\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 137, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/137\hfil Existence of solutions] {Existence of solutions for nonlocal elliptic systems with nonstandard growth conditions} \author[G. Dai\hfil EJDE-2011/137\hfilneg] {Guowei Dai} \address{Guowei Dai\newline Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China} \email{daiguowei@nwnu.edu.cn} \thanks{Submitted July 9, 2011. Published October 19, 2011.} \thanks{Supported by grants 11061030 from the NSFC, and NWNU-LKQN-10-21} \subjclass[2000]{35D05, 35J60, 35J70} \keywords{Variational method; nonlinear elliptic systems; nonlocal condition} \begin{abstract} This article concerns the existence and multiplicity of solutions for a $p(x)$-Kirchhoff-type systems with Dirichlet boundary condition. By a direct variational approach and the theory of the variable exponent Sobolev spaces, under growth conditions on the reaction terms, we establish the existence and multiplicity of solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} In this article, we study the following nonlocal elliptic systems of gradient type with nonstandard growth conditions \begin{equation} \begin{gathered} -M_1\Big(\int_\Omega\frac{1}{p(x)}|\nabla u|^{p(x)}\,dx\Big)\operatorname{div}\big(|\nabla u|^{p(x)-2}\nabla u\big) = \frac{\partial F}{\partial u} (x,u,v)\quad \text{in } \Omega,\\ -M_2\Big(\int_\Omega\frac{1}{q(x)}|\nabla v|^{q(x)}\,dx\Big) \operatorname{div}\big(|\nabla v|^{q(x)-2}\nabla v\big) = \frac{\partial F}{\partial v} (x,u,v)\quad \text{in }\Omega,\\ u=0,\quad v=0\quad \text{on }\partial\Omega, \end{gathered} \label{e1.1} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with a smooth boundary $\partial\Omega$, $p(x), q(x)\in C_+(\overline{\Omega})$ with \begin{gather*} 11 \,\ \text{for}\,\ \text{any} \,\ x\in\overline{\Omega}\}, \\ h^{-}:=\min_{\overline{\Omega}}h(x),\quad h^{+}:=\max_{\overline{\Omega}}h(x)\quad \text{for every } h\in C_+(\overline{\Omega}). \end{gather*} Define \begin{equation*} L^{p(x)}( \Omega ) =\{u\in {\mathbf{S}}(\Omega ):\int_{\Omega }|u(x)|^{p(x)}\,dx<+\infty \text{ for } p\in C_+ (\overline{\Omega})\} \end{equation*} with the norm \begin{equation*} |u|_{L^{p(x)}( \Omega ) }=|u|_{p(x)} =\inf \{ \lambda >0:\int_{\Omega } |\frac{ u(x)}{\lambda}|^{p(x)}\,dx\leq 1\}, \end{equation*}% and \begin{equation*} W^{1,p(x) }( \Omega ) =\{ u\in L^{p(x) }( \Omega ) :|\nabla u|\in L^{p(x) }( \Omega ) \} \end{equation*} with the norm \begin{equation*} \| u\| _{W^{1,p(x)}(\Omega )}= |u|_{L^{p(x)}(\Omega )} +|\nabla u| _{L^{p(x)}(\Omega )}. \end{equation*} Denote by $W_{0}^{1,p(x) }( \Omega ) $ the closure of $C_{0}^{\infty }( \Omega ) $ in $W^{1,p(x) }( \Omega )$. \begin{proposition}[\cite{f6}] \label{prop2.1} The spaces $L^{p(x)}( \Omega)$, $W^{1,p(x) }( \Omega ) $ and $W_{0}^{1,p(x) }( \Omega ) $ are separable and reflexive Banach spaces. \end{proposition} \begin{proposition}[\cite{f6}] \label{prop2.2} Set $\rho (u)=\int_{\Omega }|u(x)|^{p(x)}\,dx$. For any $u\in L^{p(x)}( \Omega ) $, then \begin{itemize} \item[(1)] for $u\neq 0$, $|u|_{p(x)}=\lambda$ if and only if $\rho (\frac{u}{\lambda })=1$; \item[(2)] $|u|_{p(x)}<1$ $(=1;>1)$ if and only if $\rho (u)<1$ $(=1;>1)$; \item[(3)] if $|u|_{p(x)}>1$, then $|u|_{p(x)}^{p^{-}}\leq \rho ( u)\leq |u|_{p(x)}^{p^{+}}$; \item[(4)] if $|u|_{p(x)}<1$, then $|u|_{p(x)}^{p^{+}}\leq \rho ( u)\leq |u|_{p(x)}^{p^{-}}$; \item[(5)] $\lim_{k\to +\infty } |u_{k}| _{p(x)}=0$ if and only if $\lim_{k\to +\infty } \rho (u_{k})=0$; \item[(6)] $\lim_{k\to +\infty } |u_{k}|_{p(x)}= +\infty$ if and only if $\lim_{k\to +\infty } \rho(u_{k})= +\infty$. \end{itemize} \end{proposition} \begin{proposition}[\cite{f6}] \label{prop2.3} In $W_{0}^{1,p(x) }( \Omega ) $ the Poincar\'{e} inequality holds; that is, there exists a positive constant $C_0$ such that \begin{equation*} |u|_{L^{p(x)}(\Omega )}\leq C_0|\nabla u|_{L^{p(x)}(\Omega )}, \quad \forall u\in W_{0}^{1,p(x) }( \Omega ). \end{equation*} \end{proposition} So, $|\nabla u|_{L^{p(x)}(\Omega )}$ is a norm equivalent to the norm $\| u\|$ in the space $W_{0}^{1,p(x) }( \Omega )$. We will use the equivalent norm in the following discussion and write $\| u\|_p=|\nabla u|_{L^{p(x)}(\Omega )}$ for simplicity. \begin{proposition}[\cite{f3,f6}] \label{prop2.4} If $q\in C_+(\overline{\Omega})$ and $q(x)\leq p^{\ast }(x)$ ($ q(x)< p^{\ast }(x)$) for $x\in \overline{\Omega}$, then there is a continuous (compact) embedding $W_0^{1,p(x)}(\Omega )\hookrightarrow L^{q(x)}(\Omega )$, where \begin{equation*} p^*(x)=\begin{cases} \frac{Np(x)}{N-p(x)}& \text{if } p(x)p^+,\quad q_1^-,\quad 2\beta^->q^+. \end{gather*} \item[(H2)] There exist $M >0$, $\theta_1 >\frac{p^+}{1-\mu}$, $\theta_2 >\frac{q^+}{1-\mu}$ such that for all $x\in\Omega$, and all $(s, t)\in \mathbb{R}^2$ with $|s|^{\theta_1}+ |t|^{\theta_2} \geq 2M$, one has \begin{equation*} 00$, such that $ M(t)\geq m_{0}$. \item[(H5)] There exists $0<\mu<1$ such that $\widehat{M}(t)\geq (1-\mu)M(t)t$. \end{itemize} As an example, we let $M(t)=a+bt:\mathbb{R}^+\to \mathbb{R}$ with $a, b$ are two positive constants. It is clear that $M(t)\geq a>0$. Taking $\mu=1/2$, we have \begin{equation*} \widehat{M}(t)=\int_0^tM(s)\,ds=at+\frac{1}{2}bt^2\geq \frac{1}{2}(a+bt)t=(1-\mu)M(t)t. \end{equation*} So conditions (H4), (H5) are satisfied. \begin{theorem} \label{thm3.1} If $M$ satisfies {\rm (H4)} and \begin{equation*} |F(x,s,t)|\leq c_1(1+|s|^{\alpha_1}+|t|^{\beta_1}), \end{equation*} where $\alpha_1$, $\beta_1$ are two constants with $1\leq\alpha_1<\min\{p^-,q^-\}$, $1\leq\beta_1<\min\{p^-,q^-\}$ then \eqref{e1.1} has a weak solution. \end{theorem} \begin{proof} From (H4) we have $\widehat{M}(t)\geq m_{0}t$. For $(u_n,v_n)\in W$ such that $\|(u_n,v_n)\|\to+\infty$, we have \begin{align*} &J(u_n,v_n)\\ &= \widehat{M}(\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}\,dx)+\widehat{M}(\int_{\Omega}\frac{1}{q(x)}|\nabla v_n|^{q(x)}\,dx)-\int_{\Omega}F(x,u_n,v_n)\,dx \\ &\geq m_{0}\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}\,dx+m_{0}\int_{\Omega}\frac{1}{q(x)}|\nabla v_n|^{q(x)}\,dx\\ &\quad -c_1\int_{\Omega}|u_n|^{\alpha_1}\,dx -c_1\int_{\Omega}|v_n|^{\beta_1}\,dx-c_1|\Omega|\\ &\geq \frac{m_{0}}{p^+}\| u_n\|_p^{p^-}+\frac{m_{0}}{q^+}\| v_n\|_q^{q^-}-c_3\| u_n\|_p^{\alpha_1}-c_2\| v_n\|_q^{\beta_1}-c_1|\Omega|, \end{align*} where $|\Omega|$ denotes the measure of $\Omega$. Without loss of generality, we may assume $\| u_n\|_p\geq \| v_n\|_q$. Hence, \begin{equation} \label{e3.1} J(u_n,v_n) \geq\frac{m_{0}}{p^+}\| u_n\|_p^{p^-}-c_3\| u_n\|_p^{\alpha_1}-c_2\| u_n\|_p^{\beta_1}-c_1|\Omega|, \end{equation} By the definition of norm on $W$, we have $\|(u_n,v_n)\|=\| u_n\|_p\to+\infty$. In view of \eqref{e3.1} and the assumptions on $\alpha_1$ and $\beta_1$, we can easily see that $J(u_n,v_n)\to +\infty$ as $n\to+\infty$; i.e., $J$ is a coercive functional. Since $J$ also is weakly lower semi-continuous, $J$ has a minimum point $(u,v)$ in $W$, and $(u,v)$ is a weak solution pair which may be trivial of \eqref{e1.1}. The proof is completed. \end{proof} \begin{lemma} \label{lem3.1} Let $(u_n, v_n)$ be a Palais-Smale sequence for the Euler-Lagrange functional $J$. If {\rm (H2), (H4), (H5)} are satisfied then $(u_n, v_n)$ is bounded. \end{lemma} \begin{proof} Let $(u_n, v_n)$ be a Palais-Smale sequence for the functional $J$. This means that $J(u_n, v_n)$ is bounded and $\| J'(u_n, v_n)\|_*\to 0$ as $n\to +\infty$. Then, there is a positive constant $c_0$ such that \begin{align*} c_0 &\geq J(u_n,v_n)\\ &= \widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla {u_n}|^{p(x)} \,dx\Big) +\widehat{M}\Big(\int_{\Omega}\frac{1}{q(x)}|\nabla {v_n}|^{q(x)}\,dx\Big) -\int_\Omega F(x,u_n,v_n)\,dx\\ &\geq (1-\mu)M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla {u_n}|^{p(x)} \,dx\Big) \int_{\Omega}\frac{1}{p(x)}|\nabla {u_n}|^{p(x)}\,dx\\ &\quad -\int_\Omega\frac{u_n}{\theta_1} \frac{\partial F}{\partial u}(x,u_n,v_n)\,dx +(1-\mu)M\Big(\int_{\Omega}\frac{1}{q(x)}|\nabla {v_n}|^{q(x)} \,dx\Big)\\ &\quad\times \int_{\Omega}\frac{1}{q(x)}|\nabla {v_n}|^{q(x)}\,dx -\int_\Omega\frac{v_n}{\theta_2}\frac{\partial F}{\partial v} (x,u_n,v_n)\,dx-c_4, \end{align*} where $c_4$ is some positive constant. Then \begin{align*} c_0&\geq J(u_n,v_n)\\ &\geq \big(\frac{1-\mu}{p^+}-\frac{1}{\theta_1}\big) M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}\,dx\Big) \int_\Omega|\nabla u_n|^{p(x)}\,dx +\frac{1}{\theta_1}D_1 J(u_n,v_n)(u_n)\\ & \quad +\big(\frac{1-\mu}{q^+}-\frac{1}{\theta_2}\big) M\Big(\int_{\Omega}\frac{1}{q(x)}|\nabla v_n|^{q(x)}\,dx\Big) \int_\Omega|\nabla v_n|^{q(x)}\,dx\\ &\quad +\frac{1}{\theta_2}D_2 J(u_n,v_n)(v_n)-c_4 \\ &\geq \big(\frac{1-\mu}{p^+}-\frac{1}{\theta_1}\big)m_{0} \int_\Omega|\nabla u_n|^{p(x)}\,dx +\big(\frac{1-\mu}{q^+}-\frac{1}{\theta_2}\big)m_{0} \int_\Omega|\nabla v_n|^{q(x)}\,dx\\ &\quad -\frac{1}{\theta_1}\| D_1J(u_n,v_n)\|_{*,p}\| u_n\|_p -\frac{1}{\theta_2}\| D_2J(u_n,v_n)\|_{*,q}\| v_n\|_q-c_4. \end{align*} Now, suppose that the sequence $(u_n, v_n)$ is not bounded. Without loss of generality, we may assume $\| u_n\|_p\geq \| v_n\|_q$. Therefore, for $n$ large enough, we have \begin{equation*} c_5\geq\big(\frac{1-\mu}{p^+}-\frac{1}{\theta_1}\big) m_{0}\| u_n\|_p^{p^-}-\Big(\frac{1}{\theta_1}\| D_1J(u_n,v_n)\|_{*,p} +\frac{1}{\theta_2}\| D_2J(u_n,v_n)\|_{*,q}\Big)\| u_n\|_p. \end{equation*} But, this cannot hold true since $p^->1$. Hence, $\{\| (u_n,v_n)\|\}$ is bounded. \end{proof} In the following lemma, we show every bounded Palais-Smale sequence for the functional $J$ contains a convergence subsequence. \begin{lemma} \label{lem3.2} Let $(u_n, v_n)$ be a bounded Palais-Smale sequence for the Euler-La\-grange functional $J$. If {\rm (H1), (H4)} are satisfied, then $(u_n, v_n)$ contains a convergent subsequence. \end{lemma} \begin{proof} Let $(u_n, v_n)$ be a bounded Palais-Smale sequence for the functional $J$. Then there is a subsequence still denoted by $(u_n, v_n)$ which converges weakly in $W$. Without loss of generality, we assume that $(u_n,v_n) \rightharpoonup (u,v)$, then $J'(u_n,v_n)(u_n-u,v_n-v)\to 0$. Thus, we have \begin{align*} &J'(u_n,v_n)(u_n-u,v_n-v)\\ &= M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u_n|^{p(x)}\,dx\Big) \int_\Omega|\nabla u_n|^{p(x)-2}\nabla u_n(\nabla u_n-\nabla u)\,dx\\ &\quad +M\Big(\int_{\Omega}\frac{1}{q(x)}|\nabla v_n|^{q(x)}\,dx\Big) \int_\Omega|\nabla v_n|^{q(x)-2}\nabla v_n(\nabla v_n-\nabla v)\,dx\\ &\quad -\int_\Omega \frac{\partial F}{\partial u}(x,u_n,v_n)(u_n-u)\,dx -\int_\Omega \frac{\partial F}{\partial v}(x,u_n,v_n)(v_n-v)\,dx \to 0. \end{align*} On the other hand, let $\widetilde{\alpha}$, $\widetilde{\beta}$ be two continuous and positive functions on $\overline{\Omega}$ such that \begin{equation*} \frac{2\alpha(x)+\widetilde{\alpha}(x)}{p^*(x)} +\frac{2\beta(x)+\widetilde{\beta}(x)}{q^*(x)}=1,\quad \forall x\in\overline{\Omega}. \end{equation*} Using the Young inequality, we obtain \begin{equation*} |s|^{\alpha(x)}|t|^{\beta(x)} \leq |s|^{\frac{\alpha(x)p^*(x)}{2\alpha(x)+\widetilde{\alpha}(x)}}+ |t|^{\frac{\beta(x)q^*(x)}{2\beta(x)+\widetilde{\beta}(x)}} = |s|^{p_2(x)}+|t|^{q_2(x)}, \end{equation*} where $p_2(x):=\frac{\alpha(x)p^*(x)}{2\alpha(x)+\widetilde{\alpha}(x)} 0$ such that \begin{gather*} |u|_{p^+}\leq c_8\| u\|_p \quad\text{for } u\in W_0^{1,p(x)}(\Omega) \\ |v|_{q^+}\leq c_9\| v\|_q\quad \text{for } v\in W_0^{1,q(x)}(\Omega), \end{gather*} where $|\cdot|_r$ denote the norm on $L^{r(x)}(\Omega)$ with $r\in C_+(\overline{\Omega})$. Let $\varepsilon>0$ be small enough such that $\varepsilon c_8^{p^+} \leq\frac{m_0}{2p^+}$ and $\varepsilon c_9^{q^+} \leq\frac{m_0}{2q^+}$. By the assumptions (H1) and (H3), we have \[ % \label{e3.4} |F(x,s,t)|\leq\varepsilon\big(|s|^{p^+}+|t|^{q^+}\big) +c(\varepsilon)(|s|^{p_1(x)}+|t|^{q_1(x)}+| s|^{\alpha(x)}|t|^{\beta(x)}) \] for all $(x,s,t)\in\Omega\times\mathbb{R}^2$. In view of (H4) and and the above inequality, for $\| (u, v)\|$ sufficiently small, noting Proposition \ref{prop2.2}, we have \begin{align*} J(u,v)&\geq \frac{m_0}{p^+}\int_\Omega|\nabla u|^{p(x)}\,dx+\frac{m_0}{q^+}\int_\Omega|\nabla v|^{q(x)}\,dx-\varepsilon\int_\Omega|u|^{p^+}\,dx-\varepsilon\int_\Omega| v|^{q^+}\,dx\\ &\quad -c(\varepsilon)\int_\Omega\Big(|u|^{p_1(x)}+|v|^{q_1(x)}+| u|^{\alpha(x)}|v|^{\beta(x)}\Big)\,dx\\ &\geq \frac{m_0}{p^+}\| u\|_p^{p^+}-\varepsilon c_8^{p^+}\| u\|_p^{p^+}+\frac{m_0}{q^+}\| v\|_q^{q^+}-\varepsilon c_9^{q^+}\| v\|_q^{q^+}\\ &\quad -c(\varepsilon)\Big(\| u\|_p^{p_1^-} +\| v\|_q^{q_1^-}+c_7\| u\|_p^{2\alpha^-} +c_7\| v\|_q^{2\beta^-}\Big)\\ &\geq \frac{m_0}{2p^+}\| u\|_p^{p^+}+\frac{m_0}{2q^+}\| v\|_q^{q^+} -c(\varepsilon)\Big(\| u\|_p^{p_1^-}+\| v\|_q^{q_1^-} +c_7\| u\|_p^{2\alpha^-}+c_7\| v\|_q^{2\beta^-}\Big). \end{align*} Since $p_1^-, 2\alpha^->p^+$ and $q_1^-, 2\beta^->q^+$, there exist $r>0$, $\delta>0$ such that $J(u)\geq\delta>0$ for every $\| (u,v)\| = r$. On the other hand, we have known that the assumption (H2) implies the following assertion: for every $x\in\overline{\Omega}$, $s, t\in \mathbb{R}$, the inequality \begin{equation} F(x,s,t)\geq c_{10}(|s|^{\theta_1}+|t|^{\theta_2}-1) \end{equation} holds; see \cite{h1}. When $t>t_0$, from (H5) we can easily obtain that \[ \widehat{M}(t)\leq \frac{\widehat{M}(t_0)}{t_0^{1/(1-\mu)}} t^{1/(1-\mu)}:=c_{11}t^{1/(1-\mu)}, \] where $t_0$ is an arbitrarily positive constant. For $(\widetilde{u},\widetilde{v})\in W \setminus \{(0,0)\}$ and $t>1$, we have \begin{align*} J(t\widetilde{u},t\widetilde{v}) &= \widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|t\nabla \widetilde{u}|^{p(x)}\,dx\Big) +\widehat{M}\Big(\int_{\Omega}\frac{1}{q(x)}|t\nabla \widetilde{v}|^{q(x)}\,dx\Big)\\ &\quad -\int_\Omega F(x,t\widetilde{u},t\widetilde{v})\,dx\\ &\leq c_{12}(\int_\Omega|t\nabla \widetilde{u}|^{p(x)}\,dx)^{1/(1-\mu)}-c_{10}t^{\theta_1}\int_\Omega |\widetilde{u}|^{\theta_1}\,dx\\ & \quad +c_{13}\Big(\int_\Omega|t\nabla \widetilde{v}|^{q(x)}\,dx\Big)^{1/(1-\mu)} -c_{10}t^{\theta_2}\int_\Omega |\widetilde{v}|^{\theta_2}\,dx-c_{14}\\ &\leq c_{12}t^{\frac{p^+}{1-\mu}}\Big(\int_\Omega|\nabla \widetilde{u}|^{p(x)}\,dx\Big)^{1/(1-\mu)} -c_{10}t^{\theta_1}\int_\Omega |\widetilde{u}|^{\theta_1}\,dx\\ &\quad +c_{13}t^{\frac{q^+}{1-\mu}}\Big(\int_\Omega|\nabla \widetilde{v}|^{q(x)}\,dx\Big)^{1/(1-\mu)} -c_{10}t^{\theta_2}\int_\Omega |\widetilde{v}|^{\theta_2}\,dx-c_{14} \\ &\to -\infty, \quad \text{as } t\to +\infty, \end{align*} due to $\theta_1 > \frac{p^+}{1-\mu}$ and $\theta_2 > \frac{q^+}{1-\mu}$. Since $J(0,0)=0$, considering Lemmas \ref{lem3.1} and \ref{lem3.2}, we see that $J$ satisfies the conditions of Mountain Pass Theorem. So $J$ admits at least one nontrivial critical point. \end{proof} Next we will prove under some symmetry condition on the function $F$ that \eqref{e1.1} possesses infinitely many nontrivial weak solutions. \begin{theorem} \label{thm3.3} Assume {\rm (H1), (H2), (H4), (H5)}, and that $F(x,u,v)$ is even in $u$, $v$. Then \eqref{e1.1} has a sequence of solutions $\{(\pm u_k,\pm v_k)\}_{k=1}^{\infty}$ such that $J(\pm u_k,\pm v_k)\to +\infty$ as $k\to +\infty$. \end{theorem} Because $W_0^{1,p(x)}$ and $W_0^{1,q(x)}$ are a reflexive and separable Banach space, then $W$ and $W^*$ are too. There exist $\{e_j\}\subset W$ and $\{e_j^*\}\subset W^*$ such that \[ W=\overline{\mathrm{span}\{e_j:j=1,2, \dots\}},\quad W^*=\overline{\mathrm{span}\{e_j^*:j=1,2,\dots\}}, \] and \[ \langle e_i,e_j^*\rangle=\begin{cases} 1, & i=j,\\ 0, & i\neq j, \end{cases} \] where $\langle\cdot,\cdot\rangle$ denotes the duality product between $W$ and $W^*$. For convenience, we write $X_j = \operatorname{span}\{e_j\}$, $Y_k = \oplus_{j=1}^kX_j , Z_k = \overline{\oplus_{j=k}^\infty X_j}$. We will use the following ``Fountain theorem'' to prove Theorem \ref{thm3.3}. \begin{lemma}[\cite{w1}] \label{lem3.3} Assume \begin{itemize} \item[(A1)] $X$ is a Banach space, $I\in C^1(X,\mathbb{R})$ is an even functional. \item[(A2)] For each $k = 1, 2, \dots$, there exist $\rho_k >r_k >0$ such that \item[(A2)] $\inf_{u\in Z_k, \| u\| =r_k} I(u)\to+\infty$ as $k\to+\infty$. \item[(A3)] $\max_{u\in Y_k, \| u\| =\rho_k} I(u)\leq0$. \item[(A4)] $I$ satisfies Palais-Smale condition for every $c>0$. \end{itemize} Then $I$ has a sequence of critical values tending to $+\infty$. \end{lemma} For every $a >1$, $u,v\in L^a(\Omega)$, we define \[ |(u,v)|_a:=\max\{|u|_a,|v|_a\}. \] Set \begin{gather*} a:=\max_{x\in\overline{\Omega}}\{2\alpha(x),2\beta(x),p_1(x),q_1(x)\} >\min\{p^-,q^-\}, \\ b:=\min_{x\in\overline{\Omega}}\{2\alpha(x),2\beta(x),p_1(x),q_1(x)\}>0. \end{gather*} Then we have the following result. \begin{lemma}[\cite{h1}] \label{lem3.2b} Denote \[ \beta_k=\sup\{|(u,v)|_{a}:\| (u,v)\|=1, (u,v)\in Z_k\}. \] Then $\lim_{k\to+\infty} \beta_k=0$. \end{lemma} \begin{proof}[Proof of Theorem \ref{thm3.3}] According to the assumptions on $F$, Lemmas \ref{lem3.1} and \ref{lem3.2}, $J$ is an even functional and satisfies Palais-Smale condition. We will prove that if $k$ is large enough, then there exist $\rho_k>r_k>0$ such that ($A_2$) and ($A_3$) holding. Thus, the conclusion can be obtained from Fountain theorem. (A2): For any $(u_k,v_k)\in Z_k$, $\| u_k\|_p\geq1$, $\| v_k\|_q\geq1$ and $\| (u_k,v_k)\| = r_k$ ($r_k$ will be specified below), we have \begin{align*} &J(u_k,v_k)\\ &= \widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u_k|^{p(x)}\,dx\Big)+\widehat{M} \Big(\int_{\Omega}\frac{1}{q(x)}|\nabla v_k|^{q(x)}\,dx\Big) -\int_{\Omega}F(x,u_k,v_k)\,dx\\ &\geq m_0\int_{\Omega}\frac{1}{p(x)}|\nabla u_k|^{p(x)}\,dx +m_0\int_{\Omega}\frac{1}{q(x)}|\nabla v_k|^{q(x)}\,dx -\int_{\Omega}F(x,u_k,v_k)\,dx\\ &\geq \frac{m_{0}}{p^+}\int_{\Omega}|\nabla u_k|^{p(x)}\,dx+\frac{m_{0}}{q^+}\int_{\Omega}|\nabla v_k|^{q(x)}\,dx\\ &\quad -c\int_\Omega\Big(1+|u_k|^{p_1(x)}+|v_k|^{q_1(x)} +|u_k|^{\alpha(x)}|v_k|^{\beta(x)}\Big)\,dx\\ &\geq \frac{m_{0}}{p^+}\| u_k\|_p^{p^-} +\frac{m_{0}}{q^+}\| v_k\|_q^{q^-} -c|u_k|_{p_1(x)}^{p_1(\xi_1^k)}-c|v_k|_{q_1(x)}^{q_1(\xi_2^k)}\\ &\quad -c_{15}|u_k|_{2\alpha(x)}^{2\alpha(\eta_1^k)} -c_{15}|v_k|_{2\beta(x)}^{2\beta(\eta_2^k)}-c|\Omega|, \end{align*} where $\xi_1^k,\xi_2^k,\eta_1^k,\eta_2^k\in\Omega$. Therefore, \begin{align*} &J(u_k,v_k)\\ &\geq \frac{m_{0}}{\max\{p^+,q^+\}}\| (u_k,v_k)\|^{\min\{p^-,q^-\}} -c|u_k|_{a}^{p_1(\xi_1^k)}-c|v_k|_{a}^{q_1(\xi_2^k)}\\ &\quad -c|u_k|_{a}^{2\alpha(\eta_1^k)} -c|v_k|_{a}^{2\beta(\eta_2^k)}-c|\Omega|\\ &\geq \frac{m_{0}}{\max\{p^+,q^+\}}\| (u_k,v_k)\|^{\min\{p^-,q^-\}} -c(\beta_k\| (u_k,v_k)\|)^{p_1(\xi_1^k)} -c(\beta_k\| (u_k,v_k)\|)^{q_1(\xi_2^k)}\\ &\quad -c(\beta_k\| (u_k,v_k)\|)^{2\alpha(\eta_1^k)} -c(\beta_k\| (u_k,v_k)\|)^{2\beta(\eta_2^k)}-c|\Omega|\\ &\geq \frac{m_{0}}{\max\{p^+,q^+\}}\| (u_k,v_k)\|^{\min\{p^-,q^-\}} -c_{16}\beta_k^b\| (u_k,v_k)\|^a-c|\Omega|, \end{align*} where $a$, $b$ are defined above. At this stage, we fix $r_k$ as follows: \[ r_k:=\Big(\frac{m_0}{2c_{16}\max\{p^+,q^+\}\beta_k^b}\Big) ^{1/(a-\min\{p^-,q^-\})}\to +\infty\quad \text{as }k\to+\infty. \] Consequently, if $\|(u_k, v_k)\|=r_k$ then \[ J(u_k,v_k)\geq\frac{m_{0}}{2\max\{p^+,q^+\}}\| (u_k,v_k)\|^{\min\{p^-,q^-\}}-c|\Omega|\to+\infty\quad \text{as }k\to+\infty. \] (A3): From (H2), we have $F(x, u,v)\geq c_{10}(|u|^{\theta_1}+|v|^{\theta_2}-1)$ for every $x\in\Omega$ and $u,v\in \mathbb{R}$. Therefore, for any $(u,v)\in Y_k$ with $\| (u,v)\|=1$ and $1<\rho_k=t_k$ with $t_k\to +\infty$, we have \begin{align*} &J(t_ku,t_kv)\\ &= \widehat{M}\Big(\int_{\Omega}\frac{1}{p(x)}|t_k\nabla u|^{p(x)}\,dx\Big) +\widehat{M}\Big(\int_{\Omega}\frac{1}{q(x)}|t_k\nabla v|^{q(x)}\,dx\Big) -\int_\Omega F(x,t_ku,t_kv)\,dx. \\ &\leq c_{17}\Big(\int_\Omega|t_k\nabla u|^{p(x)}\,dx\Big)^{1/(1-\mu)} +c_{18}\Big(\int_\Omega|t_k\nabla v|^{q(x)}\,dx\Big)^{1/(1-\mu)}\\ &\quad -c_{10}t_k^{\theta_1}\int_\Omega |u|^{\theta_1}\,dx -c_{10}t_k^{\theta_2}\int_\Omega |v|^{\theta_2}\,dx+c_{19},\\ &\leq c_{17}t_k^{\frac{p^+}{1-\mu}} \Big(\int_\Omega|\nabla u|^{p(x)}\,dx\Big)^{1/(1-\mu)} -c_{10}t_k^{\theta_1}\int_\Omega |u|^{\theta_1}\,dx\\ &\quad +c_{18}t_k^{\frac{q^+}{1-\mu}} \Big(\int_\Omega|\nabla v|^{q(x)}\,dx\Big)^{1/(1-\mu)} -c_{10}t_k^{\theta_2}\int_\Omega |v|^{\theta_2}\,dx+c_{19}. \end{align*} By $\theta_1>\frac{p^+}{1-\mu}$, $\theta_2>\frac{q^+}{1-\mu}$ and $\text{dim} Y_k =k$, it is easy to see that $J(t_ku,t_kv)\to-\infty$ as $\| (t_ku,t_kv)\|\to+\infty$ for $(u,v) \in Y_k$. The proof of Theorem \ref{thm3.3} is completed by the Fountain theorem. \end{proof} \subsection*{Acknowledgments} The author wishes to express his gratitude to the anonymous referee for reading the original manuscript carefully and making several corrections and remarks. \begin{thebibliography}{99} \bibitem{a1} E. Acerbi and G. Mingione; \emph{Regularity results for stationary electro-rheologicaluids}, Arch. Ration. Mech. Anal., 164 (2002), 213--259. \bibitem{a2} E. Acerbi, G. Mingione; \emph{Gradient estimate for the $p(x)$-Laplacean system}, J. Reine Angew. Math., 584 (2005), 117--148. \bibitem{a3} A. Arosio, S. Panizzi; \emph{On the well-posedness of the Kirchhoff string}, Trans. Amer. Math. Soc. 348 (1996) 305--330. \bibitem{a4} C. O. Alves, F. J. S. A. Corr\^{e}a, T. F. Ma; \emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type}, Comput. Math. Appl. 49 (2005) 85--93. \bibitem{a5} S. N. Antontsev, S. I. Shmarev; \emph{A Model Porous Medium Equation with Variable Exponent of Nonlinearity: Existence, Uniqueness and Localization Properties of Solutions}, Nonlinear Anal. 60 (2005), 515--545. \bibitem{a6} S. N. Antontsev , J. F. Rodrigues; \emph{On Stationary Thermo-rheological Viscous Flows}, Ann. Univ. Ferrara, Sez. 7, Sci. Mat. 52 (2006), 19--36. \bibitem{b1} S. Bernstein; \emph{Sur une classe d'\'{e}quations fonctionnelles aux d\'{e}riv\'{e}es partielles}, Bull. Acad. Sci. URSS. Ser. Math. [Izv. Akad. Nauk SSSR] 4 (1940) 17--26. \bibitem{c1} M. M. Cavalcanti, V. N. Cavalcanti, J.A. Soriano; \emph{Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation}, Adv. Differential Equations 6 (2001) 701--730. \bibitem{c2} Y. Chen, S. Levine, M. Rao; \emph{Variable exponent, linear growth functionals in image restoration}, SIAM J. Appl.Math. 66 (4) (2006), 1383--1406. \bibitem{c3} F. J. S. A. Corr\^{e}a, G. M. Figueiredo; \emph{On a elliptic equation of $p$-kirchhoff type via variational methods}, Bull. Austral. Math. Soc. Vol. 74 (2006) 263--277. \bibitem{c4} F. J. S. A. Corr\^{e}a, R.G. Nascimento; \emph{On a nonlocal elliptic system of $p$-Kirchhoff-type under Neumann boundary condition}, Mathematical and Computer Modelling 49 (2009) 598--604. \bibitem{d1} G. Dai, R. Hao; \emph{Existence of solutions for a $p(x)$-Kirchhoff-type equation}, J. Math. Anal. Appl. 359 (2009) 275--284. \bibitem{d2} L. Diening, P. H\"{a}st\"{o}, A. Nekvinda; \emph{Open problems in variable exponent Lebesgue and Sobolev spaces}, in: P. Dr\'{a}bek, J. R\'{a}kosn\'{\i}k, FSDONA04 Proceedings, Milovy, Czech Republic, 2004, pp.38--58. \bibitem{d3} G. Dai, D. Liu; \emph{Infinitely many positive solutions for a $p(x)$-Kirchhoff-type equation}, J. Math. Anal. Appl. 359 (2009) 704--710. \bibitem{d4} G. Dai, J. Wei; \emph{Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition}, Nonlinear Analysis 73 (2010) 3420--3430. \bibitem{d5} P. D'Ancona, S. Spagnolo; \emph{Global solvability for the degenerate Kirchhoff equation with real analytic data}, Invent. Math. 108 (1992) 247--262. \bibitem{d6} D. G. De Figueiredo; \emph{Semilinear elliptic systems: a survey of superlinear problems}, Resenhas 2 (1996) 373--391. \bibitem{d7} M. Dreher; \emph{The Kirchhoff equation for the $p$-Laplacian}, Rend. Semin. Mat. Univ. Politec. Torino 64 (2006) 217--238. \bibitem{d8} M. Dreher; \emph{The wave equation for the $p$-Laplacian}, Hokkaido Math. J. 36 (2007) 21--52. \bibitem{f1} X. L. Fan; \emph{On the sub-supersolution methods for $p(x)$-Laplacian equations}, J. Math. Anal. Appl. 330 (2007), 665--682. \bibitem{f2} X. L. Fan and X. Y. Han; \emph{Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$}, Nonlinear Anal. 59 (2004), 173--188. \bibitem{f3} X. L. Fan, J. S. Shen, D. Zhao; \emph{Sobolev embedding theorems for spaces $W^{k,p(x)}( \Omega )$}, J. Math. Anal. Appl. 262 (2001), 749--760. \bibitem{f4} X. L. Fan, Q. H. Zhang; \emph{Existence of solutions for $p(x)$-Laplacian Dirichlet problems}, Nonlinear Anal. 52 (2003), 1843--1852. \bibitem{f5} X. L. Fan, Q. H. Zhang and D. Zhao; \emph{Eigenvalues of $p(x)$-Laplacian Dirichlet problem}, J. Math. Anal. Appl. 302 (2005), 306--317. \bibitem{f6} X.L. Fan, D. Zhao; \emph{On the Spaces $L^{p(x)}$ and $W^{m,p(x)}$}, J. Math. Anal. Appl. 263 (2001), 424--446. \bibitem{f7} X. L. Fan, Y. Z. Zhao, Q. H. Zhang; \emph{A strong maximum principle for $p(x)$-Laplace equations}, Chinese J. Contemp. Math. 24 (3) (2003) 277--282. \bibitem{f8} X. L. Fan; \emph{On nonlocal $p(x)$-Laplacian Dirichlet problems}, Nonlinear Anal. 72 (2010) 3314--3323. \bibitem{h1} A. El Hamidi; \emph{Existence results to elliptic systems with nonstandard growth conditions}, J. Math. Anal. Appl. 300 (2004) 30--42. \bibitem{h2} P. Harjulehto, P. H\"{a}st\"{o}; \emph{An overview of variable exponent Lebesgue and Sobolev spaces}, in Future Trends in Geometric Function Theory (D. Herron (ed.), RNC Work-shop), Jyv\"{a}skyl\"{a}, 2003, 85--93. \bibitem{k1} G. Kirchhoff; \emph{Mechanik}, Teubner, Leipzig, 1883. \bibitem{l1} J. L. Lions; \emph{On some equations in boundary value problems of mathematical physics}, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, 1978, pp. 284--346. \bibitem{m1} T. F. Ma, J. E. Mu\~{n}oz Rivera; \emph{Positive solutions for a nonlinear nonlocal elliptic transmission problem}, Appl. Math. Lett. 16 (2003) 243--248. \bibitem{p1} S. I. Poho\v{z}aev; \emph{A certain class of quasilinear hyperbolic equations}, Mat. Sb. (N.S.) 96 (1975) 152--166, 168. \bibitem{r1} M. R\.{u}\u{z}i\u{c}ka; \emph{Electrorheological Fluids: Modeling and Mathematical Theory}, Springer-Verlag, Berlin, 2000. \bibitem{s1} S. Samko; \emph{On a progress in the theory of Lebesgue spaces with variable exponent Maximal and singular operators}, Integral Transforms Spec. Funct. 16 (2005), 461--482. \bibitem{w1} M. Willem; \emph{Minimax Theorems}, Birkh\"{a}user, Boston, 1996. \bibitem{z1} V. V. Zhikov; \emph{Averaging of functionals of the calculus of variations and elasticity theory}, Math. USSR. Izv. 9 (1987), 33--66. \bibitem{z2} V. V. Zhikov, S. M. Kozlov, O. A. Oleinik; \emph{Homogenization of Differential Operators and Integral Functionals}, Translated from the Russian by G.A. Yosifian, Springer-Verlag, Berlin, 1994. \bibitem{z3} V. V. Zhikov; \emph{On some variational problems}, Russian J. Math. Phys. 5 (1997), 105--116. \end{thebibliography} \end{document}