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LIMIT CYCLES AND BOUNDED TRAJECTORIES FOR A
NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATION

HENRY GONZALEZ

ABSTRACT. In this article, we determine the trajectories of maximum devia-
tion, and the closed trajectories of maximum deviation for nonlinear differential
equations of the form

g+ 2a(t) Y, y)y + b(t, Y, y)y = C(t7 Y, y)
where the coefficients and the right-hand side are piecewise continuous func-

tions in ¢ and continuous in y,y. Also we find necessary and sufficient condi-
tions for the boundedness of all the trajectories.

1. INTRODUCTION

In the application of mathematical models to real problems, after linearization,
simplifications and other adaptations of the models, frequently we have to investi-
gate the solutions of differential systems which contain uncertain parameters. One
of the methods to attack this problem is the extremal principle which consists in the
determination of trajectories that are the solution of some optimal problems and
with their help we can determine the considered properties of all the trajectories
of our differential system. In 1946, Bulgakov [I] apply this method for an n-order
differential equation with constant coefficients and with uncertainty in the right
side. In the problem, the maximum deviation was computed for solutions with
a fixed end time, and then calculated the supremum of the maximum deviation
when the end time tends to infinity. In the previous decades have appeared a great
number of publications related with the application of the extremal principle in the
solutions of problems of absolute stability [2, 3], stability radius [4], and others. In
the present article, using the solutions of maximum deviation for a second-order
nonlinear differential equation with uncertainty, we give necessary and sufficient
condition for the boundedness of all the trajectories.

This article is organized as follows: In section [2| we formulate the main problem
and determine the trajectories of maximum deviation of our differential system. In
section [3| we determine the limit cycles of maximum deviation as function of the
parameters of the system. Also we show the stability of these cycles and using these
results we obtain two qualitative behaviours of phase portrait of the trajectories of
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maximum deviation; which allows us to give the necessary and sufficient condition
for the boundedness of all the trajectories.

2. PROBLEM FORMULATION AND THE TRAJECTORIES OF MAXIMUM DEVIATION

Let a,@,b,b, ¢y be given real numbers, which satisfy the inequalities

0<a<a 0<b<b @’ —-b<0, ¢o>0, (2.1)
and let £ be the family of nonlinear second-order differential equations
§+2a(t,y,9)y +b(t,y, 9)y = c(t, ¥, 9), (2.2)

where a(t, y, v), b(t,y,9), c(t,y, ) are piecewise continuous functions in the variable
t and continuous in y, ¥, satisfying the inequalities

a<a(t,y.y) <a, b<b(ty,9) <b, |e(ty,9)| < co. (2.3)

In this article, we give necessary and sufficient condition in terms of the pa-
rameters a,a, b, b, ¢, for the boundedness of all the trajectories of the family £ of
equations. A similar problem has been analyzed for the particular case of linear
inhomogeneous equations (2.2)) with constant coefficients (a =@, b = b) in [6].

It follows from condition (2.1]) for the parameters that for all real number § there
is a trajectory of the family of equations £, which begins in the point (4,0) and
realizes infinitely rotating turns in positive direction (counterclockwise) around the
origin in the phase plane y,y. So we can consider for every real number & the
extremal problem

ly(T)| — sup

y(.) is a solution of £

y(0) =4, 9(0)=0
§(T) =0, g(t)#0, te(0,T).
This problem has been named problem of maximum deviation of the solutions of
the family of equations £. Note that if we consider the same problem with the
functions a(.),b(.),c(.) depend only on ¢, so taking into account that according
with the bounds for this functions: a,@, b, b, ¢y, are constants, we have that
the solution of the corresponding linear problem is the same that the nonlinear one.

The extremal problem can be interpreted as an optimal control problem
with variable time T in which the role of the control is played by the functions
a(t),b(t),c(t),t € [0,T]. We say that a trajectory of the family £ is of maximum
deviation if it is a continuous solution of an equation of £ and if it is the union
of trajectories, which are optimal for the extremal problem . To solve the
optimal problem we apply the Pontryagin Maximum Principle [7]-[§]. In the
variables x = (x1,z2) := (y, y) the considered differential equations of the family £
are equivalent to the system

(2.4)

o = —b(t)x1 — 2a(t)x2 + c(t) (2.5)

So the conjugate system and the Pontryagin function are
Yo =0
= bt
Wy = —tho — b1 — 2a(t)is,
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and
H(xz,v,a,b,¢) = Yoxs + 129 + o (—bx1 — 2ax9 + C). (2.6)
The necessary conditions for the optimality have the form:
(1) max H(x(t),(t), a,b, ¢) = H(z(t), ¥(t), a(t), b(t), c(t)) = 0,
(2) Yo =—1,
(3) ¥1(T)01 + 92(T)02 = 0,
where 0 is a vector colinear with (1,0). According with condition (1) and the

expression of the Pontryagin function (2.6), we have that the optimal control
(a®(t),b°(t), c (1)) satisfies

a®(t) =a forallt

bO(t) = {z iml(t)wrz(t) >0
i 2, (1) () < 0 (2.7)

N Co if ’LZ)Q(t) >0
B —co if wg(t) <0

From (3) follows that ¢1(T) = 0, so if we write 1; = 91 + 1, then ¢, (T) = 1 and
from the fact that (1 (t),¥2(t)) and (z;(t), z2(t)) are conjugate variables we have:
21 (t)1h (t) + 22(t)ha(t) = O, where C is a constant. Evaluating the last equality
for ¢ = T we obtain C' = z1(T). From all that and the necessary condition (1),

(2.6) and (2.5) we have

At

~

&1 (8)hy (t) + 2 (t)ha(t) = 0
21 (8, (t) 4 w2 (t)iho(t) = a1 (T

. Solving with respect to ¥ (t), we have

—.%'1(t)£.v1(t)
xg(t)i‘l(t) — 1‘1(t).j32(t) '

It is well known that the trajectories of maximum deviation move all the time in a
unique sense around the origin of coordinates, because if such a trajectory moves
in the two possible directions around the origin as illustrate the figure 77, then we
can easily construct a trajectory (by example with the help of the dashed line in
figure 1 which contradicts the optimality of the trajectory of maximum deviation.

So the trajectories of maximum deviation move all the time in positive sense
around the origin and then in the expression the denominator is positive for
all t € [0,T], and the numerator have the same sign as —z1(¢)#1(t) = —21(t)y(t),
so from this fact and we conclude that the synthesis of the optimal control

for the problem ([2.4)) is

)

Pa(t) =

(2.8)

a’(y,9) =a forall (y,9) € R?

W g) =42 1=
’ b oifyy <0 (2.9)

co(y7y): Co ify>0
—Co 1fy<0
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figure 1

Therefore, the trajectories of maximum deviation of £ are the solutions of the
equation

i+ 20°(y, 9)9 + 0 (v, )y = (3. 9), (2.10)
where the functions a®(y, ), 5% (y,9), °(y,9) are given by (2.9).

3. CLOSED TRAJECTORIES OF MAXIMUM DEVIATION AND MAIN RESULTS

Now we consider a trajectory of maximum deviation of £ and denote by (-6, 0),
(0,a), (v,0), (0,—0), (—¢,0) the points of interception of this trajectory with the
axes of coordinate; see figure 2.

4 (1,0)

(0, -9

Figure 2: maximum deviation trajectory

The numbers «, 7, 0, € are functions of the number §. In the case €¢(d) = J the
considered trajectory is closed and we will denote it by Cs. The bounded region
limited by the closed trajectory Cj is invariant for the family of equations £.

In the qualitative study of the solutions of £ it is fundamental to determine the
closed trajectories of maximum deviation of £ and their stability in the sense of
limit cycles.



EJDE-2011/133 LIMIT CYCLES AND BOUNDED TRAJECTORIES 5

From the expressions it follows that the optimal trajectories for cor-
responding to opposite values of § are symmetric with respect to the origin of coor-
dinates and so the equality €(d) = ¢ is fulfilled if and only if the equality v(0) = ¢ is
fulfilled. Thus to determine the closed trajectories of maximum deviation of £ we

must solve the equation () = § with respect to the unknown number §. Define
the functions ¢ : Rt — R and ¢ : RT™ — R by

p(0) =a, and P(a)=1.
From the theorem of existence and uniqueness of solutions for differential equations
it follows that the functions ¢ and v are correctly defined on R* = {z € R,z > 0},
they are injective functions and so the inverse to ¢: § = p~1(«a) exists. Then solving
the equation (2.10)-(2.9), with initial condition y(0) = 0,5(0) = a we obtain for
the functions ¢~ !(a) and 9() the expressions:

4,071(04) _ e‘l‘;(a) \/5062 — 2acoa + o2 — %)
o—as(a) . (3.1)
¥(a) = — Vba? — 2acoa + co? + 30,
where _
%arctan(cﬁza) if o <2
T(a) = %[w — arctan( 765?@&)] ifa>2 (3.2)
% if = %’,
é[ﬂ‘ — arctan(q;ga)] ifa< %
s(a) = éarctan(_figa) if > (3.3)
% if = %},

B=1/b—a? B=+b—ad> (3.4)
Note that from the conditions on the parameters (2.1)) it follows that all the square
roots that appear in the expressions (3.1])-(3.4]) are well defined.
A number §p > 0 satisfies the equation (§) = § if and only if it satisfies the
equation 1 (a) = ¢~ 1(a). So if we define the function

fla) =—¢(a) + ¢ (@), a>0. (3.5)
Then using (3.1]) we have
f(a) = be™(@ \/5@2 — 2acoe + co? —be % \/ba? — 2acoa + o2 —co(b+D) (3.6)

and the closed trajectories of maximum deviation of the family £ are determined
by the positive roots « of the equation

fla) =0. (3.7

Now we put
M(a) = ba? — 2acoa + co?, M(a) = ba? — 2acoa + co°. (3.8)
then the derivative of f(a) is

f'(e) = __ b [e47(@) /M () — e725() /M (ax)]. (3.9)

M(a)M(a)
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Consider now the function g : RT™ — RT defined by

73
g(0) = *M(“)e-ﬂswf(a». (3.10)

M(c)

It is easy to see that
f'(a) > 0 if and only if g(a) < 1
f'(a) < 0 if and only if g(a) > 1 (3.11)
f'(a) =0 if and only if g(a) =1

Easy computations give

b — b 2ae—as(@)+7(a))
g (a) = (b= b)cyae — >0 forall a>0. (3.12)
M{(er)y/ M) M(c)

Note that M («)/M () is a rational function, both the numerator and denominator
are polynomials in « of second degree. So, there exists the limit

lim = (3.13)

From expressions (3.2) and (3.3) follows that there exist the limits:

1
Too := lim 7(a) = =(7 — arctan =)
a—00 ﬂ a
. (3.14)
Soo 1= O}LH;O s(a) = 3 arctan z.

Now from (3.13)), (3.14]) and (3.10)) we conclude that there exists the limit

G(a,b,b) == lim g(a) = \/(b/b) et Tec) (3.15)

We now consider two cases:

Case 1. G(a,b,b) < 1.

In this case the function g(a), @ > 0, according with increases monoton-
ically, so g(a) < 1 for all @ > 0, from what follows according with that the
function f(«),a € (0,00) increases monotonically and it is easy to calculate that:
limy— oo f(a) = 00, limy—g f(a) < 0 and so we conclude that in this case has
exactly one root a; > 0.

Now Let §; = ¢ !(aq). then Cs, is in this case the unique cycle of maximal
deviation of the family of equations £. The function y : RT™ — R defined by

X(0) = €= (¥ 0 p)*(d) (3.16)
is a Pointcare map for the cycle Cs, and simple calculations show that
X' (61) = g*(aq) < 1 (3.17)

and so the cycle Cjs, is a stable cycle. See figure 3.

Then from the invariance of the region bounded by Cj,, we have that all the
solutions of £ with initial condition in this closed bounded region are bounded.
Now we will prove that in this case for all point x in the exterior of the cycle Cj, all
the trajectories of £ with initial condition in x are also bounded. In order to prove
that we consider a maximum deviation trajectory with initial point (A4,0), A > 0
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T T
/

Figure 3: Case 1.

Y

and end point (B,0), B > 0 which takes a turn around the origin and we close
this line with the vertical segment AB. Then the closed bounded region limited
by this closed line is invariant for the family of equations &, and for all point x in
the exterior of Cs, choosing the number A sufficiently large we can assure that this
point is in this bounded invariant region and then all trajectories of £ with initial
condition in x are bounded (See figure 4).

A
5
g
B
T T T
J

Figure 4. Boundedness of the trajectories in the exterior of the cycle.

We have proved that in this Case 1 all trajectories of £ are bounded.
Case 2. G(a,b,b) > 1. In this case we write the function f(«) in the form

f(a) = be® @)\ /M () h(a) — co(b + D), (3.18)
where
_ B —a(s(a)+71(a M(Ot)
h(a) _1—56 (s(@)+7(a)) @) (3.19)

Now by differentiation we obtain

B'(a) = (b—b)cia >0 (3.20)
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for all a > 0. Then
max h(a) = lim h(a) =1— lim g(a) <0, (3.21)

a>0 a—00

and then from this and the expression (3.18) we conclude that f(a) < 0 for all
a > 0, and so in this Case 2, the equation (3.7) does not have positive root and £
doesn’t have any cycle of maximum deviation. The negativity of the function f(«)
means that for all positive § we have €(d) > ¢ and so the trajectories of maximum
deviation of the family £ are all unbounded; see figure 5.

Figure 5: Case 2.

From the results for the two possible cases 1 and 2, we have the following result.

Theorem 3.1. A necessary and sufficient condition for the boundedness of all the
solutions of the family of equations & is the inequality

G(a,b,b) <1, (3.22)
where the number G(a,b,b), depending of the parameters a,b,b can be computed by

the expressions (3.15))) and (3.14).

4. EXAMPLES

Example 4.1. Let a=1,b=2,b=4, and @ > 1, ¢y > 0 arbitrary real numbers.
Then by direct computation using Maple we obtained

G(a,b,b) =0.192429 < 1 (4.1)
and so all the trajectories of the corresponding family of equations £ are bounded.

Example 4.2. Let a =1,b =2, b=40, and @ > 1, ¢y > 0 arbitrary real numbers.
Then by direct computation using Maple we obtained

G(a,b,b) = 1.545757 > 1 (4.2)

and so for all point = of the phase plane there is a non bounded trajectory of the
corresponding family of equations £ with initial point z, for example, the trajectory
of maximum deviation with initial point x.
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