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LONGITUDINAL LIBRATIONS OF A SATELLITE

MASSIMO FURI, MARIO MARTELLI, ALFONSO VIGNOLI

Abstract. Furi, Martelli and Landsberg gave a theoretical explanation of the
chaotic longitudinal librations of Hyperion, a satellite of Saturn. The analysis
was made under the simplifying assumption that the spin axis remains perpen-
dicular to the orbit plane. Here, under the same assumption, we investigate
the behavior of the longitudinal librations of any satellite. Also we show that
they are possibly chaotic depending on two parameters: a constant k related
to the principal moments of inertia of the satellite, and the eccentricity e of
its orbit. We prove that the plane k-e contains an open region Ω with the
property that the longitudinal librations of any satellite are possibly chaotic if
the point (k, e) belongs to this region. Since Hyperion’s point is inside Ω, the
results of this paper are more general than those obtained previously.

1. Introduction

The differential equation that governs the motion of a satellite, when its spin
axis remains perpendicular to the orbit plane, takes the form

ẍ =
( a

r(t)

)3(16c2e sin θ(t)
a4(1− e2)

− 3
B −A

C
sinx

)
, (1.1)

which, as shown in [7], is equivalent to the one in [8, 16]. The variable x is equal to
twice the angle ϕ between the longest axis of the satellite and the planet-satellite
center line, and the symbol ẍ denotes the second derivative of x with respect to
the time t. The constants a and e are, respectively, the semimajor axis and the
eccentricity of the elliptical orbit described by the center of mass of the satellite.
The function r(t) denotes the distance between the satellite and the planet. The
constant c is the areolar velocity of the satellite, that is the instantaneous area swept
by the segment joining the centers of mass of the planet and of the satellite. The
function θ(t) indicates the polar angle. Measured counterclockwise and expressed
in radians, it provides the angle between the major diameter of the elliptical orbit
oriented towards the periapsis (i.e., the point when the satellite is closest to the
planet) and the planet-satellite center line (see figure 1). The constants A, B, and
C, with 0 < A ≤ B ≤ C, are the principal moments of inertia of the satellite, with
C being the moment about the spin axis.
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Equation (1.1) was studied in [7] in the case when all the constants involved are
referred to Hyperion, one of the many satellites of the planet Saturn. Theoretical
results and numerical estimates were used to explain why the longitudinal librations
of this satellite are chaotic.

In this paper we investigate the behavior of the longitudinal librations of any
satellite with motion governed by (1.1), and we show that these librations are
possibly chaotic depending on two parameters: the ratio k = (B − A)/C and the
eccentricity e of the orbit of the satellite. Both constants are assumed to be positive
and less than 1. By means of theoretical considerations we show that the plane k-e
contains an open region Ω (see figure 2) with the property that the longitudinal
librations of any satellite (with spin axis perpendicular to the orbit plane) are
possibly chaotic provided that the corresponding pair of parameters (k, e) drops in
this region. After having determined, numerically, the boundary of Ω, we realized
that the pair (k, e) associated with Hyperion belongs to Ω, as expected. Thus, the
results in this paper extend those in [7].

Some historical remarks are in order. Wisdom, Peale, and Mignard [16] in-
vestigated the irregular oscillations of Hyperion’s longest axis with respect to the
planet-satellite center line. The conclusions of the three scientists were derived
from:

(1) Hyperion’s images transmitted by Voyager 2 [14];
(2) a mostly numerical analysis of a differential equation modeling a planetary

motion and proposed by P. Goldreich and S. Peale [8].

Martelli and VignoliThe modified the equation proposed by Danby [4] to study the
longitudinal librations of the moon.

In an interesting paper Wisdom, Peale, and Mignard [16] provided numerical
evidence that Hyperion’s longitudinal librations are chaotic. Denoting by ϕ the
angle between Hyperion’s longest axis and the planet-satellite center line, they
plotted the pairs (ϕ, ϕ̇) when Hyperion crosses the periapsis, obtaining a large
cloud of points which dominates the 1/2 and 2 spin-orbit states.

We point out that, besides Wisdom, Peale, and Mignard [16], other authors (see,
for example, [1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 15, 17, 18]) have analyzed problems
similar to the one investigated here.

2. The model

According to [8, 16] the motion of a tri-axial satellite describing an elliptical orbit
around a planet, with spin axis perpendicular to the orbit plane, can be modelled
by the second-order nonlinear differential equation

ϕ̈ + θ̈ = −3(B −A)
2C

( a

r(t)
)3 sin(2ϕ), (2.1)

where the quantities involved are as in Section 1. Thus, θ + ϕ is the angle be-
tween the satellite’s longest axis and the longest diameter of the elliptical orbit (see
figure 1).

Since the planet lies at one focus of the orbit, its distance r from the satellite is
expressed by the following function of the polar angle θ:

r(θ) =
p

1 + e cos θ
, (2.2)
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Figure 1. The planet-satellite system

where p = a(1 − e2) is the parameter of the elliptical orbit. The angle θ and the
time t are related by Kepler’s second law of planetary motion and by the initial
condition θ(0) = 0, obtained by selecting t = 0 when the planet is at the periapsis.
Hence, θ(t) is the solution of the initial value problem

r2(θ)θ̇ = 2c,

θ(0) = 0.
(2.3)

Differentiating (2.2) and (2.3), and recalling the equality p = a(1− e2), we obtain

θ̈(t) = − 8c2

r3(t)
e sin θ(t)
a(1− e2)

.

Hence, (2.1) takes the form

ϕ̈ =
( a

r(t)
)3(8c2e sin θ(t)

a4(1− e2)
− 3(B −A)

2C
sin 2ϕ

)
.

Setting x = 2ϕ, we obtain the differential equation

ẍ =
( a

r(t)
)3(16c2e sin θ(t)

a4(1− e2)
− 3(B −A)

C
sinx

)
.

We set a = 1 and normalize the time so that the period of revolution of the
satellite is 2π. Consequently, t and θ(t) coincide when t = nπ, n ∈ Z, and the
difference η(t) := t− θ(t) is a 2π-periodic odd function. Moreover, the area swept
during a full turn by the segment joining the satellite with the planet is πab =
π
√

1− e2. It follows that

c =
1
2

√
1− e2.

Moreover, since p = a(1 − e2) and r2(θ)θ̇ = 2c, with the above setting we obtain
the differential equation

ẍ =
(1 + e cos θ(t)

1− e2

)3(4e sin θ(t)− 3k sinx
)
, (2.4)
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and the initial value problem (2.3), which defines the function θ(t), becomes

θ̇ =
(1 + e cos θ)2

(1− e2)3/2
,

θ(0) = 0.

(2.5)

Notice that (2.4) can be regarded as governing the motion of a point mass con-
strained on a vertical circle and acted on by two periodic forces of the same period:
an oscillating gravitational force, and a forcing term with zero mean acting, al-
ternately, clockwise and counterclockwise. To emphasize this interpretation, we
observe that (2.4) can be rewritten in the form

ẍ + b(t) sinx = a(t) sin(t + η(t)),

where the functions a(t) and b(t) are strictly positive, even, and 2π-periodic. More-
over η(t), which can be considered as the phase of a forcing term with oscillating
amplitude a(t), is odd and 2π-periodic.

3. Preliminary Results

In this section we begin our investigation of equation (2.4). We already men-
tioned that the dependent variable x can be regarded as the location (measured in
radians) of a point mass on S1. The lowest position of this point corresponds to
x = 2kπ, k ∈ Z, and will be called South Pole. The North Pole is identified with
x = (2k + 1)π, k ∈ Z.

To make the statements and proofs of Sections 4 and 5 more concise and trans-
parent we now present some terminology, lemmata, propositions, and appropriate
remarks.

Remark 3.1. Regard (2.4) as the motion equation of a point x of unitary mass,
constrained on S1, and acted on by the force

f(t, x) =
(1 + e cos θ(t)

1− e2

)3(
4e sin θ(t)− 3k sinx

)
.

Assume that 4e < 3k. Then f(t, x) pushes towards the South Pole (for any t)
whenever x lies in each one of the two opposite arcs

AW = (−π + arcsin(4e/3k),− arcsin(4e/3k)),

AE = (arcsin(4e/3k), π − arcsin(4e/3k)),

centered at −π/2 and π/2 and defined by −4e− 3k sinx > 0 and 4e− 3k sinx < 0,
respectively.

For the rest of this article, we assume that the two positive parameters k and e
satisfy the inequality 4e < 3k ensuring the existence of the opposite arcs defined
in Remark 3.1. We call AW and AE the western arc and eastern arc, with AW =
(αW , βW ) and AE = (βE , αE). Moreover, the arc containing the North Pole with
extremes αW and αE will be called the northern arc and denoted by AN , while the
arc containing the South Pole with extremes βW and βE will be called the southern
arc and denoted by AS . Accordingly, the points West, East, North Pole and South
Pole are the centers of the four arcs AW , AE , AN and AS .

Given x0, x1 ∈ R, x0 6= x1, we denote by x0x1 the closed interval

[min{x0, x1}, max{x0, x1}].



EJDE-2011/134 LONGITUDINAL LIBRATIONS 5

We need the following physically meaningful result (see e.g. [7]). For completeness’
sake we include its elementary proof.

Lemma 3.2. Let f : R2 → R, f− : R→ R and f+ : R→ R be continuous and such
that

f−(x) ≤ f(t, x) ≤ f+(x)
for all (t, x) ∈ R2. Let x(t), t ≥ t0, be any solution of the initial value problem

ẍ = f(t, x),

x(t0) = x0,

ẋ(t0) = v0.

Define the real functions g− and g+ by

g−(x) =
v2
0

2
+

∫ x

x0

f−(s) ds, g+(x) =
v2
0

2
+

∫ x

x0

f+(s) ds.

Given x1 6= x0, denote by u− and u+ the numbers

u− = min
{
g−(x) : x ∈ x0x1

}
, u+ = min

{
g+(x) : x ∈ x0x1

}
.

The following four assertions hold.
• If x1 > x0, v0 > 0, and u− > 0, then ẋ(t) ≥

√
2u− for all t ≥ t0 such that

x0 ≤ x(t) ≤ x1. In particular, x(t) reaches x1 without stopping.
• If x1 < x0, v0 < 0, and u+ > 0, then ẋ(t) ≤ −

√
2u+ for all t ≥ t0 such

that x0 ≤ x(t) ≤ x1. In particular, x(t) reaches x1 without stopping.
• If x1 > x0, v0 > 0, and u+ < 0, then x(t) does not reach x1 before it stops.
• If x1 < x0, v0 < 0, and u− < 0, then x(t) does not reach x1 before it stops.

Proof. Observe that

ẋ2(t)
2

=
v2
0

2
+

∫ t

t0

f(τ, x(τ))ẋ(τ) dτ, ∀ t ≥ t0, (3.1)

as can be easily verified by differentiating both members of (3.1) and noticing that
they coincide when t = t0.

We have to examine four cases, and in each one of them the initial velocity
v0 = ẋ(t0) is different from 0. Therefore, it makes sense to consider the maximal
interval containing t0 and contained in the relatively open subset {t ≥ t0 : ẋ(t) 6= 0}
of [t0,+∞). This nonempty interval will be denoted by [t0, t∗), with t0 < t∗ ≤ +∞.

Consider the first case, namely x1 > x0, v0 > 0, and u− > 0. From equation
(3.1) and from the inequality f−(x) ≤ f(t, x), we obtain

ẋ2(t)
2
≥ v2

0

2
+

∫ t

t0

f−(x(τ))ẋ(τ) dτ =
v2
0

2
+

∫ x(t)

x0

f−(s) ds = g−(x(t))

for every t ∈ [t0, t∗). Since ẋ(t0) > 0, we obtain ẋ(t) ≥
√

2u− for all t ∈ [t0, t∗) such
that x(t) ≤ x1. Hence, the first of the four assertions follows.

The second case can be analyzed in a similar manner by taking into account that
ẋ(τ) is negative for all τ ∈ [t0, t] ⊂ [t0, t∗).

Consider the third case: x1 > x0, v0 > 0, and u+ < 0. From equation (3.1) and
the inequality f(t, x) ≤ f+(x), we obtain

ẋ2(t)
2
≤ v2

0

2
+

∫ x(t)

x0

f+(s) ds = g+(x(t)), ∀ t ∈ [t0, t∗).
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Since u+ < 0, there exists a point x̄ in the open interval (x0, x1) such that g+(x̄) < 0.
Thus, because of the above inequality, x(t) cannot cross the point x̄ before it stops.

The last case can be studied in a similar manner using the fact that now ẋ(τ) < 0,
∀ τ ∈ [t0, t]. �

Remark 3.3. The equation (2.4) is of the type ẍ = f(t, x), with

f−(x) ≤ f(t, x) ≤ f+(x),

for all (t, x) ∈ R2, where

f−(x) =
−4e− 3k sinx

(1 + e sign(−4e− 3k sinx))3
,

f+(x) =
4e− 3k sinx

(1− e sign(4e− 3k sinx))3
.

(3.2)

For the rest of this article, we shall assume that f−(x) and f+(x) are as in (3.2).
Observe that in this case,

f−(−x) = −f+(x), ∀x ∈ R.

Moreover, under the assumption 4e < 3k, which implies the existence of the arcs
AW = (α

W
, β

W
) and AE = (β

E
, α

E
), we have α

W
= −α

E
and β

W
= −β

E
. Conse-

quently, ∫ β
W

α
W

f−(x)dx =
∫ β

E

α
E

f+(x)dx ,

∫ 0

β
W

f−(x)dx =
∫ 0

β
E

f+(x)dx .

The following function of k and e, defined on the open triangle

T =
{
(k, e) ∈ R2 : 0 < 4e < 3k < 3

}
,

plays an important role in the sequel:

h(k, e) :=
∫ 0

α
W

f−(x)dx =
∫ 0

α
E

f+(x)dx. (3.3)

Notice that h(k, e) = h+(k, e) + h−(k, e), with

h+(k, e) :=
∫ βW

α
W

f−(x)dx =
∫ βE

α
E

f+(x)dx,

h−(k, e) :=
∫ 0

β
W

f−(x)dx =
∫ 0

β
E

f+(x)dx .

Moreover, h+(k, e) > 0 and h−(k, e) < 0 for all (k, e) in the triangle T , since f−(x)
is positive for x ∈ (α

W
, β

W
) and negative for x ∈ (β

W
, 0). Actually, elementary

computations show that

h+(k, e) =
−4e(π − 2 arcsin(4e/3k)) + 6k

√
1− (4e/3k)2

(1 + e)3

and

h−(k, e) =
−4e arcsin(4e/3k) + 3k(1−

√
1− (4e/3k)2)

(1− e)3
.

Proposition 3.4. Let h(k, e) > 0, and assume that when t = t0 the point mass
crosses one of the positions αW or αE and it travels towards the South Pole. Then
it reaches it at some t1 > t0 and ẋ(t) 6= 0 for every t ∈ [t0, t1].
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Proof. We consider first the case when the point mass crosses αW with positive
velocity. With the notation of Lemma 3.2, let x0 = αW be the highest point of the
west arc and let x1 = 0 be the South Pole. Consider the function g− : [x0, x1]→ R
defined by

g−(x) =
v2
0

2
+

∫ x

x0

f−(s) ds,

where v0 := ẋ(t0) > 0 and f−(s) is as in Remark 3.3. As pointed out before, f−(s)
is positive in the west arc (x0, βW ) and negative between βW and x1 (the South
Pole). Therefore, the function g−(x) is increasing up to βW and then decreasing.
Moreover, at the extremes of the interval [x0, x1] we have

g−(x0) =
v2
0

2
> 0 and g−(x1) =

v2
0

2
+

∫ x1

x0

f−(s) ds =
v2
0

2
+ h(k, e) > 0.

Thus, the number
u− = min

{
g−(x) : x ∈ x0x1

}
is positive. Consequently, the first assertion of Lemma 3.2 shows that x(t) reaches
the South Pole with positive velocity without stopping.

The situation in which the point mass crosses αE clockwise can be analyzed as
in the previous case, using the equality

h(k, e) =
∫ 0

α
E

f+(x)dx

and the second assertion of Lemma 3.2. �

4. over or not

The two results of this section deal with going over the top (see Theorem 4.4) and
not going over the top (see Theorem 4.5). We establish results similar to the ones
proved in [6] for the satellite Hyperion. The procedure, however, is quite different
since we are dealing with any satellite having its motion around a planet described
by (2.4). Recall that we are assuming 4e < 3k, which is verified for Hyperion.

As a first change, in equation (2.4) we substitute the independent variable t with
θ, which can be regarded as well as an independent variable since the correspondence
t 7→ θ(t) is invertible. The reason of this substitution is that (2.4) contains the
function θ(t) which depends on the satellite under consideration, and our numerical
approach requires that we decide when f(t) = sin θ(t) is equal to +1 or to −1. By
using θ as the independent variable we avoid the complication of redetermining the
values of t such that θ(t) = ±π/2 each time we change the parameters k and e.

For the rest of this article, we denote by x′ and x′′ the first and second derivatives
of x with respect to θ. By abuse of terminology, those will be called velocity and
acceleration of the point mass as if θ were the time. Recall that ẋ and ẍ denote
the first and second derivatives of x with respect to t.

Observe that
d

dθ
=

1
g(θ)

d

dt
,

where, according to (2.5),

g(θ) =
dθ

dt
=

(1 + e cos θ)2

(1− e2)3/2
.
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Consequently,

x′′ =
ẍ

g2(θ)
− g′(θ)

g(θ)
x′.

Since (see (2.4))

ẍ =
(1 + e cos θ(t)

1− e2

)3(
4e sin θ(t)− 3k sinx

)
,

we obtain

x′′ =
1

1 + e cos θ
(2e(x′ + 2) sin θ − 3k sinx). (4.1)

Remark 4.1. Notice that whenever x(θ) is a solution of (4.1), every function of
the form

zk(θ) := x(θ + 2kπ) (4.2)

is also a solution for every k ∈ Z. Moreover, additional solutions are provided
by the function w(θ) := −x(−θ) (equivariance) and by its translates according to
(4.2).

The following definition will be used repeatedly.

Definition 4.2. Given two events regarding the point mass x(θ), the expression
the second event happens immediately after the first one means that the last event
occurs for the first time after the previous one and, between the two events, the
derivative x′(θ) never vanishes.

Notice that, with the new independent variable θ, Proposition 3.4 can be refor-
mulated as follows.

Proposition 4.3. Let h(k, e) > 0, and assume that when θ = θ0 the point mass
crosses one of the positions αW or αE and it travels downward. Then it reaches
the South Pole immediately after θ0.

We now introduce symbols to be used in this section. In the definition of any
of them, one of the following two events is always considered: the point mass x(θ)
crosses S (the South Pole) when the variable θ is either θS = π/2 or θS = −π/2.
The crossing can be counterclockwise or clockwise and must happen or not happen
immediately before or after one of the following events:

(1) leaving the northern arc AN ,
(2) entering AN ,
(3) crossing AN strictly (meaning that x′(θ) never vanishes during the cross-

ing).

The plus sign is used when θS = π/2, while the minus sign is used when θS = −π/2.
The letter P stands for past and it denotes that the event under consideration takes
place before the crossing of S. The letter F stands for future and it denotes that
the event happens after crossing S. The letter v always stands for the absolute
value of x′(θS). An arrow located over the letter v indicates the supremum of v
and an arrow located below v indicates the infimum of v. The orientation of the
arrow is important, since it indicates the direction of the point mass when it crosses
the South Pole. For example,← means that (for θ = θs = ±π/2) we have x(θs) = 0
and x′(θs) < 0; that is, the motion is clockwise.
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Clearly, there are 24 = 16 possibilities. However, only 8 of them are of interest to
us. Four of them regard the counterclockwise motion; the other ones the clockwise
motion. We give their description below.

Recall first that in all cases, even if not specified, the crossing of S happens when
the variable θ is either θS = π/2 or θS = −π/2 according to the plus or minus sign,
and the crossing is counterclockwise or clockwise according to the direction of the
arrow.

The symbols
v−→

+
p and v←−

−
p

denote the infimum of v = |x′(θS)| such that the point mass crosses S immediately
after leaving the northern arc AN .

Similarly,
v←−

+
F and v−→

−
F

indicate the infimum of |x′(θS)| sufficient for the point mass to arrive at the northern
arc immediately after crossing S. Consequently, with a smaller v the point mass
cannot reach AN immediately after leaving S.

Likewise
←−v +

p and −→v −p
denote the supremum of |x′(θS)| such that the point mass crosses S immediately
after coming from AN , which, however, should not have been crossed strictly.

Finally,
−→v +

F and ←−v −F
stand for the supremum of |x′(θS)| such that the point mass does not cross strictly
the northern arc AN immediately after leaving S.

We now set
δ+
→ = v−→

+
p −−→v +

F , δ−→ = v−→
−
F −
−→v −p ,

δ+
← = v←−

+
F −
←−v +

p , δ−← = v←−
−
p −←−v −F .

(4.3)

The equivariance mentioned in Remark 4.1 implies that

v−→
+
P = v−→

−
F , −→v +

F = −→v −P ,

v←−
+
F = v←−

−
P , ←−v +

P =←−v −F .
(4.4)

From (4.3) and (4.4) we obtain
δ+
→ = δ−→,

δ+
← = δ−←.

(4.5)

To emphasize the dependence of (4.5) on the ratio k and the eccentricity e, we shall
write

δ→(k, e), δ←(k, e).
Moreover, we set

δ(k, e) = min{δ→(k, e), δ←(k, e)}. (4.6)
Given a pair (k, e), to estimate the four numbers of (4.4) we use a program,

written by the first author, that simulates the motion of the point mass on the
circle S1 satisfying the differential equation (4.1). On this circle the marks αW ,
βW , βE , αE are indicated.

For example, to compute v←−
+
F we use the shooting method starting from the

South Pole S when θ = π/2 and the parameter v = x′(π/2) is negative; that is,
the motion is clockwise. The corresponding solution is observed in the future (i.e.,
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for θ > π/2). Equivalently, because of the equality v←−
+
F = v←−

−
P , one can evaluate

the same number by starting from S when θ = −π/2 and v = x′(−π/2) < 0. The
motion is again clockwise, but in this case the point mass must be observed in the
past (so that the point appears to be moving counterclockwise).

The curves h(k, e) = 0 and δ(k, e) = 0 intersect at two points (see figure 2) that
have been evaluated to be

Pl = (0.179± 10−3, 0.088± 10−3), Pr = (0.753± 10−3, 0.279± 10−3).

For Pl the four velocities are

v−→
+
P = v−→

−
F = 1.689± 10−3, −→v +

F = −→v −P = 1.161± 10−3,

v←−
+
F = v←−

−
P = 1.444± 10−3, ←−v +

P =←−v −F = 1.444± 10−3.

For Pr we obtain

v−→
+
P = v−→

−
F = 4.337± 10−3, −→v +

F = −→v −P = 1.526± 10−3,

v←−
+
F = v←−

−
P = 2.970± 10−3, ←−v +

P =←−v −F = 1.970± 10−3.

For Hyperion k = 0.26, e = 0.11, and we obtain

v−→
+
P = v−→

−
F = 2.177± 10−3, −→v +

F = −→v −P = 1.308± 10−3,

v←−
+
F = v←−

−
P = 1.787± 10−3, ←−v +

P =←−v −F = 1.729± 10−3.

It follows that δ(0.26, 0.11) = 0.058± 2 · 10−3.
The following theorem deals with going over the top.

Theorem 4.4. Assume δ(k, e) > 0 and consider a solution x(θ) of the differential
equation (4.1) which, for some θ0 ∈ R, satisfies the condition x(θ0) ∈ AN . Suppose
that, for some k ∈ Z and immediately after leaving AN , the point mass x(θ) reaches
counterclockwise the South Pole when θ = θS = π/2 + 2kπ or clockwise when
θ = θS = −π/2 + 2kπ. Then the point mass crosses AN immediately after θS.

Proof. First of all notice that the equation (4.1) is 2π periodic. Thus, if x(θ) is a
solution, so is y(θ) := x(θ + 2kπ) for any k ∈ Z. Therefore, we can set θS = π/2 in
the first case, and θS = −π/2 in the second one.

Let us assume that point mass crosses the arc AW reaching the South Pole for
θS = π/2. Then, from the condition δ→(k, e) > 0 we derive that v−→

+
p > −→v +

F . In
other words, the speed of the point mass at the South Pole is sufficient for going
over the top.

Let us now assume that the point mass crosses the arc AE reaching the South
Pole for θS = −π/2. Then from the condition δ←(k, e) > 0 we derive v←−

−
p > ←−v −F .

Hence, the speed of arrival of the point mass at S is larger than the maximum
speed such that AN is not crossed. Consequently, AN is crossed. �

Our next result deals with the case of not going over the top.

Theorem 4.5. Suppose δ(k, e) > 0 and let x(θ) be a solution of (4.1) that, for
some θ0 ∈ R, verifies the following conditions:

• x(θ0) ∈ AN ;
• x′(θ0) = 0;
• for some k ∈ Z and immediately after θ0, the point mass x(θ) reaches the

South Pole when θ = θS = −π/2 + 2kπ in the counterclockwise case or
when θ = θS = π/2 + 2kπ in the clockwise case.
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Then the point mass will not cross the northern arc immediately after θS.

Proof. The proof repeats almost verbatim the one of Theorem 4.4. In the coun-
terclockwise case, the condition δ→(k, e) > 0 implies that v−→

−
F > −→v −p . Therefore,

the point mass cannot reach AN immediately after leaving S. A similar conclu-
sion is obtained in the clockwise case, since the condition δ←(k, e) > 0 implies
v←−

+
F >←−v +

p . �

5. chaotic behavior

This section is similar to the corresponding portion of [7]. There are however,
some important differences, since the independent variable t has been replaced by
the independent variable θ. Moreover, throughout this section, we assume that the
pair (k, e) belongs to the open triangle T given by 0 < 4e < 3k < 3, so that the
four arcs AW , AE , AN , AS are well defined, together with the function h(k, e). In
particular, we are interested in the following open subset of T (see figure 2):

Ω =
{
(k, e) ∈ T : h(k, e) > 0, δ(k, e) > 0

}
.

Figure 2. The region Ω is inside the triangle T . It is bounded to
the right and to the left by the curve δ(k, e) = 0 (represented as
a sequence of dots, obtained numerically), and above by the curve
h(k, e) = 0 (see equation (3.3)). The dot in Ω, namely the point
with coordinates (0.26, 0.11), corresponds to Hyperion

Let θN ∈ R and xN ∈ AN be fixed. Given any v ∈ R, let xv(θ) denote the
solution of the initial value problem

x′′ =
1

1 + e cos θ

(
2e(x′ + 2) sin θ − 3k sinx

)
x(θN ) = xN , x′(θN ) = v.

(5.1)
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Definition 5.1. Whenever, for θ > θN , xv(θ) crosses AW with counterclockwise
velocity or AE with clockwise velocity, we say that the crossing is a significant
event. In the first case we label the crossing with the number 1; and in the second
case, with −1.

Definition 5.2. Denote by Σ the set of all sequences in {−1, 1}. Given σ ∈ Σ
and n ∈ N, we say that xv(θ) n-fulfills σ if after θN it has at least n significant
events and the list of labels associated to them coincides with the first n elements
of σ, with their order preserved. We say that xv(θ) fulfills σ ∈ Σ if n-fulfills σ for
every n ∈ N.

Let σ ∈ Σ and n ∈ N be given.
• We denote by Iσ

n ⊂ R the set of v ∈ R such that the solution xv(θ) of (5.1)
n-fulfills σ.

• Given v ∈ Iσ
n , denote by θσ

n(v) the value of θ such that xv(θ) crosses the
South Pole immediately after n-significant events.

Notice that continuity with respect to initial conditions implies that any Iσ
n is

open. Moreover, as a consequence of Proposition 4.3, the function θσ
n : Iσ

n → R is
well defined and continuous.

We are now ready to state and prove the main result of this paper.

Theorem 5.3. Suppose (k, e) ∈ Ω. Then, given any σ ∈ Σ, there exists v ∈ R
such that the solution xv(θ) of (5.1) fulfills σ.

Proof. We shall determine a sequence {Jn : n ∈ N} of nonempty bounded open
intervals such that the following two conditions are satisfied:

(an) Jn ⊂ Iσ
n ;

(bn) the closure of Jn+1 is contained in Jn.
The two properties just mentioned imply that

J∞ = ∩n≥1Jn 6= ∅, (5.2)

and a solution of (5.1) with initial velocity v ∈ J∞ fulfills σ.
We now describe how to define J1, J2 and J3 for any σ ∈ Σ. An induction

procedure can be used to define Jn for all n ∈ N so that (5.2) holds.
Without loss of generality we can assume that the first element of σ is 1. Notice

that a point mass with a large and counterclockwise initial speed will first cross
AW . Thus, the open set Iσ

1 is nonempty. Analogously, if the initial speed is large
enough and clockwise, the point mass will first cross AE . Hence, Iσ

1 is bounded
below. Therefore, it contains a bounded interval J1 = (ω1, v1) such that ω1 /∈ Iσ

1 .
Continuity with respect to initial conditions implies that the unique solution of
(5.1) with initial velocity ω1 cannot have −1 as the first significant event. Thus,
this solution will always remain in AN oscillating indefinitely. Hence, continuity
with respect to initial conditions implies

lim
v→ω1+

θσ
1 (v) = +∞. (5.3)

Suppose now that the second element of σ is different from the previous one;
i.e., it is −1. The continuity of θσ

1 , equation (5.3) and Theorem 4.4 imply the
existence of an initial velocity v2 ∈ J1 such that the corresponding solution of
(5.1) crosses AW a second time without stopping. Now observe that continuity
with respect to initial conditions implies that any solution of (5.1) with initial
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velocity v ∈ J1 close to ω1 will stop inside AN for some value θN ≥ 0 before
the first significant event (recall that the solution of (5.1) with v = ω1 oscillates
indefinitely inside AN ). Thus, equation (5.3) and Theorem 4.5 imply the existence
of an initial w2 ∈ (ω1, v2) such that the corresponding solution of (5.1) does not
reach the northern arc AN immediately after the first significant event. Therefore,
continuity with respect to initial conditions implies the existence of a solution of
(5.1) with initial velocity u2 ∈ (w2, v2) which enters AN (immediately after the
first significant event) and then goes back crossing AE with clockwise velocity.
Consequently, its second significant event is −1. This shows that the open set
Iσ
2 ∩ (u2, v2) is nonempty. Moreover, since this set is clearly strictly contained

in (u2, v2), it contains an interval J2 = (u2, ω2) with ω2 /∈ Iσ
2 . Continuity with

respect to initial conditions implies that the solution of (5.1) with initial velocity
ω2 cannot have 1 or −1 as the second significant event. Thus, this solution, after
the first significant event, will enter AN and remain there oscillating indefinitely.

At this point, the situation is as follows:
(a2) the interval J2 = (u2, ω2) is contained in Iσ

2 ;
(b2) the closure of J2 is contained in J1;
(c2) ω2 is the initial velocity of a solution of (5.1) that after the first significant

event enters AN and remains there oscillating indefinitely.
Continuity with respect to initial conditions implies that

lim
v→ω2−

θσ
2 (v) = +∞. (5.4)

Let us assume that the third element of σ is the same as the previous one; i. e., it
is again −1. Observe that, because of (5.4) and condition (c2), we can find in J2 an
initial velocity of a solution of (5.1) that satisfies the assumptions of Theorem 4.4
for some θ0 after the first significant event and before the second (which, we point
out, is labelled −1). Similarly, in J2 we can find an initial velocity of a solution
that satisfies the assumptions of Theorem 4.5 for some θ0 between the first and
the second significant events. Therefore, with a procedure analogous to the one
described for the construction of J2, we can select an open interval J3 with the
following properties:

(a3) all velocities of the interval J3 3-fulfill the sequence σ;
(b3) the closure of J3 is contained in J2;
(c3) one of the extremes of J3 is the initial velocity of a solution of (5.1) that,

after the second significant event, enters AN and remains there oscillating
indefinitely.

An induction argument can now be used to complete the proof. �

Figure 3 below contains a quadrilateral in which, according to our numerical
estimates, the assumptions of Theorem 5.3 are satisfied.

The vertices are (0.15, 0.01), (0.85, 0.01), (0.75, 0.27), (0.19, 0.09). Thus, a point
(k, e) belongs to the quadrilateral if and only if

(0.85− 0.15)(e− 0.01)− (0.01− 0.01)(k − 0.15) ≥ 0,

(0.75− 0.85)(e− 0.01)− (0.27− 0.01)(k − 0.85) ≥ 0,

(0.19− 0.75)(e− 0.27)− (0.09− 0.27)(k − 0.75) ≥ 0,

(0.15− 0.19)(e− 0.09)− (0.01− 0.09)(k − 0.19) ≥ 0.
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Figure 3. Quadrilateral in which the assumptions of Theorem 5.3
are satisfied

Notice that the above conditions are satisfied by the point (k, e) corresponding to
the satellite Hyperion.
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