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CONTINUOUS SOLUTIONS OF DISTRIBUTIONAL CAUCHY
PROBLEMS

SEPPO HEIKKILÄ

Abstract. Existence of the smallest, greatest, minimal, maximal and unique
continuous solutions to distributional Cauchy problems, as well as their de-
pendence on the data, are studied. The main tools are a continuous primitive
integral and fixed point results in function spaces.

1. Introduction

New existence results are derived for the smallest, greatest, minimal, maximal
and unique continuous solutions of the distributional Cauchy problem

y′ = f(y), y(a) = c. (1.1)

Novel results for dependence of solutions on f and on the initial value c ∈ R are
also derived. The values of f are distributions (generalized functions) on [a, b],
−∞ < a < b < ∞. Definition of such distributions and their main properties
needed in this paper are presented in section 2.

In section 3, existence results are derived for the smallest and greatest continuous
solutions of (1.1). Dependence of these solutions both on f and on c are also studied.
A concrete example is presented.

Existence of minimal and maximal solutions of problem (1.1) with c = 0 is
studied in section 4. In sections 5 and 6 we present conditions which ensure that
problem (1.1) has a unique solution that depends continuously on the initial value
c. Main tools are a continuous primitive integral introduced for distributions in [6]
and fixed point results proved in [2, 4].

2. Preliminaries

Distributions on a compact real interval [a, b] are (cf. [7]) continuous linear
functionals on the topological vector space D of functions ϕ : R → R possessing for
every j ∈ N0 a derivative ϕ(j) of order j which is continuous on R and vanishes on
R \ (a, b). The space D is endowed with the topology in which the sequence (ϕk)
of D tends to ϕ ∈ D if and only if ϕ

(j)
k → ϕ

(j)
k uniformly on (a, b) for all j ∈ N0 as

k →∞. As for the theory of distributions; see e.g. [3, 5].
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A distribution g on [a, b] is called distributionally Denjoy (shortly DD) integrable
on [a, b] if g has a continuous primitive; i.e., if g is a distributional derivative G′ of
a function G ∈ C[a, b] (cf. [6]). Thus the value 〈g, ϕ〉 of g at ϕ ∈ D is defined by

〈g, ϕ〉 = 〈G′, ϕ〉 = −〈G, ϕ′〉 =
∫ b

a

G(t)ϕ′(t) dt.

The continuous primitive integral function of g is defined by
c∫ t

a

g =
c∫ t

a

G′ = G(t)−G(a), t ∈ [a, b]. (2.1)

It belongs to the function space

Bc[a, b] = {x : [a, b] → R : x is continuous and vanishes at a}.

Assuming that Bc[a, b] is ordered pointwise, it can be shown (cf. [6]) that relation
�, defined by

f � g if and only if
c∫ t

a

f ≤
c∫ t

a

g for all t ∈ [a, b], (2.2)

is a partial ordering on the set of DD integrable distributions on [a, b].
The following result reduces problem (1.1) to a fixed point equation on C[a, b].

Lemma 2.1. Assume that f(x) is DD integrable on [a, b] for every x ∈ C[a, b].
Then the Cauchy problem (1.1) has a continuous solution y if and only if y is a
solution of the fixed point equation

x(t) = F (x)(t) := c +
c∫ t

a

f(x), t ∈ [a, b]. (2.3)

Proof. Assume first that y ∈ C[a, b] is a solution of problem (1.1). Applying (1.1),
(2.1) and (2.3) we have for each t ∈ [a, b],

y(t) = c + y(t)− y(a) = c +
c∫ t

a

y′ = c +
c∫ t

a

f(y) = F (y)(t).

Thus y is a solution of (2.3). Conversely, assume that y ∈ C[a, b] satisfies the fixed
point equation (2.3). Then for every t ∈ [a, b],

y(t)− c = F (y)(t)− c =
c∫ t

a

f(y).

This result implies also that y(a) = c, since
c∫ a

a

f(y) = 0 by (2.1). On the other

hand,

y(t)− c = y(t)− y(a) =
c∫ t

a

y′, t ∈ [a, b].

The above results imply that
c∫ t

a

f(y) =
c∫ t

a

y′ for every t ∈ [a, b], whence y′ = f(y)

by (2.2). Thus y is a solution of problem (1.1). �
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3. Existence of the smallest and greatest solutions

The application of monotone methods for fixed point problems in C[a, b] is
complicated by the fact that the limit function of a pointwise convergent mono-
tone sequence of C[a, b] is not necessarily continuous. For instance, the functions
xn(t) = tn, t ∈ [0, 1], n ∈ N, form such a sequence. Therefore it is assumed in this
section that f(x) is a distributional derivative of a continuous function whenever x
belongs to the space L1[a, b] of Lebesgue integrable functions on [a, b]. This space
is equipped with a.e. pointwise ordering, and its a.e. equal functions are identified.

The main result of this section reads as follows.

Theorem 3.1. The Cauchy problem (1.1) has the smallest solution y∗ and the
greatest solution y∗ in C[a, b] if the following hypotheses are valid.

(A0) f(x) is DD integrable on [a, b] for every x ∈ L1[a, b];
(B0) f(x) � f(y) whenever x ≤ y in L1[a, b];
(C0) There exist distributions f± that are DD integrable on [a, b] such that f− �

f(x) � f+ for all x ∈ L1[a, b].
Moreover, both y∗ and y∗ are increasing with respect to f and to c.

Proof. For each x ∈ L1[a, b] denote by F (x) the primitive of f(x), defined in (2.3),
and define y± ∈ C[a, b] by

y±(t) = c +
c∫ t

a

f±, t ∈ [a, b].

The given hypotheses imply by (2.2) and (2.3) that F is an increasing mapping
from L1[a, b] to its order interval [y−, y+] = {x ∈ L1[a, b] : y− ≤ x ≤ y+}. If
(xn) is a monotone sequence in L1[a, b], then (F (xn)) is a monotone sequence in
[y−, y+]. Thus, by monotone convergence theorem, (F (xn)) converges in L1[a, b],
and the limit function belongs to [y−, y+]. It then follows from [4, Theorem 1.2.2]
that F has the smallest fixed point y∗ and the greatest fixed point y∗ in L1[a, b],
and hence also in C[a, b], since F [L1[a, b]] ⊂ C[a, b] by the hypothesis (A0). These
fixed points are by Lemma 2.1 also the smallest and greatest continuous solutions
of (1.1). Moreover, according to [4, Theorem 1.2.2],

y∗ = min{x ∈ [y−, y+] : F (x) ≤ x}, y∗ = max{x ∈ [y−, y+] : x ≤ F (x)}. (3.1)

Applying these relations it is easy to show that both y∗ and y∗ are increasing with
respect to F , and hence, by (2.3) and (2.2), also with respect to f and to c. �

As noticed in [6], the distributional Denjoy integral contains the wide Denjoy
integral, and hence also integrals called Riemann, Lebesgue, Denjoy and Henstock-
Kurzweil. In the next corollary the Henstock-Kurzweil integral can be replaced by
any of those integrals listed above.

Corollary 3.2. The results of Theorem 3.1 are valid if f(x) is for every x ∈ L1[a, b]

the distributional derivative of a function (
K∫

denotes the Henstock-Kurzweil inte-

gral)

G(x)(t) =
n∑

i=1

Hi(t)
K∫ t

a

gi(x) + H(t), t ∈ [a, b], (3.2)

where for each i = 1, . . . , n, Hi is nonnegative-valued, Hi, H ∈ Bc[a, b], and gi(x) :
[a, b] → R satisfies the following hypotheses.
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(GI1) gi(x) is Henstock-Kurzweil integrable on [a, b] for all x ∈ L1[a, b].
(GI2) There exist Henstock-Kurzweil integrable functions g

i
, gi : [a, b] → R such

that
K∫ t

a

g
i
≤

K∫ t

a

gi(x) ≤
K∫ t

a

gi(y) ≤
K∫ t

a

gi,

for t ∈ [a, b], whenever x ≤ y in L1[a, b].

Proof. The hypotheses imposed above ensure that (3.2) defines for every x ∈ L1[a, b]
a continuous function G(x) : [a, b] → R. Moreover, the distributional derivatives
f(x) of G(x) satisfy the hypotheses (A0), (B0) and (C0), where

c∫ t

a

f− =
n∑

i=1

Hi(t)
K∫ t

a

g
i
+ H(t),

c∫ t

a

f+ =
n∑

i=1

Hi(t)
K∫ t

a

gi + H(t), t ∈ [a, b].

Thus the Cauchy problem (1.1) has by Theorem 3.1 the smallest and greatest
solutions in C[a, b], and they are increasing with respect to f and to c. �

Remark 3.3. Under the hypotheses of Theorem 3.1 the smallest fixed point y∗ of F
is by [4, Theorem 1.2.1] the maximum of the chain C of L1[a, b] that is well-ordered;
i.e., every nonempty subset of C has the smallest element, and that satisfies

(I) y− = min C, and if y− < x, then x ∈ C if and only if x = sup F [{y ∈ C :
y < x}].

The smallest elements of C are Fn(y−), n ∈ N0, as long as Fn(y−) = F (Fn−1(y−))
is defined and Fn−1(y−) < Fn(y−), n ∈ N. If Fn−1(y−) = Fn(y−) for some n ∈ N,
there is the smallest such an n, and Fn(y−) = sup F [C] = y∗ is the smallest fixed
point of F in C[a, b]. If xω = sup

n∈N
Fn(y−) is defined in L1[a, b] and is a strict upper

bound of {Fn(y−)}n∈N, then xω is the next element of C. If xω = F (xω), then
y∗ = xω, otherwise the next elements of C are of the form Fn(xω), n ∈ N, and so
on.

The greatest fixed point y∗ of F is by [4, Proposition 1.2.1] the minimum of the
chain D of L1[a, b] that is inversely well-ordered; i.e., every nonempty subset of D
has the greatest element, and that satisfies

(II) y+ = max D, and if y+ > x, then x ∈ C if and only if x = inf F [{y ∈ D :
y > x}].

The greatest elements of D are n-fold iterates Fn(y+), as long as they are defined
and Fn(y+) < Fn−1(y+), etc.

Example 3.4. Consider the Cauchy problem

y′ = f(y), y(0) = 0, (3.3)

where f(x) is for each x ∈ L1[0, 1] the distributional derivative of the function
G(x) ∈ Bc[0, 1], defined by

G(x)(t) = H1(t)
K∫ t

0

g1(x) + H(t), t ∈ [0, 1], (3.4)

where H ∈ Bc[0, 1], H1 is the Heaviside step function on [0, 1], and

g1(x)(t) = arctan
(
[105

∫ 1

0

(x(t)−H(t)) dt]10−4
)(1

t
cos(

1
t
)− sin(

1
t
) + 1

)
,
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where [·] denotes the greatest integer function. Denote

y±(t) := H(t)± 4t(1− sin(
1
t
)), t ∈ (0, 1], y±(0) = 0,

and let f± be distributional derivatives of y±. The validity of the hypotheses (GI1)
and (GI2) is easy to verify. Thus, the Cauchy problem (3.3) has by Corollary 3.2
the smallest and greatest solutions in Bc[0, 1].

Calculating the successive approximations

yn+1 = G(yn), y0 = y− and zn+1 = G(zn), z0 = y+,

we see, that (yn)24n=0 is strictly increasing, that (zn)24n=0 is strictly decreasing, that
y24 = G(y24), and that z24 = G(z24).

Thus y∗ = y24 and y∗ = z24 are by Remark 3.3 and Lemma 2.1 the smallest
and greatest solutions of (3.3) in Bc[0, 1] when f(x) is for each x ∈ L1[a, b] the
distributional derivative of G(x) defined by (3.3). The exact formulas of y∗ and y∗

are

y∗(t) = arctan
(

8693
10000

)
t(sin(

1
t
)− 1) + H(t), t ∈ (0, 1], y∗(0) = 0,

y∗(t) = arctan
(

869
1000

)
t(1− sin(

1
t
)) + H(t), t ∈ (0, 1], y∗(0) = 0.

4. Existence of minimal and maximal solutions

In this section existence results are derived for local and global minimal and
maximal continuous solutions of the distributional Cauchy problem

y′ = f(y), y(a) = 0. (4.1)

The space L1[a, b], ordered a.e. pointwise and normed by L1-norm: ‖x‖1 =∫ b

a
|x(s)| ds, is an ordered normed space E := (L1[a, b], ‖ · ‖1) having the follow-

ing properties (θ denotes the zero-element of L1[a, b]).
(E0) Bounded and monotone sequences of E converge.
(E1) x+ = sup{θ, x} exists, and ‖x+‖1 ≤ ‖x‖1 for every x ∈ E.

Denote
B(θ, R) = {x ∈ L1[a, b] : ‖x‖1 ≤ R}. (4.2)

Because of the properties (E0) and (E1) we obtain the following result as a conse-
quence of [2, Theorem 2.44].

Lemma 4.1. Given a subset P of L1[a, b], assume that F : P → P is increasing,
and that F [P ] ⊆ B(θ, R) ⊆ P for some R > 0. Then F has

(a) minimal and maximal fixed points;
(b) smallest and greatest fixed points y∗ and y∗ in the order interval [y, y] of P ,

where y is the greatest solution of y = −(−F (y))+, and y is the smallest
solution of y = F (y)+.

Moreover, y∗, y∗, y and y are all increasing with respect to F .

As an application of Lemma 4.1 we obtain the following result.

Proposition 4.2. Assume that the hypotheses (A0) and (B0) hold, and that the
primitives F (x) of f(x) in Bc[a, b] satisfy the following hypothesis for some R > 0.

(C1) ‖F (x)‖ ≤ R for all x ∈ L1[a, b], ‖x‖1 ≤ R.
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Then the Cauchy problem (4.1) has
(a) minimal and maximal solutions in B(θ, R);
(b) smallest and greatest solutions y∗ and y∗ in the order interval [y, y] of

B(θ, R), where y is the greatest solution of y = −(−F (y))+, and y is the
smallest solution of y = F (y)+.

Moreover, y∗, y∗, y and y are all increasing with respect to f .

Proof. For each x ∈ L1[a, b] the distribution f(x) has by (A0) the primitive F (x)
in Bc[a, b] ⊂ L1[a, b]. The hypotheses (B0) and (C1) imply that F satisfies the
hypotheses of Lemma 4.1 when P = B(θ, R). Thus, by Lemma 4.1(a), F has in
B(θ, R) minimal and maximal fixed points, which are by Lemma 2.1 also minimal
and maximal solutions of (4.1) in B(θ, R). The results of (b) and the last result of
theorem follow from the corresponding results of Lemma 4.1 and from (2.2). �

As for the existence of minimal and maximal solutions of (4.1) in the whole
Bc[a, b], we have the following result.

Theorem 4.3. The distributional Cauchy problem (4.1) has minimal and maximal
solutions in Bc[a, b], and they are increasing with respect to f , if the hypotheses (A0)
and (B0) hold, and if the primitives F (x) of f(x) in Bc[a, b] satisfy the following
hypothesis.

(C2) ‖F (x)‖1 ≤ Q(‖x‖1) for all x ∈ L1[a, b], where Q : R+ → R+ is increasing,
R = Q(R) for some R > 0, and r ≤ Q(r) implies r ≤ R.

Proof. Hypothesis (C2) implies that

‖F (x)‖1 ≤ Q(‖x‖1) ≤ Q(R) = R for every x ∈ B(θ, R).

Thus hypothesis (C1) holds, whence (4.1) has the by Proposition 4.2 minimal and
maximal solutions in B(θ, R), and they are increasing with respect to f .

If y ∈ B(θ, r) is a solution of (1.1), then y is a fixed point of F by Lemma 2.1.
Hypothesis (C2) with r = ‖y‖1 implies that

‖y‖1 = ‖F (y)‖1 ≤ Q(‖y‖1) ≤ Q(R) = R.

Thus all the solutions of (4.1) are in B(θ, R). The assertion follows from the above
results. �

5. Existence and uniqueness results

In this section, conditions are presented for distributions f(x), x ∈ C[a, b], which
ensure that (1.1) has for each c ∈ R a unique solution. Denoting dxe = |x(·)|,
x ∈ C[a, b], we have the following fixed point result that is basis of our main
existence and uniqueness theorem.

Proposition 5.1 ([4, Theorem 1.4.9]). Let F : C[a, b] → C[a, b] satisfy the hypoth-
esis:

(F0) There exists a v ∈ C+[a, b] = {u ∈ C[a, b] : θ ≤ u} and an increasing
mapping Q : [θ, v] → C+[a, b] satisfying Qv(t) < v(t) and Qnv(t) → 0 for
each t ∈ [a, b], such that

dF (x)− F (z)e ≤ Qdx− ze (5.1)

for all x, z ∈ C[a, b], dx− ze ≤ v.
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Then for each y0 ∈ C[a, b] the sequence (Fn(y0))∞n=0 converges uniformly on [a, b]
to a unique fixed point of F .

In our main existence and uniqueness theorem we rewrite the inequality (5.1)
in terms of distributions. The modulus |g| of a distribution g on (0, b) that is DD
integrable on [a, b] is defined by

|g| := sup{g,−g}, (5.2)

where the supremum is taken in the partial ordering � defined by (2.2). |g| exists
because � is a lattice ordering (cf. [6, Sect. 9]).

Now we are able to prove an existence and uniqueness theorem for the solution
of the Cauchy problem (1.1).

Theorem 5.2. Assume that distributions f(x), x ∈ C[a, b], and h(w), w ∈ [θ, v],
v ∈ C+[a, b], are DD integrable on [a, b], and that

|f(x)− f(z)| � h(dx− ze) (5.3)

for all x, z ∈ C[a, b] with dx− ze ≤ v, and that Q : [θ, v] → C+[a, b], defined by

Q(w)(t) =
c∫ t

a

h(w), θ ≤ w ≤ v, a ≤ t ≤ b, (5.4)

is increasing, Q(v)(t)) < v(t) and Qn(v)(t) → 0 for each t ∈ [a, b]. Then the
Cauchy problem (1.1) has a unique solution y in C[a, b]. Moreover, y is for each
choice of y0 ∈ C[a, b] the uniform limit of the sequence (yn)∞n=0 of the successive
approximations

yn+1(t) = c +
c∫ t

a

f(yn), t ∈ [a, b], n ∈ N0. (5.5)

Proof. It follows from (2.2) and (5.2) that (5.3) holds if and only if∣∣ c∫ t

a

f(x)−
c∫ t

a

f(z)
∣∣ ≤ c∫ t

a

h(dx− ze), for all t ∈ [a, b]. (5.6)

Equation (2.3) defines a mapping F : C[a, b] → C[a, b]. The given hypotheses and
the equivalence of (5.3) and (5.6) imply that the operators F and Q, defined by (2.3)
and (5.4), satisfy the hypotheses of Proposition 5.1. Thus the iteration sequence
(Fn(y0))∞n=0, which equals to the sequence (yn)∞n=0 of successive approximations
(5.5), converges for every choice of y0 ∈ C[a, b] uniformly on [a, b] to a unique fixed
point y of F . This result and Lemma 2.1 imply that y is the uniquely determined
continuous solution of the Cauchy problem (1.1). �

The following result will be applied to obtain a special case of Theorem 5.2.

Lemma 5.3 ([2, Lemma 6.11]). Assume that the function q : [a, b] × [0, r] → R+,
r > 0, satisfies the condition.

(Q0) q(·, x) is measurable for all x ∈ [0, r], q(·, r) ∈ L1([a, b], R+), q(t, ·) is in-
creasing and right-continuous for a.e. t ∈ [a, b], and the zero-function is
the only absolutely continuous (AC) solution with u0 = 0 of the Cauchy
problem

u′(t) = q(t, u(t)) a.e. on [a, b], u(a) = u0. (5.7)
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Then there exists an r0 > 0 such that the Cauchy problem (5.7) has for every
u0 ∈ [0, r0] the smallest AC solution u = u(·, u0), which is increasing with respect
to u0. Moreover, u(t, u0) → 0 uniformly over t ∈ [a, b] when u0 → 0.

The next result is an application of Lemma 5.3 and Theorem 5.2.

Proposition 5.4. The results of Theorem 5.2 are valid if the distributions f(x),
x ∈ C[a, b], are DD integrable on [a, b] and satisfy the following hypothesis.

(F0) There exists an r > 0 such that (5.3) holds for all x, z ∈ C[a, b] with
‖x − z‖∞ ≤ r and for all t ∈ [a, b], where h is the Nemytskij operator
defined by

h(w) = q(·, w(·)), w ∈ C+[a, b], ‖w‖∞ ≤ r, (5.8)

and q : [a, b]× [0, r] → R+ satisfies the hypothesis (q) of Lemma 5.3.

Proof. According to Lemma 5.3 the Cauchy problem (5.7) has for some u0 = r0 > 0
the smallest AC solution v = u(·, r0), and r0 ≤ v(t) ≤ r for each t ∈ [a, b]. Since
q(s, ·) is increasing and right-continuous in [0, r] for a.e. s ∈ [a, b], and because
q(·, x) is measurable for all x ∈ [0, r] and q(·, r) is Lebesgue integrable, it follows
from [1, Theorem 2.1.1 and Remarks 2.1.1] that q(·, u(·)) is Lebesgue integrable
whenever u belongs to the order interval [θ, v] of C+[a, b]. Thus the equation (5.4),
where h is the Nemytskij operator defined by (5.8), defines a mapping Q : [θ, v] →
C+[a, b]. Condition (Q0) ensures that Q is increasing, and the choices of r0 and v
imply that

r0 + Q(v) = v. (5.9)

Thus v(t) − Q(v)(t) = r0 > 0 for each t ∈ [a, b]. The sequence (Qn(v))∞n=0 is
decreasing because q(t, ·) is increasing for a.e. t ∈ [a, b]. Noticing that the functions
Qn(v) are also continuous, the reasoning similar to that applied in the proof of
Lemma 5.3 shows that (Qn(v))∞n=0 converges uniformly on [a, b] to the zero function.
The above proof shows that the hypotheses of Theorem 5.2 hold. �

6. Dependence on the Initial Value

We shall first prove that under the hypotheses of Proposition 5.4 the difference
of solutions y of (1.1) belonging to initial values c and ĉ, respectively, can be
estimated by the smallest solution of the comparison problem (5.7) with initial
value u0 = |c− ĉ|. This estimate implies by Lemma 5.3 the continuous dependence
of y on c.

Proposition 6.1. Let the distributions f(x), x ∈ C[a, b], satisfy the hypotheses of
Proposition 5.4. If y = y(·, c) denotes the solution of the Cauchy problem (1.1) and
u = u(·, u0) the smallest solution of the Cauchy problem (5.7), then for all c, ĉ ∈ R,
with |c− ĉ| small enough,

|y(t, c)− y(t, ĉ))| ≤ u(t, |c− ĉ|), t ∈ [a, b]. (6.1)

In particular, y(·, c) depends continuously on c in the sense that y(t, ĉ) → y(t, c)
uniformly over t ∈ [a, b] as ĉ → c.

Proof. Assume that c, ĉ ∈ R, and that |c− ĉ| ≤ r0, where r0 is chosen as in Lemma
5.3. The solutions y = y(·, c) and ŷ = y(·, ĉ) exist by Proposition 5.4, and they
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satisfy by Lemma 2.1 the fixed point equations

y(t) = F (y)(t) = c +
c∫ t

a

f(y), and ŷ(t) = F̂ (ŷ)(t) = ĉ +
c∫ t

a

f(ŷ), t ∈ [a, b].

Moreover, F satisfies by the proof of Proposition 5.4 the hypotheses of Proposition
5.1 with Q defined by (5.4), or equivalently, by

Q(w)(t) =
∫ t

a

q(s, w(s)) ds, t ∈ [a, b],

and u = u(·, |c− ĉ|) is the smallest AC solution of

u = |c− ĉ|+ Q(u).

Denote
V = {y ∈ C[a, b] : dy − ŷe ≤ u}.

Since Q is increasing, and since

F (ŷ)(t)− ŷ(t) = F (ŷ)(t)− F̂ (ŷ)(t) = c− ĉ

for all t ∈ [a, b], we have for every y ∈ V ,

dF (y)− ŷe ≤ dF (ŷ)− ŷe+ dF (y)− F (ŷ)e
≤ dF (ŷ)− ŷe+ Q(dy − ŷe)
≤ |c− ĉ|+ Q(u) = u.

Thus F [V ] ⊆ V . Since ŷ ∈ V , then (Fn(ŷ)) ∈ V for every n ∈ N0. The uniform
limit y = limn Fn(ŷ) exists by Theorem 5.2 and is the solution of (1.1). Because V
is closed, then y ∈ V , so that dy− ŷe ≤ u. This proves (6.1). According to Lemma
5.3, u(t, |c − ĉ|) → 0 uniformly over t ∈ [a, b] as |c − ĉ| → 0. This result and (6.1)
imply that the last assertion of the proposition is true. �

Remark 6.2. If in condition (Q0), r = ∞ and q(·, z) ≤ q ∈ L1([a, b] for each
z ∈ R+, then (6.1) holds for all c, ĉ ∈ R.

The hypotheses imposed on q : [a, b] × [0, r] → R+ in (Q0) hold if q(t, ·) is
increasing for a.e. t ∈ [a, b], and if q is an L1-bounded Carathéodory function such
that the following local Kamke’s condition holds.

u ∈ C([a, b], [0, r]) and u(t) ≤
∫ t

a

q(s, u(s)) ds for all t ∈ [a, b] imply u(t) ≡ 0.

The hypotheses of (Q0) are valid also for the function q : [a, b]×[0, r] → R+, defined
by

q(t, s) = p(t) φ(s) t ∈ [a, b], s ∈ [0, r], (6.2)
where p ∈ L1([a, b], R+), φ : [0, r] → R+ is increasing and right-continuous, and∫ r

0
dv

φ(v) = ∞.
Let lnn and expn denote n-fold iterated logarithm and exponential functions,

respectively. The functions φn, n ∈ N, defined by φn(0) = 0, and

φn(s) = s

n∏
j=1

lnj
1
s
, 0 < s ≤ expn(1)−1,

have properties assumed above for the function φ when r = expn(1)−1. These
properties hold also for the function φ(s) = s, s ≥ 0. Thus the following result is a
special case of Theorem 5.2 and Proposition 6.1.
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Corollary 6.3. The Cauchy problem (1.1) has for each c ∈ R a unique solution
y = y(·, c), if f(x) is DD integrable on [a, b] for all x ∈ C[a, b], and if there exists
a Lebesgue integrable function p : [a, b] → R+ such that∣∣ c∫ t

a

f(y)−
c∫ t

a

f(z)
∣∣ ≤ ∫ t

a

p(s)|y(s)− z(s)| ds

for all y, z ∈ C[a, b] and for all t ∈ [a, b]. Moreover,

|y(t, c)− y(t, ĉ))| ≤ e
R t

a
p(s)ds|c− ĉ|, t ∈ [a, b], c, ĉ ∈ R.

In linear case we obtain the following consequence from Corollary 6.3.

Corollary 6.4. For each c ∈ R, the linear Cauchy problem

y′ = h + py, y(0) = c,

has a unique solution in C[a, b] whenever the distribution h is DD integrable on
[a, b], and p : [a, b] → R+ is Lebesgue integrable.

Remark 6.5. The Cauchy problem

y′(t) = g(t, y(t)) a.e. on [a, b], y(a) = c, (6.3)

is a special case of problem (1.1) when f is the Nemytskij operator associated with
the function g : [a, b]× R → R by

f(x) := g(·, x(·)), x ∈ L1[a, b].

For instance, Theorem 3.1 implies the following result.

Corollary 6.6. The Cauchy problem (6.3) has the smallest and greatest continuous
solutions that are increasing with respect to g and c, if the following hypotheses are
valid.

(G0) g(·, x(·)) is Henstock-Kurzweil integrable on [a, b] for every x ∈ L1[a, b].

(G1)
K∫ t

a

g(s, x(s)) ds ≤
K∫ t

a

g(s, y(s)) ds for all t ∈ [a, b] whenever x ≤ y in

L1[a, b].
(G2) There exist Henstock-Kurzweil integrable functions g± : [a, b] → R such

that
K∫ t

a

g−(s) ds ≤
K∫ t

a

g(s, x(s)) ds ≤
K∫ t

a

g+(s) ds for all x ∈ L1[a, b] and

t ∈ [a, b].
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