\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 06, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/06\hfil A regularity criterio] {A regularity criterion for the Navier-Stokes equations in terms of the horizontal derivatives of the two velocity components} \author[W. Chen, S. Gala\hfil EJDE-2011/06\hfilneg] {Wenying Chen, Sadek Gala} % in alphabetical order \address{Wenying Chen \newline College of Mathematics and Computer Science, Chongqing Three Gorges University, Wanzhou 404000, Chongqing, China} \email{wenyingchenmath@gmail.com} \address{Sadek Gala \newline Department of Mathematics, University of Mostaganem, Box 227, Mostaganem 27000, Algeria} \email{sadek.gala@gmail.com} \thanks{Submitted October 18, 2010. Published January 12, 2011.} \subjclass[2000]{35Q30, 76F65} \keywords{Navier-Stokes equations; Leray-Hopf weak solutions; \hfill\break\indent regularity criterion} \begin{abstract} In this article, we consider the regularity for weak solutions to the Navier-Stokes equations in $\mathbb{R}^3$. It is proved that if the horizontal derivatives of the two velocity components \[ \nabla _h\widetilde{u}\in L^{2/(2-r)}(0,T;\dot{\mathcal{M}}_{2,3/r} (\mathbb{R}^3)),\quad \text{for }00. \end{gather*} The following imbedding holds \[ L^{3/r}\subset \dot{X}_{r},\quad 0\leq r<\frac{3}{2}\,. \] Now we recall the definition of Morrey-Campanato spaces (see e.g. \cite{Kat}). \begin{definition} \label{def2.2} \rm For $10} R^{3/q-3/p}\| f\|_{L^p(B(x,R))}<\infty \big\}. \label{eq1.13} \end{equation} \end{definition} It is easy to check that \[ \| f(\lambda .)\| _{\dot{\mathcal{M}}_{p,q}} = \frac{1}{\lambda ^{3/q}}\|f\| _{\dot{ \mathcal{M}}_{p,q}}, \quad \lambda >0. \] We have the following comparison between Lorentz and Morrey-Campanato spaces: For $p\geq 2$, \[ L^{\frac{3}{r}}(\mathbb{R}^3)\subset \text{ }L^{3/r,\infty } (\mathbb{R}^3)\subset \dot{\mathcal{M}}_{p,3/r}(\mathbb{R}^3). \] The relation \[ L^{\frac{3}{r},\infty }(\mathbb{R}^3)\subset \dot{ \mathcal{M}}_{p,\frac{3}{r}}(\mathbb{R}^3) \] is shown as follows. Let $f\in L^{3/r,\infty }(\mathbb{R} ^3)$. Then \begin{align*} \| f\| _{\dot{\mathcal{M}}_{p,\frac{3}{r}}} &\leq \sup_{E}| E|^{\frac{r}{3}-\frac{1}{2}} \Big(\int_{E}| f(y)| ^pdy\Big)^{1/p} \\ &= \Big(\sup_E | E| ^{\frac{pr}{3}-1}\int_{E}| f(y)| ^pdy\Big)^{1/p} \\ &\cong \Big(\sup_{R>0} R| \{ x\in \mathbb{R} ^3:| f(y)| ^p>R\} |^{\frac{pr}{3}}Big)^{1/p} \\ &= \underset{R>0}{\sup }R\big| \big\{ x\in \mathbb{R}^p:| f(y)| >R\big\} \big| ^{r/3} \\ &\cong \| f\| _{L^{3/r,\infty }}. \end{align*} For $0k}2^{j(r-1)}2^{j}\| \Delta _{j}f\| _{L^2} \\ &\leq \Big(\sum_{j\leq k}2^{2jr}\Big)^{1/2} \Big( \sum_{j\leq k}\| \Delta _{j}f\| _{L^2}^2\Big)^{1/2} +\Big(\sum_{j>k}2^{2j(r-1)}\Big)^{1/2} \Big(\sum_{j>k}2^{2j}\| \Delta _{j}f\| _{L^2}^2\Big)^{1/2} \\ &\leq C\big(2^{rk}\| f\|_{L^2}+2^{k(r-1)}\|f\| _{\dot{H}^{1}}\big)\\ &= C\big(2^{rk}A^{-r}+2^{k(r-1)}A^{1-r}\big)\| f\| _{L^2}^{1-r}\| f\| _{\dot{H}^{1}}^r, \end{align*} where $A=\| f\| _{\dot{H}^{1}}/ \|f\| _{L^2}$. Choose $k$ such that $2^{rk}A^{-r}\leq 1$; that is, $k\leq [ \log A^r] $, we thus obtain \[ \| f\| _{\dot{B}_{2,1}^r} \leq C\big(1+2^{k(r-1)}A^{1-r}\big)\| f\| _{L^2}^{1-r}\|f\| _{\dot{H}^{1}}^r \\ \leq C\| f\| _{L^2}^{1-r}\| \nabla f\|_{L^2}^r. \] \end{proof} Additionally, for $20$, $u_{0}\in H^{1}(\mathbb{R}^3)$ and $\nabla \cdot u_{0}=0$ in the sense of distributions. Assume that $u$ is a smooth solution of \eqref{eq1.1} on $\mathbb{R}^3\times (0,T)$ and satisfies any one of of the three degree $-1$ growth conditions \eqref{eq1.11}. Then \begin{equation} \begin{aligned} &\sup_{0\leq t0$. \end{theorem} To prove this theorem, we need the following lemma. \begin{lemma}[\cite{BZ}] \label{lem1} Let $u$ be a smooth solution to the Navier-Stokes system \eqref{eq1.1} in $\mathbb{R}^3$. Furthermore, let $\widetilde{u}=(u_1,u_2,0)$ and $\nabla _h\widetilde{u}=(\partial _1 \widetilde{u},\partial _2\widetilde{u},0)$. Then \[ \big| \sum_{i,j,k=1}^3\int_{\mathbb{R}^3}u_{i}\partial _{i}u_{j}\partial _{kk}u_{j}dx\big| \leq C\int_{\mathbb{R} ^3}| \nabla _h\widetilde{u}| | \nabla u| ^2 \] for some constant $C>0$. \end{lemma} The proof of this lemma is simple; see \cite[Lemma 2.2]{BZ}). \begin{proof}[Proof of Theorem \ref{th2}] Multiply the first equation of \eqref{eq1.1} by $\Delta u$, and integrating on $\mathbb{R}^3$, after suitable integration by parts, we obtain for $t\in (0,T)$, \begin{equation} \frac{1}{2}\frac{d}{dt}\| \nabla u\| _{L^2}^2+\| \Delta u(t)\| _{L^2}^2\leq 2\big| \sum_{i,j,k=1}^3\int_{\mathbb{R}^3}u_{i}\partial _{i}u_{j}\partial _{kk}u_{j}dx\big| . \label{eq2.11} \end{equation} Due to H\"{o}lder' s inequality and Lemma \ref{lem3}, the right-hand side \eqref{eq2.11} can be estimated as \begin{align*} \big| \sum_{i,j,k=1}^3\int_{\mathbb{R}^3}u_{i}\partial _{i}u_{j}\partial _{kk}u_{j}dx\big| &\leq \| \nabla_h \widetilde{u} \cdot \nabla u\| _{L^2}\| \nabla u\| _{L^2} \\ &\leq C\| \nabla _h\widetilde{u}\| _{\dot{ \mathcal{M}}_{2,3/r}}\| \nabla u\| _{_{\dot{B }_{2,1}^r}}\| \nabla u\| _{L^2} \\ &\leq C\| \nabla _h\widetilde{u}\| _{\dot{ \mathcal{M}}_{2,3/r}}\| \nabla u\| _{L^2}^{2-r}\| \Delta u\| _{L^2}^r \\ &\leq C\Big(\| \nabla _h\widetilde{u}\| _{\dot{ \mathcal{M}}_{2,3/r}}^{2/(2-r)}\| \nabla u\| _{L^2}^2\Big)^{(2-r)/2}(\| \Delta u\| _{L^2}^2)^{r/2}. \end{align*} By Young' s inequality, we obtain \begin{equation} \big| \sum_{i,j,k=1}^3\int_{\mathbb{R}^3}u_{i}\partial _{i}u_{j}\partial _{kk}u_{j}dx\big| \leq \frac{1}{2}\| \Delta u\| _{L^2}^2+C\| \nabla _h\widetilde{u}\| _{ \dot{\mathcal{M}}_{2,3/r}}^{2/(2-r)}\| \nabla u\| _{L^2}^2 \label{eq6} \end{equation} Substituting \eqref{eq6} into \eqref{eq2.11}, it follows that \[ \frac{d}{dt}\| \nabla u(.,t)\| _{L^2}^2+\| \Delta u(.,t)\| _{L^2}^2\leq C\| \nabla _h\widetilde{u }\| _{\dot{\mathcal{M}}_{2,3/r}}^{2/(2-r) }\| \nabla u\| _{L^2}^2. \] Then Gronwall' s inequality yields \begin{align*} &\| \nabla u(t)\| _{L^2}^2+\int_{0}^{T}\int_{\mathbb{R} ^3}\| \Delta u(x,s)\| _{L^2}^2\,dx\,ds\\ &\leq C\| \nabla u_{0}\| _{L^2}^2\exp \Big(\int_{0}^{t}\| \nabla _h\widetilde{u}(.,s)\| _{\dot{\mathcal{M}}_{2,3/r}} ^{2/(2-r)}ds\Big). \end{align*} This completes the proof . \end{proof} \section{Proof of Theorem \ref{th1}} After we established the key estimate in section 2, the proof of Theorem \ref{th1} is straightforward. It is well known \cite{FK} that there is a unique strong solution $\overline{u}\in C([0,T^{\ast }),H^{1}(\mathbb{R}^3))\cap C^{1}([0,T^{\ast }),H^{1}(\mathbb{R}^3))\cap C([0,T^{\ast }),H^3(\mathbb{R}^3))$ to \eqref{eq1.1} for some $T^{\ast }>0$, for any given $u_{0}\in H^{1}(\mathbb{R}^3)$ with $\nabla.u_{0}=0$. Since $u$ is a Leray-Hopf weak solution which satisfies the energy inequality \eqref{eq1.9}, we have according to the Serrin's uniqueness criterion \cite{Se}, \[ \bar{u}\equiv u\quad \text{on } [0,T^{\ast }). \] By the assumption \eqref{eq1.11} and standard continuation argument, the local strong solution can be extended to time $T$. So we have proved $u$ actually is a strong solution on $[0,T)$. This completes the proof of Theorem \ref{th1}. \begin{thebibliography}{00} \bibitem{Bdv} H. Beir\~{a}o da Veiga; \emph{A new regularity class for the Navier-Stokes equations in $R^{n}$}. Chin. Ann. Math. 16 (1995) 407-412. \bibitem{BZ} B. Dong and Z. Zhang; \emph{The BKM criterion for the 3-D Navier Stokes equations via two velocity components}. To appear in Nonlinear Anal.: Real World Applications (2010), doi:10.1016/j.nonrwa.2009.07.013. \bibitem{CaoT} C. Cao and E. S. Titi; \emph{Regularity criteria for the three-dimensional Navier-Stokes equations}. Indiana University Mathematics Journal 57 (2008), 2643-2662. \bibitem{DSC} B. Dong, S. Gala and Z.-M. Chen; \emph{On the regularity criterion of the 3-D Navier-Stokes equations in weak spaces}. To appear in Acta Mathematica Scientia. \bibitem{FK} H. Fujita, T. Kato; \emph{On the nonstationary Navier Stokes initial value problem}. Arch. Rational. Mech. Anal. 16 (1964) 269 315. \bibitem{GL} S. Gala and P. G. Lemarie-Rieusset; \emph{Multipliers between Sobolev spaces and fractional differentiation}. J. Math. Anal. Appl. 322 (2006), 1030-1054. \bibitem{Kat} T. Kato; \emph{Strong $L^p$ solutions of the Navier-Stokes equations in Morrey spaces}. Bol. Soc. Bras. Mat. 22 (1992), 127-155. \bibitem{Ku} I. Kukavica and M. Ziane; \emph{One component regularity for the Navier-Stokes equations}. Nonlinearity 19 (2006) 453-469. \bibitem{Lem} P. G. Lemari\'e-Rieusset; \emph{Recent developments in the Navier-Stokes problem.} Research Notes in Mathematics, Chapman \& Hall, CRC, 2002. \bibitem{Lem1} P. G. Lemari\'e-Rieusset; \emph{The Navier-Stokes equations in the critical Morrey-Campanato space}. Rev. Mat. Iberoam. 23 (2007), no. 3, 897--930. \bibitem{Le} J. Leray; \emph{Sur le mouvement d'un liquide visqueux emplissant l'espace}. Acta. Math. 63 (1934), 183-248. \bibitem{MO} S. Machihara and T. Ozawa; \emph{Interpolation inequalities in Besov spaces}. Proc. Amer. Math. Soc. 131 (2003), 1553-1556. \bibitem{M} M. Pokorn\'y; \emph{On the result of He concerning the smoothness of solutions to the Navier-Stokes equations}. Electron. J. Differential Equations ,Vol. 2003 (2003), no. 11, 1--8. \bibitem{Se} J. Serrin; \emph{On the interior regularity of weak solutions of the Navier Stokes equations}. Arch. Rational Mech. Anal. 9 (1962) 187-195. \bibitem{Str} M. Struwe; \emph{On partial regularity results for the Navier-Stokes equations}. Comm. Pure Appl. Math. 41 (1988) 437-458. \bibitem{Zhou1} Y. Zhou; \emph{A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component}, Methods Appl. Anal. 9 (2002) 563-578. \bibitem{Zhou2} Y. Zhou; \emph{A new regularity criterion for weak solutions to the Navier-Stokes equations}. J. Math. Pures Appl. 84 (2005) 1496-1514. \bibitem{ZP1} Y. Zhou and M. Pokorn\'y; \emph{On a regularity criterion for the Navier--Stokes equations involving gradient of one velocity component}. J. Math. Phys. 50 (2009), 123514. \bibitem{ZP2} Y. Zhou and M. Pokorn\'{y}; \emph{On the regularity to the solutions of the Navier-Stokes equations via one velocity component}, Nonlinearity 23 (2010), no. 5, 1097. \end{thebibliography} \end{document}