β12)u∗ + γv∗3(α2 − γu∗)τ > 0.
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The function V = V1 + V2 satisfies all the conditions of [32, Th. 1], implying
stochastic mean square stability of the model system (3.4) under the restriction
(3.7). Now we are in a position to discuss the stability of solution in probability
for the model system (3.2).

Theorem 3.2. If the condition (3.7) holds, then the zero solution of system (3.2)
is stable in probability. In other words the coexisting equilibrium point E4 is stable
in probability for the model system (3.1).

Proof. Consider the system (3.2) in the neutral form

dy1(t)
dt

= −(y1(t) + u∗)[α1y1(t) + β12y2(t)] + σ1y1(t)ẇ1(t),

d

dt

[
y2(t) + γv∗2

∫ t

t−τ

y1(s)ds
]

= −v∗
(
(α2 − γu∗)y2(t) + β21y1(t)− γv∗y1(t)− γy2(t)y1(t− τ)

)
− y2(t)

(
(α2 − γu∗)y2(t) + β21y1(t)− γv∗y1(t− τ)

− γy2(t)y1(t− τ)
)

+ σ2y2(t)ẇ2(t).

(3.8)

For the functional V1 defined in the previous lemma, calculating and simplifying
LV1 we obtain

LV1 = −2(α1)y3
1(t)− 2(α2 − γu∗)y3

2(t)− 2u∗(α1)y2
1(t)− 2v∗(α2 − γu∗)y2

2(t)

− 2(β12)y2
1(t)y2(t)− 2[u∗(β12) + v∗(β21 − γv∗) + β21]y1(t)y2(t)

+ 2v∗γy2
2(t)y1(t− τ)− 2γv∗y2

2(t)y1(t− τ) + 2γy2
2(t)y1(t− τ)

− 2γv∗2
[
v∗(α2 − γu∗)

∫ t

t−τ

y2(t)y1(s)ds + v∗(β21 − γv∗)
∫ t

t−τ

y1(t)y1(s)ds

− γ

∫ t

t−τ

y2(t)y1(t− τ)y1(s)ds + (α2 − γu∗)
∫ t

t−τ

y2
2(t)y1(s)ds

+ β21

∫ t

t−τ

y1(t)y2(t)y1(s)ds− v∗γ

∫ t

t−τ

y2(t)y1(t− τ)y1(s)ds

− γ

∫ t

t−τ

y1(t− τ)y2
2(t)y1(s)ds

]
+ σ2

1y2
1(t) + σ2

2y2
2(t).

(3.9)
Assume that there exits a positive quantity δ such that supt≥τ |yi(s)| < δ for
i = 1, 2. Using this estimate we can write

LV1 ≤
[
− 2u∗(α1) + 2δ(α1) + σ2

1 + 2δ(β12)

+ [u∗(β12) + v∗(β21 − γv∗) + β21]− γv∗2[v∗(β21 − γv∗) + β21δ]τ
]
y2
1(t)

+
[
− 2v∗(α2 − γu∗) + 2δ(α2 − γu∗) + σ2

2 − 4δγv∗ − 2γδ

− [u∗(β12) + v∗(β21 − γv∗) + β21]

− γv∗2[(v∗ + δ)(α2 − γu∗)− 2γv∗δ − γδ2]τ
]
y2
2(t)
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− γv∗2
[
(v∗ + δ)[(α2 − γu∗) + (β21 − γv∗)− γδ]

] ∫ t

t−τ

y2
1(s)ds.

For the present problem we choose V2 as

V2 = γv∗2
[
(v∗ + δ)[(γu∗ − α2) + (γv∗ − β21) + γδ]

] ∫ t

t−τ

(θ − t + τ)y2
1(θ)dθ.

Then for V1 + V2 we can write,

L(V1 + V2)

≤
[
− 2u∗(α1) + 2δ(α1) + σ2

1 + 2δ(β12) + [u∗(β12) + v∗(β21 − γv∗) + β21]

− γv∗2
(
v∗(β21 − γv∗) + β21δ + (v∗ + δ)[(α2 − γu∗) + (β21 − γv∗)

− γδ]
)
τ
]
y2
1(t) +

[
− 2v∗(α2 − γu∗) + 2δ(α2 − γu∗)

+ σ2
2 − 4δγv∗ − 2γδ − [u∗(β12) + v∗(β21 − γv∗) + β21]

− γv∗2[(v∗ + δ)(α2 − γu∗)− 2γv∗δ − γδ2]τ
]
y2
2(t).

(3.10)

Therefore, under the condition (3.7) we have L(V1 + V2) ≤ 0 for sufficiently small
δ. In order to use [32, Th. 2] we need the functional to be positive definite. For
this purpose we consider

W1 = y2
1(t) + y2

2(t).

Using equation (3.2) and assuming that supt≥τ |yi(s)| < δ, we have

LW1 ≤
[
− 2u∗α1 + 2δα1 + σ2

1 + 2δβ12 + u∗β12 + v∗β21

]
y2
1(t)

+
[
− 2v∗(α2 − γu∗) + 2δ(α2 − γu∗) + σ2

2 − 4δγv∗ − 2γδ2

+ u∗(β12 − γu∗) + v∗β21 + 2β21δ + 2v∗2γ
]
y2
2(t)− 2v∗2γy2

1(t− τ).

(3.11)

Taking the functional W2 of the form

W2 = −2v∗2γ

∫ t

t−τ

y2
1(s)ds,

we obtain

L(W1 + W2)

≤
[
− 2u∗α1 + 2δα1 + σ2

1 + 2δβ12 + u∗β12 + v∗β21

]
y2
1(t)

+
[
− 2v∗(α2 − γu∗) + 2δ(α2 − γu∗) + σ2

2 − 4δγv∗

− 2γδ2 + u∗(β12 − γu∗) + v∗β21 + 2β21δ + 2v∗2γ − 2v∗2γ
]
y2
2(t).

(3.12)

Finally consider the functional V = V1 + V2 + λ(W1 + W2). It is easy to verify that
the functional V satisfies all the conditions of [32, Th. 2] for sufficiently small λ.
Hence zero solution of the system (3.2) is stable in probability under the satisfaction
of the condition (3.7). �
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Now we present some numerical simulation results of the following stochastic
delay differential equation model system for different values of the delay parameter
τ and forcing intensities σ1 and σ2,

du(t) = u(t)[2− .07u(t)− .05v(t)]dt + σ1(u(t)− u∗)dw1(t),

dv(t) = v(t)[1− .08v(t)− .015u(t) + .003u(t− τ)v(t)]dt

+ σ2(v(t)− v∗)dw2(t).
(3.13)

We have used the ‘Euler-Maruyama’ (EM) scheme [3] for numerical simulations.
The critical magnitudes of environmental forcing to maintain the stability of co-
existing equilibrium point for the above model system is given by (see (3.7))

σ2
1 < 2.21− 1.25τ, σ2

2 < .89− 1.01τ. (3.14)

For feasible values of σ1 and σ2 we have to take τ < 0.88. Relation (3.14) defines
the bounds for σ1 and σ2 depending upon the magnitudes of τ . For τ = 0.2 we
have to take σ1 < 1.4, σ2 < 0.83 and for τ = 0.5 the stability in probability for
interior equilibrium point E∗(13.85, 20.61) demands the restrictions σ1 < 1 and
σ2 < 0.6. We can not perform numerical simulation beyond τ = 0.88 as in that
case the inequalities defined in (3.14) are meaningless and the analysis carried out
here cannot ensure the stability in probability for the coexistence state. Numerical
simulations for the model system (3.13) are carried out for two sets of values for
τ , σ1 and σ2 keeping in mind the restriction (3.14). Five sample trajectories are
plotted in Fig. 3 and Fig. 4 against time showing stability in probability in both
the cases. The parameter values are mentioned in the caption of respective figures.
The magnitudes for σ1 and σ2 with τ = 0.5 are chosen greater than their values for
τ = 0.2. Simulation results depict the fact that the stability in probability is not
hampered or altered with the magnitude of forcing intensities once they satisfy the
restriction (3.14).
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Figure 3. Five simulation results for the model system (3.13) for
the parametric values τ = 0.2, σ1 = 0.8 and σ2 = 0.5.
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Figure 4. Numerical simulation results for the model system
(3.13) with parametric values τ = 0.5, σ1 = 1.0 and σ2 = 0.6.

4. Conclusion

In this article we have considered the stochastic delay differential equation model
for two interacting phytoplankton population where one population produce auxin
which enhance the growth of other population. In a recent study [1] we have studied
the dynamics of the same model system with deterministic setup and obtained the
parametric restrictions required for the persistence and calculated the threshold
magnitude for delay parameter beyond which both the population show significant
oscillation about the coexistence steady-state. Here we have extended the model
system by introducing multiplicative noise terms to the growth equations of both
population where strength of the noise is proportional to distance of u(t) and v(t)
from their equilibrium levels.

This type of stochastic formulation was firstly proposed in [7, 32] and later used
by several other authors [4, 10, 11, 12, 27] to study the effect of environmental
fluctuation on the dynamics of interaction populations. We have obtained the con-
ditions for stability in probability around the coexisting equilibrium point of our
stochastic delay differential equation model. The main outcomes of this paper is
summarized in Lemma 3.1 and Th. 3. It is clear that stability of SDDE system
demand some additional restrictions should be satisfied by the magnitude of delay
and intensity of environmental driving force. Analytical findings ensure that the
magnitude of discrete time delay τ plays a crucial role to determine the stability
in probability of coexisting equilibrium point as well as critical magnitude of envi-
ronmental forcing intensities. Numerical simulations are carried out to validate the
analytical findings and we have observed that all trajectories approach the equi-
librium level in the sense of probability. It is interesting to note that the relation
(3.14) defines the bounds for σ1 and σ2 in terms of τ for specific choice of other
parameters. This also explains the fact that the stability in probability around
coexisting equilibrium point for the model system (3.1) is possible when the inten-
sities of fluctuation is not arbitrarily large. Finally we would like to remark that
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the stability of stochastic delay differential equation model constructed by perturb-
ing one or more system parameters and then study of stability behavior remains
an open problem for the model considered in this paper and this will be our next
project in the near future.
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