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STABILITY OF DELAY DIFFERENTIAL EQUATIONS WITH
OSCILLATING COEFFICIENTS

MICHAEL I. GIL’

Abstract. We study the solutions to the delay differential equation equation

ẋ(t) = −a(t)x(t− h),

where the coefficient a(t) is not necessarily positive. It is proved that this
equation is exponentially stable provided that a(t) = b+ c(t) for some positive

constant b less than π/(2h), and the integral
R t
0 c(s)ds is sufficiently small for

all t > 0. In this case the 3/2-stability theorem is improved.

1. Introduction and preliminaries

This article concerns the equation

ẋ(t) = −a(t)x(t− h), (1.1)

where ẋ = dx/dt, the delay h is a positive constant, and a(t) a piece-wise continuous
function bounded on [0,∞). We do not require that a(t) be positive, and therefore,
the “characteristic function” z + a(t)e−zh can be unstable for some t ≥ 0.

The sharp stability condition (the so called 3/2-stability theorem) for first-order
functional-differential equations with one variable delay was established by Myshkis
[5] (see also [4]). A similar result was established by Lillo [3]. The 3/2-stability
theorem asserts that (1.1) is uniformly stable, provided that 0 < ha(t) ≤ 3/2 for all
t ≥ 0. The upper bound 3/2 is the best possible. In fact, if h supt a(t) > 3/2, then
there are equations having unbounded solutions. The 3/2-theorem was generalized
to nonlinear equations and equations with unbounded delays in the very interesting
papers [6, 7, 8]. In this article, under some additional conditions we improve the
3/2-theorem.

We consider (1.1) as a perturbation of the equation

ẏ(t) = −by(t− h) (1.2)

with a positive constant b < π/(2h) satisfying a condition stated below. The
fundamental solution to (1.2) is

Fb(t) =
1

2πi

∫ i∞

−i∞

eztdz

z + be−zh
.
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For a function f defined and bounded on [0,∞) (not necessarily continuous), we
introduce the norm ‖f‖∞ = supt≥0 |f(t)|. So ‖a‖∞ = supt≥0 |a(t)|. In addition,
put

‖f‖L1 =
∫ ∞

0

|f(t)|dt,

if the integral exists. Now we are in a position to formulate our main result.

Theorem 1.1. Let there be a constant b ∈ (0, π/(2h)), such that

wb := sup
t≥0

|
∫ t

0

(a(t)− b)dt|

is finite and satisfies the inequality

wb <
1

1 + (b + ‖a‖∞)‖Fb‖L1
. (1.3)

Then (1.1) is exponentially stable.

This theorem is proved in the next section. Its assumptions are sharp: if a(t) ≡ b,
then wb = 0 and condition (1.3) is automatically fulfilled.

Furthermore, let
ehb < 1. (1.4)

Then Fb(t) ≥ 0 and (1.2) is exponentially stable, cf. [2] and references therein.
Now, integrating (1.2), we have

1 = Fb(0) = b

∫ ∞

0

Fb(t− h)dt = b

∫ ∞

h

Fb(t− h)dt = b‖Fb‖L1 .

Thus, Theorem 1.1 implies the following result.

Corollary 1.2. Let (1.4) and

wb <
b

2b + ‖a‖∞
(1.5)

hold. Then (1.1) is exponentially stable.

Now for a positive constant ω, let

a(t) = b + u(ωt), (1.6)

where u(t) is a piece-wise continuous function such that

νu := sup
t

∣∣ ∫ t

0

u(s)ds
∣∣ < ∞.

Then

wb = sup
t
|
∫ t

0

u(ωs)ds| = νu/ω.

For example, when u(t) = sin (t), then νu = 2. Now Theorem 1.1 and (1.5) imply
our next result.

Corollary 1.3. Let (1.4), (1.6) and

ω >
νu(3b + ‖u‖∞)

b
(1.7)

hold. Then (1.1) is exponentially stable.
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Example 1.4. Consider the equation

ẋ = −bx(t− 1) + c2 sin(ωt)x(t− 1), (1.8)

where b, c2 are positive constant with b < e−1. Then νu = 2c2 and (1.7) has the
form

ω >
2c2(3b + c2)

b
. (1.9)

In summary, for each c2 there exists an ω, such that (1.8) is exponentially stable.
Meanwhile, the 3/2-stability theorem requires the additional condition c2+b < 3/2.
Therefore, Theorem 1.1 supplements the interesting results obtained in [1].

2. Proof of Theorem 1.1

For simplicity, we put Fb(t) = F (t). Due to the Variation of Constants Formula
the equation

ẋ(t) = −bx(t− h) + f(t) (t ≥ 0),
with a given function f and the zero initial condition x(t) = 0 (t ≤ 0) is equivalent
to the equation

x(t) =
∫ t

0

F (t− s)f(s)ds. (2.1)

Recall that a function G(t, s), (t ≥ s ≥ 0) differentiable in t, is the fundamental
solution to (1.1) if it satisfies that equation in t and the initial conditions

G(s, s) = 1, G(t, s) = 0 (t < s, s ≥ 0).

Put G(t, 0) = G(t). Subtracting (1.2) from (1.1) we have

d

dt
(G(t)− F (t)) = −b(G(t− h)− F (t− h)) + c(t)G(t− h)

where c(t) = −(a(t)− b). Now (2.1) implies

G(t) = F (t) +
∫ t

0

F (t− s)c(s)G(s− h)ds. (2.2)

We need the following simple lemma.

Lemma 2.1. Assume that on each finite segment of the real axis, functions f(t)
and v(t) are boundedly differentiable and w(t) is integrable. Then with the notation

jw(t, τ) =
∫ t

τ

w(s)ds (t > τ > −∞),

the equality∫ t

τ

f(s)w(s)v(s)ds = f(t)jw(t, τ)v(t)−
∫ t

τ

[f ′(s)jw(s, τ)v(s) + f(s)jw(s)v′(s)]ds

is valid.

Proof. Clearly,
d

dt
f(t)jw(t, τ)v(t) = f ′(t)jw(t, τ)v(t) + f(t)w(t)v(t) + f(t)jw(t, τ)v′(t).

Integrating, this equality and taking into account that jw(τ, τ) = 0, we arrive at
the required result. �
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Put J(t) :=
∫ t

0
c(s)ds. By the previous lemma,∫ t

0

F (t− τ)c(τ)G(τ − h)dτ

= F (0)J(t)G(t− h)−
∫ t

0

[dF (t− τ)
dτ

J(τ)G(τ − h) + F (t− τ)J(τ)
dG(τ − h)

dτ

]
dτ.

However,

dG(τ − h)
dτ

= −a(τ−h)G(τ−2h) and
dF (t− τ)

dτ
= −dF (t− τ)

dt
= bF (t−τ−h).

Thus, ∫ t

0

F (t− τ)c(τ)G(τ − h)dτ

= J(t)G(t− h) +
∫ t

0

J(τ)
[
− bF (t− τ − h)G(τ − h)

+ F (t− τ)a(τ − h)G(τ − 2h)
]
dτ.

Now (2.2) implies the following result.

Lemma 2.2. It holds that

G(t) = F (t) + J(t)G(t− h) +
∫ t

0

J(τ)
[
− bF (t− τ − h)G(τ − h)

+ F (t− τ)a(τ − h)G(τ − 2h)
]
dτ .

From the previous lemma,

‖G‖∞ ≤ ‖F‖∞ + ‖G‖∞wb[1 + (b + ‖a‖∞)‖F‖L1 ] .

If condition (1.3) holds, then

θ := wb[1 + (b + ‖a‖∞)‖F‖L1 ] < 1

and therefore,

‖G‖∞ ≤ ‖F‖∞
1− θ

. (2.3)

So the stability of (1.1) is proved. Substituting

xε(t) = eεtx(t) (2.4)

with ε > 0 into (1.1), we have the equation

ẋε(t) = εxε(t)− a(t)eεhxε(t− h). (2.5)

If ε > 0 is sufficiently small, then considering (2.5) as a perturbation of the equation
ẏ(t) = εy(t) − beεhy(t − h), and applying our above arguments, according to (2.3)
we obtain ‖xε‖∞ < ∞ for any solution xε of (2.5). Hence (2.4) implies |x(t)| ≤
e−εt‖xε‖∞ for any solution x of (1.1).
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r(t))). J. Math. Anal. Appl., 120, 271-275 (1986).

[7] Yoneyama, Toshiaki; On the 3/2 stability theorem for one-dimensional delay-differential equa-

tions. J. Math. Anal. Appl. 125, 161-173 (1987).

[8] Yoneyama, Toshiaki; The 3/2 stability theorem for one-dimensional delay-differential equations
with unbounded delay. J. Math. Anal. Appl. 165, No.1, 133-143 (1992).

Michael I. Gil’

Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-
Sheva 84105, Israel

E-mail address: gilmi@cs.bgu.ac.il


	1. Introduction and preliminaries
	2. Proof of Theorem 1.1
	References

