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NONLINEAR DELAY INTEGRAL INEQUALITIES FOR
MULTI-VARIABLE FUNCTIONS

HASSANE KHELLAF, MOHAMED EL HADI SMAKDJI

Abstract. In this article, we establish some nonlinear retarded integral in-
equalities in n independent variables. These inequalities represent a general-
ization of the results obtained in [1, 9, 12] for function of one and two variables.
Our results can be used in the qualitative theory of delay partial differential
equations and delay integral equations.

1. Introduction

In the study of ordinary differential and integral equations, one often deals with
certain integral inequalities. The Gronwall-Bellman inequality and its various lin-
ear and nonlinear generalizations are crucial in the discussion of the existence,
uniqueness, continuation, boundedness, oscillation, stability and other qualitative
properties of the solutions of differential and integral equations. The literature on
such inequalities and their applications is vast; see [3, 4, 7, 8, 15] and references
therein.

During the past few years, investigators have established some useful and inter-
esting delay integral inequalities in order to achieve various goals; see [2, 6, 10, 11,
14] and the references cited therein.

Let us first list the main results of [1, 9, 12], for functions with two variables for
u(x, y) ∈ (∆ ∈ R2

+, R+):
Inequality by Ma and Pecaric [9, Theorem 2.1]:

up(x, y) = k +
m∑

i=1

∫ α1i(x)

α1i(x0)

∫ β1i(y)

β1i(y0)

ai(s, t)uq(s, t) dt ds

+
n∑

j=1

∫ α2j(x)

α2j(x0)

∫ β2j(y)

β2j(y0)

bj(s, t)uq(s, t)w(u(s, t)) dt ds.

(1.1)
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Pachpatte’s inequality [12, Theorem 4];

up(x, y) = k +
∫ x

x0

∫ y

y0

a(s, t)g1(u(s, t)) dt ds

+
∫ α(x)

α(x0)

∫ β(y)

β(y0)

b(s, t)g2(u(s, t)) dt ds.

(1.2)

Cheung’s inequality [1, Theorem 2.4]:

up(x, y) = k +
p

p− q

∫ α(x)

α(x0)

∫ β(y)

β(y0)

a(s, t)uq(s, t) dt ds

+
∫ γ(x)

γ(x0)

∫ δ(y)

γ(y0)

b(s, t)uq(s, t)ϕ(u(s, t)) dt ds.

(1.3)

However, sometimes we need to study such inequalities with a function c(x) in
place of the constant term k. Our main result, for functions with n independent
variables, is given in the inequality

ϕ(u(x)) ≤ c(x) +
n1∑

j=1

dj(x)
∫ eαj(x)

eαj(x0)

aj(x, t)Φ(u(t))w1(u(t))dt

+
n2∑

k=1

lk(x)
∫ eβk(x)

eβk(x0)

bk(x, t)Φ(u(t))w2(u(t))dt,

(1.4)

where c(x) is a function and all the functions which appear in this inequality are
assumed to be real valued of n variables.

It is interesting to note that the results (1.1)-(1.3) can be deduced from our
inequality (1.4) in some special cases. As applications we give the estimate solution
of retarded partial differential equation.

The main purpose of this article is to establish some nonlinear retarded integral
inequalities for functions of n independent variables which can be used as handy
tools in the theory of partial differential and integral equations with time delays.
These new inequalities represent a generalization of the results obtained by Ma and
Pecaric [9], Pachpatte [12] and by Cheung [1] in case of the functions with one and
two variables. We note that the inequality (1.4) is also a generalization of the main
results in [5, 16].

2. Main results

In this article, we denote Rn
+ = [0,∞) which is a subset of Rn. All the functions

which appear in the inequalities are assumed to be real valued of n-variables which
are nonnegative and continuous. All integrals are assumed to exist on their domains
of definitions.

For x = (x1, x2, . . . , xn), t = (t1, t2, . . . , tn), x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Rn

+, we shall
denote:∫ eαi(x)

eαi(x0)

dt =
∫ αj1(x1)

αj1(x0
1)

∫ αj2(x2)

αj2(x0
2)

. . .

∫ αjn(xn)

αjn(x0
n)

. . . dtn . . . dt1, j = 1, 2, . . . , n1,∫ eβk(x)

eβk(x0)

dt =
∫ βk1(x1)

βk1(x0
1)

∫ βk2(x2)

βk2(x0
2)

. . .

∫ βkn(xn)

βkn(x0
n)

. . . dtn . . . dt1, k = 1, 2, . . . , n2,
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with n1, n2 ∈ {1, 2, . . . , }. For x, t ∈ Rn
+, we shall write t ≤ x whenever ti ≤ xi,

i = 1, 2, . . . , n and x ≥ x0 ≥ 0, for x, x0 ∈ Rn
+.

We denote D = D1D2 . . . Dn, where Di = ∂
∂xi

, for i = 1, 2, . . . , n, We use the
usual convention of writing

∑
s∈∅ u(s) = 0 if ∅ is the empty set.

α̃j(t) =
(
αj1(t1), αj2(t2), . . . , αjn(tn)

)
∈ Rn

+ forj = 1, 2, . . . , n1;

β̃k(t) =
(
αk1(t1), αk2(t2), . . . , αkn(tn)

)
∈ Rn

+ for k = 1, 2, . . . , n1.

We denote α̃j(t) ≤ t for j = 1, 2, . . . , n1 whenever αji(ti) ≤ ti for i = 1, 2, . . . , n

and j = 1, 2, . . . , n1, and β̃k(t) ≤ t for k = 1, 2, . . . , n2 whenever βki(ti) ≤ ti for
i = 1, 2, . . . , n and k = 1, 2, . . . , n2

Our main results read as the follows.

Theorem 2.1. Let c ∈ C(Rn
+, R+), w1, w2 ∈ C(R+, R+) be nondecreasing func-

tions with w1(u), w2(u) > 0 on (0,∞) and let aj(x, t) and bk(x, t) ∈ C(Rn
+×Rn

+, R+)
be nondecreasing functions in x for every t fixed for any j = 1, 2, . . . , n1, k =
1, 2, . . . , n2. Let αji, βki ∈ C1(R+, R+) be nondecreasing functions with αji(ti) ≤ ti
and βki(ti) ≤ ti on R+ for i = 1, 2, . . . , n; j = 1, 2, . . . , n1, k = 1, 2, . . . , n2 and
p > q ≥ 0.

(A1) If u ∈ C(Rn
+, R+) and

up(x) ≤ c(x) +
n1∑

j=1

∫ eαj(x)

eαj(x0)

aj(x, t)uq(t)dt

+
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(x, t)uq(t)w1(u(t))dt,

(2.1)

for any x ∈ Rn
+ with x0 ≤ t ≤ x, then there exists x∗ ∈ Rn

+, such as for all
x0 ≤ t ≤ x∗, we have

u(x) ≤
(
Ψ−1

1

[
Ψ1(p(x)) +

p− q

p

n2∑
k=1

∫ eβk(x)

eβk(x0)

bk(x, t)dt
])1/(p−q)

. (2.2)

Where

p(x) = c(p−q)/p(x) +
p− q

p

n1∑
j=1

∫ eαj(x)

eαj(x0)

aj(x, t) dt, (2.3)

Ψ1(δ) =
∫ δ

δ0

ds

w1(s
1

p−q )
, δ > δ0 > 0. (2.4)

Here, Ψ−1 is the inverse function of Ψ, and the real numbers x∗ are chosen so that

Ψ1(p(x)) + p−q
p

∑n2
k=1

∫ eβk(x)eβk(x0)
bk(x, t)dt ∈ dom(Ψ−1

1 ).
(A2) If u ∈ C(Rn

+, R+) and

up(x) ≤ c(x) +
n1∑

j=1

∫ eαj(x)

eαj(x0)

aj(x, t)uq(t)w1(u(t))dt

+
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(x, t)uq(t)w2(u(t))dt.

(2.5)
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(i) In the case w2(u) ≤ w1(u), for any x ∈ Rn
+ with x0 ≤ t ≤ x, there exists

ξ1 ∈ Rn
+, such as for all x0 ≤ t ≤ ξ1, we have

u(x) ≤
(
Ψ−1

1

(
Ψ1(c(p−q)/p(x)) + e(x)

))1/(p−q)

.

(ii) In the case w1(u) ≤ w2(u), for any x ∈ Rn
+ with x0 ≤ t ≤ x, there exists

ξ2 ∈ Rn
+, such as for all x0 ≤ t ≤ ξ2, we have

u(x) ≤
(
Ψ−1

2

(
Ψ2(c(p−q)/p(x)) + e(x)

))1/(p−q)

,

where

e(x) =
p− q

p

[ n1∑
j=1

∫ eβk(x)

eβk(x0)

aj(x, t)dt +
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(x, t)dt
]
,

Ψi(δ) =
∫ δ

δ0

ds

wi(s
1

p−q )
, δ > δ0 > 0, for i = 1, 2.

Here, Ψ−1
i is the inverse function of Ψi and the real numbers ξi are chosen so that

Ψ2(c(p−q)/p(x)) + e(x) ∈ dom(Ψ−1
i ) for i = 1, 2 respectively.

The proof of the above theorem will be given in the next section.

Corollary 2.2. Let the functions u, c, w1, aj , bk (j = 1, 2, . . . , n1; k = 1, 2, . . . , n1)
and the constants p, q be defined as in Theorem 2.1 and

up(x, y) ≤ c(x, y) +
n1∑

j=1

∫ αj(x)

αj(x0)

∫ αj(y)

αj(y0)

aj(x, y, s, t)uq(s, t) ds dt

+
n2∑

k=1

∫ βk(x)

βk(x0)

∫ βk(y)

βk(y0)

bk(x, y, s, t)uq(t)w1(u(t))dt,

(2.6)

for any (x, y) ∈ R2
+ with x0 ≤ s ≤ x and y0 ≤ t ≤ y, then there exists (x∗, y∗) ∈ Rn

+,
such as for all x0 ≤ s ≤ x∗ and y0 ≤ s ≤ y∗, then

u(x, y) ≤
(
Ψ−1

[
Ψ(p1(x, y)) +

p− q

p
B1(x, y)

])1/(p−q)

, (2.7)

where

p1(x, y) = c(p−q)/p(x, y) +
p− q

p
A1(x, y),

A1(x, y) =
n1∑

j=1

∫ αj(x)

αj(x0)

∫ αj(y)

αj(y0)

aj(x, y, s, t) ds dt,

B1(x, y) =
n2∑

k=1

∫ βk(x)

βk(x0)

∫ βk(y)

βk(y0)

bk(x, y, s, t) ds dt,

and

Ψ(δ) =
∫ δ

δ0

ds

w1(s1/(p−q))
, δ > δ0 > 0. (2.8)

Here, Ψ−1 is the inverse function of Ψ, and the real numbers (x∗, y∗) are chosen
so that Ψ(p1(x, y)) + p−q

p B1(x, y) ∈ dom(Ψ−1).
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Remark 2.3. Setting aj(x, y, s, t) = aj(s, t), bk(x, y, s, t) = bk(s, t) and c(x, y) = k
≥ 0 in Corollary 2.2, we obtain Ma and Pecaric’s result [9, Theorem 2.1].

Remark 2.4. Defining aj(x, y, s, t) = p
p−q aj(s, t), bk(x, y, s, t) = p

p−q bk(s, t)
c(x, y) = k > 0 (Constant) and j = k = 1 in Corollary 2.2, we obtain Cheung’s
result [1, Theorem 2.4].

Obviously, (1.1)–(1.3) are special cases of Theorem 2.1. So our result includes
the main results in [9, 12, 1].

Using Theorem 2.1, we can get some more generalized results as follow:

Theorem 2.5. Let the functions u, c, wi, aj , bk (i = 1, 2, j = 1, 2, . . . , n1, k =
1, 2, . . . , n1) be defined as in Theorem 2.1. Moreover, let ϕ ∈ C(R+, R+) be a
strictly increasing function so that limx→∞ ϕ(x) = ∞, and let Φ ∈ C(R+, R+) be
nondecreasing function with Φ(x) > 0 for all x ∈ Rn

+.
(B1) If u ∈ C(Rn

+, R+) and

ϕ(u(x)) ≤ c(x) +
n1∑

j=1

∫ eαj(x)

eαj(x0)

aj(x, t)Φ(u(t))dt

+
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(x, t)Φ(u(t))w1(u(t))dt,

(2.9)

for any x ∈ Rn
+ with x0 ≤ t ≤ x, then there exists x∗ ∈ Rn

+, so that for all
x0 ≤ t ≤ x∗, we have

u(x) ≤ ϕ−1
(
G−1[Ψ−1

1 (Ψ1(π(x)) + B(x))]
)
, (2.10)

where

π(x) = G(c(x)) + A(x), (2.11)

A(x) =
n1∑

j=1

∫ eαj(x)

eαj(x0)

aj(x, t)dt, (2.12)

B(x) =
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(x, t)dt, (2.13)

G(x) =
∫ x

x0

ds

Φ(ϕ−1(s))
, x > x0 > 0, (2.14)

Ψi(δ) =
∫ δ

δ0

ds

wi(ϕ−1(G−1(s)))
, δ > δ0 > 0, i = 1, 2. (2.15)

The real number x∗ is chosen so that Ψ1(π(x)) + B(x) ∈ dom(Ψ−1
1 ).

(B2) If u ∈ C(Rn
+, R+) and

ϕ(u(x)) ≤ c(x) +
n1∑

j=1

∫ eαj(x)

eαj(x0)

aj(x, t)Φ(u(t))w1(u(t))dt

+
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(x, t)Φ(u(t))w2(u(t))dt.
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(i) When w2(u) ≤ w1(u), for any x ∈ Rn
+ with x0 ≤ t ≤ x, there exists ξ1 ∈ Rn

+, so
that for all x0 ≤ t ≤ ξ1, we have

u(x) ≤ ϕ−1
(
G−1[Ψ−1

1

(
Ψ1(G(c(x))) + A(x) + B(x)

)
]
)
.

(ii) When w1(u) ≤ w2(u), for any x ∈ Rn
+ with x0 ≤ t ≤ x, there exists ξ2 ∈ Rn

+,
so that for all x0 ≤ t ≤ ξ2, we have

u(x) ≤ ϕ−1
(
G−1[Ψ−1

2

(
Ψ2(G(c(x))) + A(x) + B(x)

)
]
)
.

Where A,B, G and Ψi(i = 1, 2) are defined in (2.12)-(2.15), Ψ−1
i is the inverse

function of Ψi and the real numbers ξi are chosen so that Ψi(G(c(x))) + A(x) +
B(x) ∈ dom(Ψ−1

i ) for i = 1, 2 respectively.

Many interesting corollaries can also be obtained from the above theorems (in
the case of one or n independent variables).

Corollary 2.6 (Inequality in one variable). Let p > q ≥ 0, c > 0 be constant and
w1, w2 be defined as in Theorem 2.1. Moreover, let aj(x, t) and bk(x, t) ∈ C(R+ ×
R+, R+) be nondecreasing functions in x for every t fixed and αj , βk ∈ C1(R+, R+)
be nondecreasing functions with αj(t) ≤ t and βk(t) ≤ ti on R+ for j = 1, 2, . . . , n1,
k = 1, 2, . . . , n2 for any j = 1, 2, . . . , n1, k = 1, 2, . . . , n2.

(C1) Let u ∈ C(R+, R+) and

u(x)p ≤ cp/(p−q) +
p

p− q

n1∑
j=1

∫ αj(x)

0

aj(x, t)u(t)qdt

+
p

p− q

n2∑
k=1

∫ βk(x)

0

bk(x, t)u(t)qw1(u(t))dt,

for any x ∈ R+ with 0 ≤ t ≤ x. Then there exists (x∗) ∈ R+, so that for all
0 ≤ t ≤ x∗, we have

u(x) ≤
(
[Ψ−1

1

(
Ψ1(π(x)) + B(x)

)
]
)1/(p−q)

. (2.16)

Where π(x) = c + A(x) and

A(x) =
n1∑

j=1

∫ αj(x)

0

aj(x, t)dt, (2.17)

B(x) =
n2∑

k=1

∫ βk(x)

0

bk(x, t)dt, (2.18)

Ψi(δ) =
∫ δ

δ0

ds

wi(s
1

p−q )
δ > δ0 > 0, i = 1, 2. (2.19)

Where the real number x∗ is chosen so that Ψ1(π(x)) + B(x) ∈ dom(Ψ−1
1 ).

(C2) If u ∈ C(R+, R+) and

u(x)p ≤ cp/(p−q) +
p

p− q

n1∑
j=1

∫ αj(x)

0

aj(x, t)u(t)qw1(u(t))dt

+
p

p− q

n2∑
k=1

∫ βk(x)

0

bk(x, t)u(t)qw2(u(t))dt.
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(i) In the case w2(u) ≤ w1(u), for any x, t ∈ R+ with 0 ≤ t ≤ x, we have

u(x) ≤ u(x) ≤
(
[Ψ−1

1 (Ψ1(c) + A(x) + B(x))]
)1/(p−q)

.

(ii) In the case w1(u) ≤ w2(u), for any x, t ∈ R+ with 0 ≤ t ≤ x, we have

u(x) ≤ u(x) ≤
(
[Ψ−1

2 (Ψ2(c) + A(x) + B(x))]
)1/(p−q)

.

Where Ψi, A, B (i = 1, 2) are defined in (2.17)-(2.19).

Remark 2.7. (i) Corollary 2.6 (C1) reduces to Sun’s inequality [16, Theorem 2.1]
in case of one variable (n = 1) when aj(x, t) = aj(t), bk(x, t) = bk(t), βk(x) = αj(x)
and j = k = 1.

(ii) Corollary 2.6 (C2) reduces to Sun’s inequality [16, Theorem 2.2] in case of
one variable (n = 1) when aj(x, t) = aj(t),bk(x, t) = bk(t), βk(x) = x and j = k = 1
and w1 = w2.

Remark 2.8. Under some suitable conditions in (B1), the inequality (2.9) gives a
new estimate for the inequality (2.1) in (A1).

Theorem 2.9. Let the functions u, c, , ϕ,Φ, wi, aj , bk (i = 1, 2, j = 1, 2, . . . , n1,
k = 1, 2, . . . , n1) be defined as in Theorem 2.5 and If

ϕ(u(x)) ≤ c(x) +
n1∑

j=1

dj(x)
∫ eαj(x)

eαj(x0)

aj(x, t)Φ(u(t))w1(u(t))dt

+
n2∑

k=1

lk(x)
∫ eβk(x)

eβk(x0)

bk(x, t)Φ(u(t))w2(u(t))dt,

for any x ∈ Rn
+, we have

u(x) ≤ ϕ−1
(
G−1[Ψ−1

(
Ψ(G(c(x))) + Ã(x) + B̃(x)

)
]
)
,

where

Ã(x) =
n1∑

j=1

dj(x)
∫ eαj(x)

eαj(x0)

aj(x, t)dt,

B̃(x) =
n2∑

k=1

lk(x)
∫ eβk(x)

eβk(x0)

bk(x, t)dt.

Corollary 2.10. If

up(x) ≤ c(x) +
∫ eα(x)

0

a(t)uq(t) + b(t)up(t)dt

for any x ∈ Rn
+ with x0 ≤ t ≤ x, then there exists x∗ ∈ Rn

+, so that for all
x0 ≤ t ≤ x∗, we have

u(x) ≤ p

p− q
c

p−q
p (x) exp

[ p

p− q

∫ eα(x)

0

a(t) + b(t)dt
]

Remark 2.11. (i) Theorem 2.9 reduced to [5, Theorem 2.2] in the case of one
variable, when ϕ(x) = x, bk(x, t) = 0, w1(t) = 1, j = 1 and n = 1

(ii) Theorem 2.9 is also a generalization of the main result in Lipovan [5, Theorem
2.1] in case of one variable, when ϕ(x) = x, bk(x, t) = 0, w1(t) = 1, Φ(t) = 1, for
any x, t ∈ R+(n = 1) and for j = 1.
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Remark 2.12. (i) Under some suitable conditions, Theorem 2.9 reduced to Theo-
rem 2.3 and Theorem 2-4 in case of two variables of the main results in Zhang and
Meng [17].

(ii) Under some suitable conditions in Theorem 2.9, we can also obtain other
estimations of the Ma and Pecaric’s inequality (1.1) and the main results in [9].

Remark 2.13. Theorem 2.9 further reduces to the main results in [1, Theorem
2.1, 2.2, 2.4] and the results in [13].

3. Proof of theorems

Since the proofs resemble each other, we give the details for (A1) in Theorem
2.9 only; the proofs of the remaining inequalities can be completed by following the
proofs of the above-mentioned inequalities.

Proof of Theorem 2.1 (A1). Fixing arbitrary numbers y = (y1, . . . , yn) ∈ Rn
+ with

x0 < y ≤ x∗, we define on [x0; y] a function z(x) by

z(x) = c(y) +
n1∑

j=1

∫ eαj(x)

eαj(x0)

aj(y, t)uq(t)dt +
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(y, t)uq(t)w1(u(t))dt. (3.1)

Then z(x) is a positive and nondecreasing function with z(x0) = c(y), and

u(x) ≤ z(x)1/p, x ∈ [x0; y]. (3.2)

We know that

D1D2 . . . Dnz(x) =
n1∑

j=1

aj(y, α̃j(x))uq(α̃j(x))α′j1α
′
j2 . . . α′jn

+
n2∑

k=1

bj(y, β̃j(x))uq(β̃j(x))w1(u(β̃j(x)))β′k1β
′
k2 . . . β′kn

≤ zq/p(x)
[ n1∑

j=1

aj(y, α̃j(x))α′j1(x1)α′j2(x2) . . . α′jn(xn)

+
n2∑

k=1

bj(y, β̃j(x))w1(z1/p(β̃j(x)))β′k1β
′
k2 . . . β′kn

]
.

(3.3)

Using the above inequality, we have

D1D2 . . . Dnz(x)
zq/p(x)

≤
[ n1∑

j=1

aj(y, α̃j(x))α′j1(x1)α′j2(x2) . . . α′jn(xn)

+
n2∑

k=1

bj(y, β̃j(x))w1(z1/p(β̃j(x)))β′k1β
′
k2 . . . β′kn

]
.

(3.4)



EJDE-2011/169 NONLINEAR DELAY INTEGRAL INEQUALITIES 9

Using D1D2 · · ·Dn−1z(x) ≥ 0, q
pz(q−p)/p(x) ≥ 0, Dn(x) ≥ 0 and(3.4), we have

Dn

(D1D2 . . . Dn−1z(x)
zq/p(x)

)
≤ D1D2 · · ·Dnz(x)

zq/p(x)

≤
n1∑

j=1

aj(y, α̃j(x))α′j1(x1)α′j2(x2) . . . α′jn(xn)

+
n2∑

k=1

bk(y, β̃k(x))w1(z1/p(β̃k(x)))β′k1β
′
k2 · · ·β′kn.

(3.5)

Fixing x1, x2, . . . , xn−1, setting xn = tn and integrating (3.5) from x0
n to xn, we

obtain

D1D2 · · ·Dn−1z(x)
zq/p(x)

≤
n1∑

j=1

∫ αjn(xn)

αjn(x0
n)

aj

(
y, αj1(x1), αj2(x2), · · · , αjn−1(xn−1), αjn(tn)

)
× α′j1α

′
j2 · · ·α′jn−1dtn

+
n2∑

k=1

∫ βkn(xn)

βkn(x0
n)

bk(y, βk1(x1), βk2(x2), · · · , βkn−1(xn−1), tn)

× w1(z1/p(βk1, βk2, · · · , βkn−1, tn))β′k1(x1)β′k2(x2) · · ·β′kn−1(xn−1) dtn.

Using the same method, we obtain

D1z(x)
zq/p(x)

≤
n1∑

j=1

[ ∫ αjn(xn)

αjn(x0
n)

. . .

∫ αjn(xn)

αjn(x0
n)

aj(y, αj1(x1), t2, . . . , tn)α′j1(x1)dtn . . . dt2

]
+

n2∑
k=1

[
∫ βjn(xn)

βjn(x0
n)

. . .

∫ βjn(xn)

βjn(x0
n)

bk(y, βk1(x1), t2, . . . , tn)

× w1(z1/p(βk1(x1), t2, . . . , tn))β′k1(x1)dtn . . . dt2

]
.

(3.6)

Integrating (3.6) form x0
1 to x1, we obtain

p

p− q
z(p−q)/p(x) ≤ p

p− q
c(p−q)/p(y) +

n1∑
j=1

∫ eαj(y)

eαj(x0)

aj(y, t)dt

+
n2∑

k=1

∫ eβk(x)

eβk(x0)

bk(y, t)w1(z1/p(t))dt,



10 H. KHELLAF, M. SMAKDJI EJDE-2011/169

for all x ∈ [x0; y], which implies that

z(p−q)/p(x) ≤ c(p−q)/p(y) +
p− q

p

n1∑
j=1

∫ eαj(y)

eαj(x0)

aj(y, t)dt

+
p− q

p

n2∑
k=1

∫ eβk(x)

eβk(x0)

bk(y, t)w1(z1/p(t))dt.

(3.7)

Setting r1(x) = z(p−q)/p(x), (3.7) can be rewritten as

r1(x) ≤ p(y) +
p− q

p

n2∑
k=1

∫ eβk(x)

eβk(x0)

bk(y, t)w1(r
1/(p−q)
1 (t))dt.

Defining v(x) on [x0; y], by

v(x) = p(y) +
p− q

p

n2∑
k=1

∫ eβk(x)

eβk(x0)

bk(y, t)w1(r
1/(p−q)
1 (t))dt, (3.8)

by (3.8), we have v(x0) = p(y) and

z(p−q)/p(x) ≤ v(x), (3.9)

and

D1D2 · · ·Dnv(x) =
p− q

p

n2∑
k=1

bk(y, β̃k(x))w1(r
1/(p−q)
1 (β̃k(x)))β′k1β

′
k2 . . . β′kn

≤ p− q

p

n2∑
k=1

bk(y, β̃k(x))w1(v1/(p−q)(β̃k(x)))β′k1β
′
k2 . . . β′kn.

Using the same method as above, we obtain
D1v(x)

w1(v(x)1/p−q)

≤ p− q

p

n2∑
k=1

[ ∫ βjn(xn)

βjn(x0
n)

. . .

∫ βjn(xn)

βjn(x0
n)

bk(y, βk1(x1), t2, . . . , tn)β′k1(x1)dtn . . . dt2

]
.

Integrating form x0
1 to x1, we obtain

Ψ1(v(x)) ≤ Ψ1(p(y)) +
p− q

p

n2∑
k=1

∫ eβk(x)

eβk(x0)

bk(y, t)dt, (3.10)

from (3.10) and for any arbitrary y, we obtain

v(y) ≤ Ψ−1
1

[
Ψ1(p(y)) +

p− q

p

n2∑
k=1

∫ eβk(y)

eβk(x0)

bk(y, t)dt
]
. (3.11)

From (3.11) and (3.9),

z(y) ≤
(
Ψ−1

1

[
Ψ1(p(y)) +

p− q

p

n2∑
k=1

∫ eβk(y)

eβk(x0)

bk(y, t)dt
])p/(p−q)

. (3.12)

By (3.12) and (3.2),

u(y) ≤
(
Ψ−1

1

[
Ψ1(p(y)) +

p− q

p

n2∑
k=1

∫ eβk(y)

eβk(x0)

bk(y, t)dt
])1/(p−q)

.
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Since y ≤ x∗ is arbitrary, the proof is complete. �

Proof of Theorem 2.9. Fixing arbitrary numbers τ = (τ1, . . . , τn) ∈ Rn
+ with x0 <

τ ≤ ξ, we define on [x0; τ ] a function z(x) by

z(x) = c(τ) +
n1∑

j=1

dj(τ)
∫ eαj(x)

eαj(x0)

aj(τ, t)Φ(u(t))w1(u(t))dt

+
n2∑

k=1

lk(τ)
∫ eβk(x)

eβk(x0)

bk(τ, t)Φ(u(t))w2(u(t))dt.

Then z(x) is a positive and nondecreasing function with z(x0) = c(τ), and

u(x) ≤ ϕ−1(z(x)); x ∈ [x0; τ ].

We know that

D1D2 · · ·Dnz(x)

=
n1∑

j=1

dj(τ)aj(τ, α̃j(x))Φ(u(α̃j(x)))w1(u(α̃j(x)))α′j1α
′
j2 . . . α′jn

+
n2∑

k=1

lk(τ)bk(τ, β̃k(x))Φ(u(β̃k(x)))w2(u(β̃k(x)))β′k1β
′
k2 . . . β′kn,

≤ Φ(ϕ−1(z(x))
[ n1∑

j=1

dj(τ)aj(τ, α̃j(x))w1(ϕ−1(z(α̃j(x)))α′j1α
′
j2 . . . α′jn

+
n2∑

k=1

lk(τ)bk(τ, β̃k(x))w2(ϕ−1(z(β̃k(x)))β′k1β
′
k2 . . . β′kn

]
.

Using the same method in proof of the Theorem 2.1, and for all x ∈ [x0; τ ], which
implies that

z(x) ≤ G−1
[
G(c(τ)) +

n1∑
j=1

dj(τ)
∫ eαj(x)

eαj(x0)

aj(τ, t)w1(u(t))dt

+
n2∑

k=1

lk(τ)
∫ eβk(x)

eβk(x0)

bk(τ, t)w2(u(t))dt
]
.

Defining v(x) on [x0; τ ] by

v(x) = G(c(τ)) +
n1∑

j=1

dj(τ)
∫ eαj(x)

eαj(x0)

aj(τ, t)w1(u(t))dt

+
n2∑

k=1

lk(τ)
∫ eβk(x)

eβk(x0)

bk(τ, t)w2(u(t))dt.

We have v(x0) = G(c(τ)), z(x) ≤ G−1(v(x)), and

u(x) ≤ ϕ−1(G−1(v(x))). (3.13)

Then we obtain

D1D2 · · ·Dnv(x)
w1(ϕ−1(G−1(v(x))))

≤
[ n1∑

j=1

dj(τ)aj(τ, α̃j(x))α′j1(x1)α′j2(x2) . . . α′jn(xn)
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+
n2∑

k=1

lk(τ)bk(τ, β̃k(x))β′k1(x1)β′k2(x2) . . . β′kn(xn)
]
.

Using the same method as above, we obtain

Ψ1(v(x)) ≤ Ψ1(G(c(τ))) +
n1∑

j=1

dj(τ)
∫ eαj(x)

eαj(x0)

aj(τ, t)dt +
n2∑

k=1

lk(τ)
∫ eβk(x)

eβk(x0)

bk(τ, t)dt.

From which we have

v(τ) ≤ Ψ−1
1

[
Ψ1(G(c(τ))) +

n1∑
j=1

dj(τ)
∫ eαj(τ)

eαj(x0)

aj(τ, t)dt

+
n2∑

k=1

lk(τ)
∫ eβk(τ)

eβk(x0)

bk(τ, t)dt
]
,

(3.14)

for any arbitrary numbers τ ∈ Rn
+, with x0 < τ ≤ ξ. From (3.13) and (3.14), we

obtain

u(τ) ≤ ϕ−1
{

G−1
(
Ψ−1

1

[
Ψ1(G(c(τ))) +

n1∑
j=1

dj(τ)
∫ eαj(τ)

eαj(x0)

aj(τ, t)dt

+
n2∑

k=1

lk(τ)
∫ eβk(τ)

eβk(x0)

bk(τ, t)dt
])}

.

Since τ is arbitrary and τ ≤ ξ, we obtain the result in the Theorem 2.9. �

4. An application

In this section we present an immediate application of our results (Theorem 2.1
and Corollary 2.10) to study boundedness of solutions of delay partial differential
equations. First we consider the nonlinear partial delay differential equation in Rn:

Dup(x) = h(x, u(x), u(x− α̃(x)),

up(0, x2, x3, . . . , xn) = c1(x1),

up(0, x2, x3, . . . xn−1, xn) = cn(xn)

up(. . . , xi−1, 0, xi+1, . . . ) = ci(xi) for i = 2, 3, . . . , n− 1,

ci(0) = 0 for i = 1, 2, . . . , n.

(4.1)

For x = (x1;x2, . . . , xn) ∈ Rn
+ and α̃(x) =

(
α1(x1), α2(x2), . . . , αn(xn)

)
∈ Rn

+

for αi, ci ∈ C1(R+, R+) for i = 1, 2, . . . , n. Where h : Rn
+ × R × R → R, is a

continuous function. Assume that these functions are defined and continuous on
their respective domains of definition such that

α̃(x) ≤ x, for all x = (x1;x2, . . . , xn) ∈ Rn
+, (4.2)

|h(x, u, v)| ≤ a(x)|v(x)|q + b(x)|v(x)|p, (4.3)

for x ∈ Rn
+, where p > q ≥ 0 is a constants and a(x), b(x) are nonnegative, con-

tinuous functions defined for x ∈ Rn
+. For any solution u(x) of the boundary value

problem (4.1),

up(x) =
n∑

i=1

ci(xi) +
∫ x

0

h(t, u(t), u(t− α̃(t))dt, (4.4)
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For all x, t ∈ Rn
+ with 0 ≤ t ≤ x. Using (4.1), (4.3) and a suitable change of

variables in (4.4), we have

|up(x)| ≤ c(x) +
∫ eα(x)

0

ã(t) |u(t)|q + b̃(t) |u(t)|p dt, (4.5)

with c(x) =
∑n

i=1 |ci(xi)|, ã, b̃ ∈ C1(Rn
+, R+).

(E1) Applying (A1) in Theorem 2.1 to (4.5), when α̃j = β̃k, aj(x, t) = ã(t),
bk(x, t) = b̃(t) with j = k = 1 and w1(u) = up−q, we obtain a bound for the
solution u(x):

u(x) ≤
(
c(p−q)/p(x) +

p− q

p

∫ eα(x)

0

ã(t)dt
)1/(p−q)

exp
(1

p

∫ eα(x)

0

b̃(t)dt
)
. (4.6)

(E2) Or by a direct application of Corollary 2.10 to (4.5),

u(x) ≤ p

p− q
c

p−q
p exp

[ p

p− q

∫ eα(x)

0

[ã(t) + b̃(t)]dt
]
. (4.7)

Remark 4.1. In the special case (p = 2 and q = 1) in the boundary value problem
(4.1), we have

(i) By (4.6), we obtain

u(x) ≤
(√

c(x) +
1
2

∫ eα(x)

0

ã(t)dt
)

exp
(1

2

∫ eα(x)

0

b̃(t)dt
)
.

(ii) Or by using (4.7),

u(x) ≤ 2
√

c(x) exp
[
2

∫ eα(x)

0

[ã(t) + b̃(t)]dt
]
.

Remark 4.2. Note that the results given here can be very easily generalized to
obtain explicit bounds on integral inequalities involving several retarded arguments.

Using similar method of those in the proof of the Theorems above, we can also
obtain a new reversed inequalities of our results.
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