\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 158, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/158\hfil Black-Scholes equations] {Solution to a nonlinear Black-Scholes equation} \author[M. C. Mariani, E. K. Ncheuguim, I. SenGupta \hfil EJDE-2011/158\hfilneg] {Maria Cristina Mariani, Emmanuel K. Ncheuguim, Indranil SenGupta} % in alphabetical order \address{Maria Cristina Mariani \newline Department of Mathematical Sciences, The University of Texas at El Paso, Bell Hall 124, El Paso, TX 79968-0514, USA} \email{mcmariani@utep.edu} \address{Emmanuel Kengni Ncheuguim \newline Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-8001, USA} \email{emmanou@nmsu.edu} \address{Indranil SenGupta \newline Department of Mathematical Sciences, The University of Texas at El Paso, Bell Hall 316, El Paso, TX 79968-0514, USA} \email{isengupta@utep.edu} \thanks{Submitted August 20, 2010. Published November 28, 2011.} \subjclass[2000]{91G80, 35B45, 58J35, 35D30} \keywords{Option pricing; Black-Scholes equation; Sobolev space; \hfill\break\indent Schaefer's fixed point theorem} \begin{abstract} Option pricing with transaction costs leads to a nonlinear Black-Scholes type equation where the nonlinear term reflects the presence of transaction costs. Under suitable conditions, we prove the existence of weak solutions in a bounded domain and we extend the results to the whole domain using a diagonal process. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In a complete financial market without transaction costs, the celebrated Black-Scholes model (1973) \cite{BS} provides not only a rational option pricing formula, but also a hedging portfolio that replicates the contingent claim. In the Black-Scholes analysis, it is assumed that hedging takes place continuously, and therefore, in a market with proportional transaction costs, it tends to be infinitely expensive. So the requirement of replicating the value of the option continuously has to be relaxed. The first model in that direction was presented by Leland (1985) \cite{LE}. He assumes that the portfolio is rebalanced at a discrete time $\delta t$ fixed and that the transaction costs are proportional to the value of the underlying; that is the costs incurred at each step is $\kappa |\nu|S$, where $\nu$ is the number of shares of the underlying bought ($\nu > 0$) or sold ($\nu <0)$ at price $S$ and $\kappa$ is a constant depending on individual investors. Leland derived an option price formula that is the Black-Scholes formula with an adjusted volatility $$ \hat {\sigma}=\sigma \Big( 1+\sqrt{\frac{2}{\pi}} \frac{\kappa}{\sigma \sqrt{\delta t}}\Big)^{1/2}. $$ Hoggard, Whalley and Wilmott \cite{HWW} derived a model for portfolios of options in the presence of transaction costs in 1994. We will outline the steps that they followed. Let $C(S,t)$ be the value of the option and $\Pi$ be the value of the hedge portfolio. Assume that the value of the underlying follows the random walk $$ \delta S=\mu S \delta t +\sigma S \phi\delta t^{1/2}, $$ where $\phi$ is drawn from a normal distribution, $\mu$ is a measure of the average rate of growth of the asset price also known as the drift, and $\sigma$ is a measure of the fluctuation (risk) in the asset prices, it corresponds to the diffusion coefficient. Then the change in the value of the portfolio over the time step $\delta t$ is given by \begin{equation*} %\label{problem3} \delta \Pi =\sigma S \big( \frac{\partial C}{\partial S}-\Delta \big) \phi \delta t^{1/2}+\Big(\frac12 \sigma^2 S^2 \frac{\partial^2 C}{\partial S^2}\phi^2 + \mu S \frac{\partial C}{\partial S} +\frac{\partial C}{\partial t}-\mu \Delta S\Big) \delta t -\kappa S |\nu| \end{equation*} Let us consider the delta hedging strategy; that is choose the number of assets held short at time $t$ to be $\Delta = \frac{\partial C}{\partial S}(S,t)$. Therefore the number of assets to be traded after $\delta t$ is given by $$ \nu= \frac{\partial C}{\partial S}(S+\delta S,t+\delta t) -\frac{\partial C}{\partial S}(S,t) \simeq \frac{\partial^2 C}{\partial S^2}\sigma S \phi \delta t^{1/2}. $$ So the expected transaction cost over a time step is $$ E[\kappa S |\nu|]=\sqrt{\frac{2}{\pi}} \kappa \sigma S^2 \big|\frac{\partial^2 C}{\partial S^2}\big| \delta t^{1/2}, $$ and the expected change in the value of the portfolio is $$ E(\delta \Pi)=\Big( \frac{\partial C}{\partial t} + \frac 12 \sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} -\kappa \sigma S^2 \sqrt{\frac{2}{\pi \delta t} } \big| \frac{\partial^2 C}{\partial S^2}\big| \Big)\delta t. $$ If the holder of the option expects to make as much from his portfolio as from a bank account at a riskless interest rate $r$ (no arbitrage), then $$ E(\delta \Pi )= r\big( C-S \frac{\partial C}{\partial S}\big) \delta t. $$ Hence the Hoggard, Whalley and Wilmott model for option pricing with transaction costs is given by \begin{equation}\label{refprob} \frac{\partial C}{\partial t} +\frac 12 \sigma^2 S^2 \frac{\partial^2 C}{\partial^2 S} + r S \frac{\partial C}{\partial S}-r C-\kappa \sigma S^2 \sqrt{\frac{2}{\pi \delta t}} \big| \frac{\partial^2 C}{\partial S^2}\big|=0, \end{equation} for $(S,t) \in (0, \infty) \times(0, T)$, and the final condition \begin{equation*}%\label{IniCondRefProb} C(S,T)= \max(S-E,0), \quad S \in(0, \infty) \end{equation*} for European call options with strike price $E$. Note that equation \eqref{refprob} contents the usual Black-Scholes terms with an additional nonlinear term modelling the presence of transaction costs. Setting $$ x=\log(S/E), \quad t=T-\tau/\frac12 \sigma^2 ,\quad C = E V(X,\tau), $$ equation \eqref{refprob} becomes \begin{equation} \label{eq2} -\frac{\partial V}{\partial \tau} +\frac{\partial^2 V}{\partial x^2} +(k-1)\frac{\partial V}{\partial x}-kV =\kappa^*\big| \frac{\partial^2 V}{\partial x^2} -\frac{\partial V}{\partial x} \big|, \end{equation} for $(x,\tau) \in \mathbb{R} \times (0, T^*)$, with the initial condition $$ V(x,0)= \max (e^{x}-1,0), \quad x \in \mathbb{R}, $$ where $k=r/(\sigma^2/2) $, $\kappa^* = \kappa \sqrt{8/(\pi \sigma^2 \delta t)}$ and $T^*=\sigma^2 T/2$. Next set $$ V(x,\tau) = e^x U(x ,\tau). $$ Then \eqref{eq2} yields \begin{equation} -\frac{\partial U}{\partial \tau} +\frac{\partial^2 U}{\partial x^2} +(k+1)\frac{\partial U}{\partial x}=\kappa^* \big| \frac{\partial^2 U}{\partial x^2}+\frac{\partial U}{\partial x} \big|, \quad (x,\tau) \in \mathbb{R} \times (0, T^*) \end{equation} with the initial condition $$ U(x,0)= \max(1-e^{-x}, 0) . $$ The previous discussion motivates us to consider the following problem that includes cost structures that go beyond proportional transaction costs \begin{equation}\label{TheoPb} -\frac{\partial U}{\partial t}+\frac{\partial^2 U}{\partial x^2} +\alpha \frac{\partial U}{\partial x} =\beta F\big( \frac{\partial U}{\partial x} , \frac{\partial^2 U}{\partial x^2} \big), \quad (x,t) \in \mathbb{R} \times (0,T) \end{equation} and \begin {equation} \label{ICTheoPb} U(x,0)=U_0(x) ,\quad x \in \mathbb{R}, \end{equation} where $\alpha$ and $\beta$ are nonnegative constants. Publications related to the above problem can be found in \cite{M,MF,EMF}. It is also worth noting that such problems can be solved using the techniques used in \cite{ISG1,ISG2}. The goal of this paper is to show that the theoretical problem \eqref{TheoPb}-\eqref{ICTheoPb} has a strong solution where the derivatives are understood in the distribution sense. We use the following assumptions: \begin{itemize} \item[(H1)] $ F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+ $ is a continuous function, \item[(H2)] $ F(p,q) \leq |p|+|q|$, \item[(H3)] For $U\in H^2_{\rm loc}(\mathbb{R})$, $\frac{\partial}{\partial x} F(U, \frac{\partial U}{\partial x}) \in L^2(0,T;L^2_{\rm loc}(\mathbb{R}))$. Let $B_R= \{ x\in \mathbb{R} : |x| 0 $, \begin{equation} \begin{split} &\frac 12 \frac{d}{dt}\| w(t)\|^2_{L^2(B_R)} +\| \frac{\partial w}{\partial x} \|^2_{L^2(B_R)}\\ & \leq \beta \Big( \int_{B_R} | \frac{\partial w}{\partial x}|^2 \,dx +\epsilon \int_{B_R} | \frac{\partial w}{\partial x}|^2 \,dx +\frac{1}{4\epsilon} \int_{B_R} |w|^2 \,dx\Big). \end{split} \end{equation} Since $\beta < 1$, choosing $\epsilon \ll 1$, yields \begin{equation} \label{eq17} \frac{d}{dt}\| w(t)\|^2_{L^2(B_R)} +C_1 \| w \|^2_{H^1_0(B_R)} \leq C_2 \| w \|^2_{L^2(B_R)} \end{equation} for a.e. $ 0\leq t\leq T$, and appropriate positive constants $C_1$ and $C_2$. Next we write $ \eta (t):= \| w(t)\|^2_{L^2(B_R)}$ , then by \eqref{eq17}, $$ \eta' (t) \leq C_2 \eta (t), \text{ for a.e.} 0\leq t\leq T. $$ The differential form of Gronwall inequality implies $$ \eta(t)\leq e^{C_2t}\eta(0) \quad \text{a.e.} 0\leq t\leq T. $$ Since $\eta(0)= \| w(0)\|^2_{L^2(B_R)} =\| w_0\|^2_{L^2(B_R)}$, $$ \| w(t)\|^2_{L^2(B_R)} \leq e^{C_2t}\| w_0\|^2_{L^2(B_R)}. $$ Hence \begin{equation}\label{eq18} \max_{0\leq t \leq T} \|w(t)\|_{L^2(B_R)} \leq C_{11} \| w_0\|^2_{L^2(B_R)}, \end{equation} where $C_{11}$ is some constant. To obtain a bound for the second term, we consider \eqref{eq17}, and integrate from $0$ to $T$, obtaining $$ \|w(T)\|^2_{L^2(B_R)} - \|w_0\|^2_{L^2(B_R)} + C_1 \int^T_0 \| w \|^2_{H^1_0(B_R)} dt \leq C_2 \int_0^T\| w \|^2_{L^2(B_R)} dt. $$ Therefore, $$ \|w(T)\|^2_{L^2(B_R)} + C_1 \int^T_0 \| w \|^2_{H^1_0(B_R)} dt \leq C_2 \int_0^T\| w \|^2_{L^2(B_R)} dt + \|w_0\|^2_{L^2(B_R)}. $$ Hence $$ C_1 \int^T_0 \| w \|^2_{H^1_0(B_R)} dt \leq C_2 \int_0^T\| w \|^2_{L^2(B_R)} dt + \|w_0\|^2_{L^2(B_R)}. $$ Using \eqref{eq18} we conclude that \begin{equation} \label{eq19} \|w\|_{L^2 (0,T;H^1_0(B_R))}\leq C_{22} \|w_0\|_{L^2(B_R)}, \end{equation} where $C_{22}$ is a constant. Finally, to obtain a bound for the third term, by fixing $v \in H^1_0(B_R)$ with $\| v\|_{H^1_0(B_R)} \leq 1$. By \eqref{DefWeakSol}, we have $$ \int_{B_R}\frac{\partial w}{\partial t} v \,dx + \int_{B_R} \Big(\frac{\partial w}{\partial x} \frac{\partial v}{\partial x} + \alpha w \frac{\partial v}{\partial x} \Big) \,dx = -\beta \int_{B_R} F \big(w, \frac{\partial w}{\partial x}\big) \frac{\partial v}{\partial x} \,dx. $$ Thus $$ \big| \int_{B_R} \frac{\partial w}{\partial t} v \,dx \big| \leq \big| \int_{B_R} \Big(\frac{\partial w}{\partial x} \frac{\partial v}{\partial x} + \alpha w \frac{\partial v}{\partial x} \Big) \,dx \big| + \beta \big| \int_{B_R} F \big(w, \frac{\partial w}{\partial x}\big) \frac{\partial v}{\partial x} \,dx. \big| $$ By H\"older inequality, \begin{align*} \big| \int_{B_R} \frac{\partial w}{\partial t} v \,dx \big| &\leq \Big( \int _{B_R} \big| \frac{\partial w }{\partial x} \big|^2 \,dx \Big)^{1/2} \Big( \int _{B_R} \big| \frac{\partial v }{\partial x}\big|^2 \,dx \Big)^{1/2}\\ &\quad + \alpha \Big( \int _{B_R} |w|^2 \,dx \Big)^{1/2} \Big( \int _{B_R} \big| \frac{\partial v }{\partial x} \big|^2 \,dx \Big)^{1/2}\\ &\quad + \Big( \int _{B_R} \big| F\big(w, \frac{\partial w }{\partial x} \big) \big|^2 \,dx \Big)^{1/2} \Big( \int _{B_R} \big| \frac{\partial v }{\partial x} \big|^2 \,dx \Big)^{1/2}. \end{align*} Since $\| v\|_{H^1_0(B_R)} \leq 1$, using (H2) and the Poincar\'e inequality we deduce $$ \big| \int_{B_R} \frac{\partial w}{\partial t} v \,dx \big| \leq C_{33} \| w(t)\|_{H^1_0(B_R)}, $$ where $C_{33}$ is some constant. So $$ \| \frac{\partial w}{\partial t} (t) \|_{H^{-1}(B_R)} \leq C_{33} \| w(t)\|_{H^1_0(B_R)}. $$ Therefore, \[ \int_0^T \| \frac{\partial w}{\partial t} (t) \|^2_{H^{-1}(B_R)}dt \leq C_{33} \int_0^T \| w(t)\|^2_{H^1_0(B_R)} dt = C_{33} \| w\|^2_{L^2(0,T;H^1_0(B_R))}. \] Then \eqref{eq19} implies \begin{equation} \label{eq20} \| \frac{\partial w}{\partial t} \|_{L^2(0,T;H^{-1}(B_R))} \leq C_{33} \| w_0\|^2_{L^2(B_R)}. \end{equation} Take $C= \max \{C_{11}, C_{22}, C_{33} \}$ to obtain the required result in the Theorem. \end{proof} Before proving the existence theorem in a ball, we state the following energy estimate from the theory of linear parabolic partial differential equations. \begin{lemma}[{\cite[Theorem 2 page 354]{Evans}}] \label{LinProb} Consider the problem \begin{equation}\label{Problin} \begin{gathered} \frac{\partial w}{\partial t} -\frac{\partial^2 w}{\partial x^2} -\alpha \frac{\partial w}{\partial x} = f(x,t) \quad \text{in } B_R\times (0,T)\\ w(x,0) = w_0(x) \quad\text{on } B_R\times\{ 0\}\\ w(x,t) = 0 \quad\text{on } \partial B_R\times [0,T] \end{gathered} \end{equation} with $f\in L^2(0,T;L^2(B_R))$ and $w_0 \in L^2(B_R)$. Then there exists a unique $u \in L^2(0,T; H^1_0(B_R)) \cap C([0,T];L^2(B_R)) $ solution of \eqref{Problin} that satisfies \begin{equation} \label{EnerEst} \begin{split} &\max_{0\leq t \leq T} \|u(t)\|_{L^2(B_R)} + \| u \|_{ L^2(0,T; H^1_0(B_R))} +\| \frac{\partial u}{\partial t}\| _{L^2(0,T;H^{-1}(B_R))} \\ & \leq C\Big(\|f\|_{L^2(0,T;L^2(B_R))}+ \|w_0\|_{L^2(B_R)} \Big), \end{split} \end{equation} where $C$ is a positive constant depending only on $R$ and $T$. \end{lemma} We need another Lemma that follows directly from \cite[Theorem 5, page 360]{Evans}. \begin{lemma}[Improved regularity] \label{LinProb2} Consider the problem \begin{gather*} \frac{\partial w}{\partial t} -\frac{\partial^2 w}{\partial x^2} -\alpha \frac{\partial w}{\partial x} = f(x,t)\quad \text{in } B_R\times (0,T)\\ w(x,0) = w_0(x) \quad \text{on } B_R\times\{ 0\}\\ w(x,t) = 0 \quad\text{on } \partial B_R\times [0,T] \end{gather*} with $f\in L^2(0,T;L^2(B_R))$ and $w_0 \in H_0^1(B_R)$. Then this problem has a unique weak solution $u \in L^2(0,T; H^1_0(B_R)) \cap C([0,T];L^2(B_R))$, with $\frac{\partial u}{\partial t} \in L^2(0,T; H^{-1}(B_R))$. Moreover, $$ u \in L^2(0,T; H^2(B_R)) \cap L^{\infty}(0,T; H_0^1(B_R)), \quad \frac{\partial u}{\partial t} \in L^2(0,T; L^2(B_R)). $$ We also have the estimate \begin{equation} \label{EnerEst1} \begin{split} & \operatorname{ess\,sup}_{0\leq t \leq T} \|u(t)\|_{H_0^1(B_R)} + \| u \|_{ L^2(0,T; H^2(B_R))} +\| \frac{\partial u}{\partial t}\| _{L^2(0,T; L^{2}(B_R))} \\ &\leq C''\Big( \|f\|_{L^2(0,T;L^2(B_R))} + \|w_0\|_{H_0^1(B_R)}\Big), \end{split} \end{equation} where $C''$ is a positive constant depending only on $B_R$, $T$ and the coefficients of the operator $L$. \end{lemma} Next we show the existence of a solution in a ball by using the Schaefer's fixed point Theorem. \begin{theorem} \label{ExistenceBall} If {\rm (H1)--(H5)} are satisfied, then \eqref{TheoPball}-\eqref{BCTheoPball} has a weak solution $w \in L^2(0,T; H^1_0(B_R)) \cap C([0,T];L^2(B_R))$. \end{theorem} \begin{proof} Given $w \in L^2(0,T; H^1_0(B_R))$, set $f_w(x,t):= \beta \frac{\partial}{\partial x} F \big(w, \frac{\partial w}{\partial x}\big) $. By (H3), $f_w \in L^2(0,T;L^2(B_R))$. From Lemma \ref{LinProb} there exists a unique $v \in L^2(0,T; H^1_0(B_R)) \cap C([0,T];L^2(B_R))$ solution of \begin{equation} \label{eq21} \begin{gathered} \frac{\partial v}{\partial t} -\frac{\partial^2 v}{\partial x^2} -\alpha \frac{\partial v}{\partial x} = f(x,t)\quad \text{in } B_R\times (0,T)\\ v(x,0) = v_0(x) \quad\text{on } B_R\times\{ 0\}\\ v(x,t) = 0 \quad\text{on } \partial B_R\times [0,T] \end{gathered} \end{equation} Define the mapping $$ A: L^2(0,T;H^1_0(B_R)) \to L^2(0,T;H^1_0(B_R)) $$ by $w \mapsto A(w) = v$, where $v$ is derived from $w$ via \eqref{eq21}. We now show that the mapping $A$ is continuous and compact. We first prove the continuity. Let $\{ w_k\}_k \subset L^2(0,T;H^1_0(B_R))$ be a sequence such that \begin{equation} \label{eq22} w_k \to w \quad \text{in } L^2(0,T;H^1_0(B_R)). \end{equation} By the \emph{improved regularity} \eqref{EnerEst1}, there exists a constant $C''$, independent of $\{ w_k\}_k$ such that \begin{equation} \|v_k\| _{L^2(0,T;H^2(B_R))} \leq C''\Big( \| f_{w_k}\|_{L^2(0,T;L^2(B_R))} + \|w_0\|_{H_0^1(B_R)}\Big), \label{indra10} \end{equation} for $v_k=A[w_k]$, $k=1,2,\dots$. By (H3) as $w_k \to w$ in $L^2(0,T;H^1_0(B_R))$, we must have $f_{w_k}(x,t) \to f_w(x,t)$ in ${L^2(0,T;L^2(B_R))}$. Therefore $\|f_{w_k}(x,t)\|_{L^2(0,T;L^2(B_R))} \to \|f_w(x,t)\|_{L^2(0,T;L^2(B_R))}$. Then the sequence $\{ \|f_{w_k}\|_{L^2(0,T;L^2(B_R))} \}_k $ is bounded and \begin{equation} \sup_{k} \|f_{w_k}\|_{L^2(0,T;L^2(B_R))} \leq C''', \label{indra11} \end{equation} for a constant $C'''$. Thus by \eqref{indra10} and \eqref{indra11} the sequence $\{v_k\}_k$ is bounded uniformly in $L^2(0,T;H^2(B_R))$. Similarly it can be proved that $\{\frac{\partial v_k}{\partial t}\}_k$ is uniformly bounded in $L^2(0,T;H^{-1}(B_R))$. Thus by Rellich's Theorem (see \cite{Folland2}) there exists a subsequence $\{v_{k_j}\}_j \in L^2(0,T;H_0^1(B_R))$ and a function $v\in L^2(0,T;H^1_0(B_R))$ with \begin{equation}\label{eq23} v_{k_j} \to v \quad \text{in } L^2(0,T;H^1_0(B_R)), \text{ as } j \to \infty. \end{equation} Therefore, $$ \int_{B_R}\Big( \frac{\partial v_{k_j}}{\partial t} \phi + \frac{\partial v_{k_j}}{\partial x} \frac{\partial \phi}{\partial x} + \alpha v_{k_j} \frac{\partial \phi}{\partial x}\Big) \,dx = \int_{B_R} f_{w_{k_j}}(x,t)\phi \,dx $$ for each $\phi \in H^1_0(B_R)$. Using \eqref{eq22} and \eqref{eq23} we see that $$ \int_{B_R}\Big( \frac{\partial v}{\partial t} \phi + \frac{\partial v}{\partial x} \frac{\partial \phi}{\partial x} + \alpha v \frac{\partial \phi}{\partial x}\Big) \,dx = \int_{B_R} f_w(x,t)\phi \,dx. $$ Thus $v=A[w]$. Therefore $$ A[w_k] \to A[w] \text{ in } L^2(0,T;H^1_0(B_R)). $$ The compactness result follows from similar arguments. To apply Schaefer's fixed point Theorem in $ L^2(0,T;H^1_0(B_R))$ we need to show that the set $ \{ w \in L^2(0,T;H^1_0(B_R)) : w=\lambda A[w] \text{ for some } 0 \leq \lambda \leq 1 \}$ is bounded. This follows directly from the a priori estimate (Theorem \ref{ape}) with $\lambda=1$. \end{proof} \begin{remark} \label{rmk3.7} \rm Theorem \ref{ExistenceBall} shows that $w=\frac{\partial u}{\partial x} \in L^2(0,T;H^1_0(B_R)) $ solves problem \eqref{TheoPball}-\eqref{BCTheoPball}; so $u \in L^2(0,T;H^1_0(B_R) \cap H^2(B_R)) $ and is a strong solution of problem \eqref{TheoPb}-\eqref{ICTheoPb} in the bounded domain $B_R\times [0,T]$ with zero Dirichlet condition on the lateral boundary of the domain. \end{remark} \section{Construction of the solution in the whole domain} The next step is to construct a solution of \eqref{TheoPball}-\eqref{BCTheoPball} in the whole real line. To do that, we approximate the real line by $$ \mathbb{R}= \cup_{N\in \mathbb{N}}B_N= \lim_{N \to \infty}B_N $$ where $B_N=\{ x \in \mathbb{R} : |x| < N\}$. We also approximate $w_0$ by a sequence of bounded function $w_{0N}$ defined in $B_N$ such that $|w_{0N}| \leq |w_0| $ and $w_{0N} \to w_0$ in $L^2_{\rm loc}(\mathbb{R})$. For $N \in \mathbb{N}$, there exists $w_N \in L^2(0,T;H^1_0(B_N)) \cap C([0,T];L^2(B_N)) $ with $\frac{\partial w_N }{\partial t} \in L^2(0,T;H^{-1}(B_N))$, weak solution of \begin{gather} -\frac{\partial w}{\partial t}+\frac{\partial^2 w}{\partial x^2} +\alpha \frac{\partial w}{\partial x} = \beta \frac{\partial}{\partial x}F \big( w , \frac{\partial w}{\partial x} \big) \quad (x,t) \in B_N \times (0, T)\\ \label{ICTheoPballN} w(x,0) = w_{0N}(x) \quad x \in B_N\\ \label{BCTheoPballN} w(x,t) = 0 , \quad(x,t) \in \partial B_N \times [0,T]. \end{gather} For any given $\rho >0$, the following sequences are bounded uniformly for $N>2 \rho$: \begin{gather*} \{ w_N\}_N \quad \text{ in } L^2(0,T;H^1_0(B_{\rho})),\\ \{\frac{\partial w_N}{\partial t}\}_N \quad \text{ in } L^2(0,T;H^{-1} (B_{\rho})) \end{gather*} Since these spaces are compactly embedded in $L^2(( B_{\rho} \times (0,T))$ then the sequence $\{ w_N\}_N$ is relatively compact in $L^2(( B_{\rho} \times (0,T))$. By a standard diagonal process we may select a subsequence also denoted $\{w_N\}_N$ so that \begin{gather*} w_N \to w \quad \text{a.e. in } L^2(0,T;L^2_{\rm loc}(\mathbb{R})),\\ w_N \to w \quad \text{weakly in } L^2(0,T;H^1_{\rm loc}(\mathbb{R})). \end{gather*} Since $F$ is continuous, passing to the limit in \eqref{DefWeakSol} yields that $w$ is a weak solution of \eqref{TheoPball}-\eqref{BCTheoPball} in $\mathbb{R}$. \begin{thebibliography}{00} \bibitem{ad} R. A. Adams; \emph{Sobolev Spaces}, Ed. Academic Press (1975). \bibitem{M} P. Amster, C. G. Averbuj, M. C. Mariani, D. Rial; \emph {A Black-Scholes Option Pricing Model with Transaction Costs}, Journal of Mathematical Analysis and Applications 303, 2, 688-695 (2005). \bibitem{AA} L. Andersen, J. Andreasen; \emph{Jumps diffusion models:Volatility smile fitting and numerical methods for pricing}, Rev. Derivatives Research, 4, 231-262 (2000). \bibitem{BS} F. Black, M. Scholes; \emph{The pricing of options and corporate liabilities}, J. Political Econ. 81, 637-659 (1973). \bibitem{Evans} L. C. Evans; \emph{Partial differential equations}, Graduate studies in Mathematics, Amer. Math. Soc., 1998. \bibitem{MF} I. Florescu, M. C. Mariani; \emph{Solutions to integro-differential parabolic problems arising in the pricing of financial options in a Levy market}, Electron. J. of Differential Equations, Vol. 2010 (2010), No. 62 , 1-10. \bibitem{Folland2} G. B. Folland; \textit{Introduction to Partial Differential Equations}. Princeton University Press, 2nd edition, 1995. \bibitem{gt}D. Gilbarg and N. S. Trudinger; \emph{Elliptic Partial Differential Equations of Second Order}, Springer, Berlin, 2nd edition, 1983. \bibitem{He} S. L. Heston; \emph{A closed-form solution for options with stochastic volatility with applications to bond and currency options}, Review of Financial Studies 6, 327-344 (1993). \bibitem{HWW} T. Hoggard, A. E. Whalley, P. Wilmott; \emph{Hedging option portfolios in the presence of transaction costs}, Adv. Futures Opt. Res., 7, 21(1994). \bibitem{KK} R. Korn, E. Korn; \emph{Option Pricing and Portfolio Optimization: Modern methods of financial mathematics}, Graduate studies in Mathematics, Amer. Math. Soc., 2001. \bibitem{krylov3} N. V. Krylov; \emph{Lectures on elliptic and parabolic equations in Sobolev spaces}, Amer. Math. Soc., Providence, RI, 2008. \bibitem{krylov1} N. V. Krylov; \emph{Nonlinear elliptic and parabolic equations of second order}, Nauka, Moscow, 1985 in Russian; English translation Reidel, Dordrecht, 1987. \bibitem{LE} H. E. Leland; \emph{Option pricing and replication with transaction costs}, J. Finance, 40, 1283-301(1985). \bibitem{lie} G. M. Lieberman; \emph{Second Order Parabolic Differential Equations}, Ed. World Scientific,1996. \bibitem{EMF} M. C. Mariani, I. Florescu, M. P. Beccar Varela, E. Ncheuguim; \emph{Long correlations andlevy models applied to the study of memory effects in high frequency (tick) data}, Physica A, 388(8), 1659Ð1664 (2009). \bibitem{ME} R. C. Merton; \emph{Continuous-Time Finance}, Blackwell, Cambridge University Press, 2000. \bibitem{ISG1} I. SenGupta; \emph{Spectral analysis for a three-dimensional superradiance problem}. Journal of Mathematical Analysis and Applications, 375: 762-776, 2011. \bibitem{ISG2} I. SenGupta; \emph{Differential operator related to the generalized superradiance integral equation}. Journal of Mathematical Analysis and Applications, 369 : 101-111, 2010. \bibitem{WHD} P. Wilmott, S. Howison, J. Dewynne; \emph{The Mathematics of Financial Derivatives}, Cambridge University Press, 1995. \end{thebibliography} \end{document}