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MULTIPLE POSITIVE PERIODIC SOLUTIONS TO A
NON-AUTONOMOUS LOTKA-VOLTERRA PREDATOR-PREY
SYSTEM WITH HARVESTING TERMS

KATHONG ZHAO, YONGKUN LI

ABSTRACT. Using Mawhin’s continuation theorem of coincidence degree the-
ory, we establish the existence of 2"1t™ positive periodic solutions for a non-
autonomous Lotka-Volterra network-like predator-prey system with harvesting
terms. Here n and m denote the number of prey and predator species respec-
tively. An example is given to illustrate our results.

1. INTRODUCTION AND DESCRIPTION OF THE MODEL

In the usual predator-prey model, there is only one predator and one prey. How-
ever, in nature we encounter complex systems with several species as predators and
several species as prey. In our model all predators form one layer, and all prey form
another layer; to be called predator layer and prey layer, respectively. There is a
competition relationship among each species lying in the same layer because they
fight for food, living space and so on. Considering the above, in this paper, we
introduce the following non-autonomous Lotka-Volterra network-like predator-prey
system with harvesting terms

a:(t) = () (@) = b = D cw®), ()

r=1,r#i
- Zdik(t)l‘mk(t)) —hi(t), i=12,...,n,
=t (1.1)
5 () = g (0 (0 = B(Oznss () = Y s Onsn(t)
r=1,r#j

+ 3 Oar(®) —es(H), J=1.2,...m
k=1

where z;(t) and z,4+,(t) (j = 1,2,...,m) are the ith prey species population density
and the jth predator species population density, respectively; a;(t), b;(t) and h;(t)
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stand for the ith prey species birth rate, death rate and harvesting rate, respectively;
a;(t), B;(t) and e;(t) stand for the jth predator species birth rate, death rate and
harvesting rate, respectively; ¢;s(t)(i # s) represents the competition rate between
the sth prey species and the ith prey species, d;ix(t) (i =1,2,...,n;k=1,2,...,m)
represents the kth predator species predation rate on the ith prey species, 75 (t)(s #
j) stands for the competition rate between the sth predator species and the jth
predator species, 0x;(t) (j = 1,2,...,m;k = 1,2,...,n) stands for the transfor-
mation rate between the kth prey species and the n + jth predator species. In
addition, the effects of a periodically varying environment are important for evo-
lutionary theory as the selective forces on systems in a fluctuating environment
differ from those in a stable environment. Therefore, the assumptions of periodic-
ity of the parameters are a way of incorporating the periodicity of the environment
(e.g, seasonal effects of weather, food supplies, mating habits, etc), which leads
us to assume that a;(t),b;(t), cis(t), dir(t), hi(t), o (t), B (t), vs;(t), 6x;(t) and e;(t)
(t=1,2,...,n;5=1,2,...,m) are all positive continuous w-periodic functions.

Since a very basic and important problem in the study of a population growth
model with a periodic environment is the global existence and stability of a positive
periodic solution, which plays a similar role as a globally stable equilibrium does in
an autonomous model. This motivates us to investigate the existence of a positive
periodic or multiple positive periodic solutions for system . In fact, it is more
likely for some biological species to take on multiple periodic change regulations
and have multiple local stable periodic phenomena. Therefore, it is essential for us
to investigate the existence of multiple positive periodic solutions for population
models. Our main purpose of this paper is by using Mawhin’s continuation theorem
of coincidence degree theory [2], to establish the existence of 2" positive periodic
solutions for system . For the work concerning the multiple existence of peri-
odic solutions of periodic population models which was done by using coincidence
degree theory, we refer the reader to [1, [3] 4 5L [6].

The organization of the rest of this paper is as follows. In Section 2, by employing
the continuation theorem of coincidence degree theory and the skills of inequalities,
we establish the existence of 2™ positive periodic solutions of system (1.1)). In
Section 3, one example is given to illustrate the effectiveness of our results.

2. EXISTENCE OF 2"T™ POSITIVE PERIODIC SOLUTIONS

In this section, by using Mawhin’s continuation theorem and some inequalities,
we shall show the existence of positive periodic solutions of . To do so, we
need to make some preparations.

Let X and Z be real normed vector spaces. Let L : Dom L C X — Z be a linear
mapping and N : X x [0,1] — Z be a continuous mapping. The mapping L will
be called a Fredholm mapping of index zero if dim ker L = codimIm L < oo and
Im L is closed in Z. If L is a Fredholm mapping of index zero, then there exists
continuous projectors P : X — X and ) : Z — Z such that Im P = ker L and
ker@=ImL=1Im(]—-@Q), and X =ker Ldker P,Z =Im L®Im Q. It follows that
Lipom Lrker P : (I — P)X — Im L is invertible and its inverse is denoted by Kp. If
) is a bounded open subset of X, the mapping N is called L-compact on  x [0, 1],
if QN (Q x [0,1]) is bounded and Kp(I — Q)N : Q x [0,1] — X is compact. Because
Im @ is isomorphic to ker L, there exists an isomorphism J : Im Q — ker L.

The Mawhin’s continuous theorem [2], p.40] is as follows.
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Lemma 2.1 ([2]). Let L be a Fredholm mapping of index zero and let N be L-
compact on € x [0,1]. Assume

(a) for each A € (0,1), every solution x of Lx = AN(x,\) is such that x ¢
QN Dom L;

(b) @N(z,0)x # 0 for each x € O Nker L;

(c) deg(JQN(z,0),Q2Nker L,0) # 0.

Then Lx = Nz has at least one solution in QN Dom L.

For the sake of convenience, we denote f! = mingeo.. (1), M = max;e(o,w) f(t),

f=1 f: f(t) dt, respectively, here f(t) is a continuous w-periodic function.
For simplicity, we need to introduce some notations as follows.

o & V=,
l

! 2b!
TR DY Y O \/ ol + S ML) — aplel
oty = 24 :
a = (e 3 Y s (- Y
r=1,r#i r=1,r#i

m 1/2
=Yt - i) ) e,
k=1

) m M+ l m M+ M M
YT 2ormrts Vog bngr £ \/ (@5 = 20t oty Vg bnr)® = 407 €5
n+j QﬁM

where i =1,2,...,n;5=1,2,...,m
In this paper, we use the following assumptions.

(H) QQ*Z? 1,r#4 zrr Zk 1dzl~cln+k>2\/ i 1 [ 7 ..7nanda§-f

o YL > 20/ BMeM j=1,2,...m
TE] J

By elementary calculus, one can easily show the following result.

Lemma 2.2. Letx >0,y >0, z>0 and x > 2,/yz, for the functions f(z,y,z) =
m+ yz T—/x2—4yz

and g(x,y, z) = —5——, the following assertions hold.

(1) f(x,y,2) and g(x,y, z) are monotonically increasing and monotonically de-
creasing on the variable x € (0,00), respectively.

(2) f(z,y,2) and g(z,y,z) are monotonically decreasing and monotonically in-
creasing on the variable y € (0,00), respectively.

(3) f(z,y,2) and g(x,y, z) are monotonically decreasing and monotonically in-
creasing on the variable z € (0,00), respectively.

By assumption (H) and Lemma 2.2, one can prove the following statement.
Lemma 2.3. For the equations
ai(t) = bi(t)e™ D —hy(t)e M =0, VteR,i=1,2,...,n
a;(t) — B;(t)e 1M —e;(t)e ) =0, VteR, j=1,2,....,m



4 KATHONG ZHAO, YONGKUN LI EJDE-2011/49

if assumption (H) holds, then we have the inequalities

Inl; <lnwu; <InA; < lnA'-F < lnufi' < 1nlf~' vVt eR;

Il <lnug , <InA,  <InAf . <lnuf <l VteR,
where
i(t) £/ (ai(£))2 — 4b;(t)hy(t
ut = WO EV@OP —BORO
2b;(t)
(t) + (1))2 — 4B;(t)e; (t
i, = wOEVEGOP BOSE g,
23;(t)

Theorem 2.4. Assume that (H) holds. Then (1.1) has at least 2"t™ positive
w-periodic solutions.

Proof. By making the substitutions

zi(t) = exp{u;(t)}, @n4;(t) =exp{uns ()}, i=1,2,...,n; j=1,2,...,m,

(2.1)
system ([1.1)) can be reformulated as
;(t) = a;(t) — bi(t)e" ™ — Z cir(t)etr®
r=1,r#i
N di(t)er O — py(t)e O,
m (2.2)
Uy i (t) = aj(t) — B;(t)etn+i®) — Z g (H)entr®
r=1,r#j
+ 3 k(e — ej(t)e (O
k=1

where i =1,2,...,n; 5 =1,2,...,m. Let
X=Z={u= (ur, 2, s tpgm)” € C(R, R™™) s u(t +w) = u(t) }
and define

n+m
ul|| = max u;(t)], we XorZ.
ol = 3 g o0
Equipped with the above norm || - ||, X and Z are Banach spaces. Let
du(t)
L = ] =
u=1u i

and N (u,\) be column vector

a1(t) = b0 1 = A( Sy ean()e O + TPy dip (et D) — by (e 1O

an(t) = b (®)e ) = \( 72 enr()e ™ + TP dur(@)en kO ) — hy (e en ®
ai(t) — By (t)etn+1(t) — )\( > m, A1 (£)etntr® — >, 5“(,5)6“19(0) — ey (t)e  Un+1(®)

am (t) = B () ntm® — A (LIS (D) D = TR S ()R D) — e (t)e T ntm ()
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We put

w 1 w
Pu:—/ uw(t)dt, weX, Qz:—/ z(t)dt, zeZ.
0 W Jo

w

Thus it follows that ker L = R"*™ ImL = {z € Z : fo t)dt =0} is closed in Z,
dimker L = n 4+ m = codimIm L, and P,Q are COIltIDUOIlb pI“O_]eCtOI‘b such that

ImP=%kerL, kerQ=ImL=Im(I - Q).

Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) Kp : Im L — ker P Dom L is given by

Kp(z):/otz(s)ds—ulj/ow/osz(s)ds

Ly Fl(s,)\) ds

Then

QN(U7 /\) =

f(] n+m S A ds (n+m)x1

and

Kp(I - Q)N(u,\)
Jy Fu(s,\ds — L < [ Fl(s,)\) dsdt + (3 — L) [ Fi(s,\) ds

A L [ Fys, /\ dsdt—l—(% — L) [y Fu(s,N)ds/ |

where F'(u, A) is the column vector
a1(s) — b1(8)e"1) — A" crp(B)er® — AT dyg(s)e ntE ) — hy(s)e U1 (®)

an(s) = bn(s)e ) — XSl e, (8)e () — XM dp(s)etnth () — h, (s)emun(®)
ai(s) — gl(s)eun+1(5) AT, (s )pun+r(5) A, Sk (s)ev k() — el(s)e*un+1(5)

U (8) — 5m(s)eun+m(5> Y Z:!ll %m(s)euwﬂ-(-ﬂ) +Ar, Sk (8)e"k () — e, (s)e tntm(®)

Obviously, QN and Kp(I —Q)N are continuous. Using the Arzela-Ascoli theorem,
it is not difficult to show that Kp(I — Q)N (Q) is compact for any open bounded
set Q C X. Moreover, QN () is clearly bounded. Thus, N is L-compact on { with
any open bounded set 2 C X.

To use Lemma 2.1, we have to find at least 2"T™ appropriate open bounded
subsets in X. Considering the operator equation Lu = AN (u,\),A € (0,1), we



6 KATHONG ZHAO, YONGKUN LI EJDE-2011/49

have
(1) = Aailt) = bi()e @ =X D7 iy (t)enr®
r=1,r#1i
—AD di(t)etnrrt) — hi(t)e_“'i(t)), i=1,2,...,n,
= (2.3)
ity () = A(@)(0) — B0 - Y Byt
r=1,r#j

+ A Z 5kj (t)6Uk(t) - ej(t)eiuvwrj(t))v ] = ]-7 23 cee, M

Assume that u € X is an w-periodic solution of (2.3) for some A € (0,1). Then
there exist &, 7, &ntjs My € [0,w] such that u;(§;) = maxyejoo) ui(t), ui(n) =
mingeo,w) Ui (1), Untj(€n+j) = MaXee(0,w] Un+j(t), Untj(Mnts) = Mingefo w] Un;(1).
It is clear that ul(fl) = 0, Ul(Th) = O7 iLn—i—j(gn-&-]‘) = 0, 7:Ln+j(’r]n+j) = 0. From this

and (2.3), we have
ai (&) = bi(&)e™ &) =X D7 e (&)en €
r=1,r#1

_ )‘Zdzk eun+r (&) _ hi(&)e_ui(&) —0,

" (2.4)
a;j(&n+j) — By (§n+j)@u"+j(£"+j) —A Z Ve (t)eun+r(£n+j)
r=1,r#j
+ A Z Orj(Entj)e w(Enti) — e;j(Enyj)e it (Enti) —
and
( )717( et () — ) Z cw z ur(m)
r=1,r#i
—A Z dig (n;)etn+* (m:) _ hi(m)efui(ni) =0,
(2.5)
Q;j (nn+]) - ﬁ] (Tln+j)eun+j (n+5) - A Z 77“] un+r (n+5)
r=1,r#j
+A Z 5k] (T]n""])GUk () — €j (77n+j)67“"+j (1n+3) = 07

k=1
where i = 1,2,...,n; 7 = 1,2,...,m. On the one hand, according to the first
equation of (2.4), we have

béeQui(&) _ alMeui(&) + hi < bi(fi)e2Ui(€i) _ ai(fi)eui(&) + hi(&)

n

— _)\eui(ﬁi)( Z Cw(@_)éﬁ.(fi) +§:dik(fi)€u"+k(€i))
k=1

r=1,r#i
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<0, 2=1,2,...,m;

namely,
béeZui(Ei) —aMewi&) 4 hl<0, i=1,2,....n

? )
which implies

Ini; <wu(&) <Inlf, i=1,2,....,n (2.6)
From this inequality and the second equation in ([2.4)), we obtain

ﬂée2un+1(£n+j) — aMeun+i(€ntj) + eé,

J
< Bj(£n+j)e2u"+j (&n+j) _ 0 (Enyj)etnts (En+) 4 ej(Ents)

m n
— Aeun+j (fn+j)( — Z ’yiT (£n+j)€un+r(§n+'j) + Z 6ik) (é‘n_"_J)euk (En+.i))
r=1,r#j k=1
n
<eun+]’(6n+j)25%l:’ i=1,2,...,m;
k=1

that is,
n
B2t Ents) (ajM + Za%z;)e“w]‘@w) +eh<0, j=1,2,...,m,
k=1

which implies

iy, <tngj(Engy) <Imli o j=1,2,....m (2.7)
From ({2.5)), we analogously have
Inl; <wui(n) <Inlf, i=12,....n (2.8)
Inl, ;< Untj (Mntj) < lnl:+j,j =1,2,...,m.

On the other hand, by (2.4)), (2.6) and (2.7]), we obtain

a < a;(&)

= bi(gi)eui(&) + A Z Cir(fi)eur(&) + )\Zdik(&)eUnJrk(&i) + hi(fi)e—ui(&)

r=1,r#i k=1

n m
<bMewl®) 4 N Mk S aME +hMe i ©) =12, o,
r=1,r#1i k=1

and
m

O{; S ; (gn—}-j) _ 5]_ (€n+j)eun+j (&n+s) + by Z Ve (t)eun+v-(5n+j)
r=1,r#j

-\ Z 5kj (£n+j)euk(£n+j) +ej (fn+j)€7u"“(5"ﬂ)
k=1

m
< 6;\/[6un+j(‘£"+j) + Z ’YTI'\;IZ:L_-‘FT + eyeiun+j(§n+j)7 j = 15 27 ceey
r=1,r#j

namely,

n m
pM e2uil&i) _ (aﬁ — Z Mt — Zd%l:;rk)e“i(&) +hM >0, i=1,2,...,m
r=1,r#i k=1
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77 n+r
r=1,r#j

ﬁjw€2“n+j(5n+7 — Z 7M1+ eun+i(€n+i) 4 e;,\/f >0, j=1,2,...,m,

which implies
ui(&) <A or wi(&)>InAf, i=1,2,...,n; (2.10)
Untj(§ntj) <AL ot Upij(€ntj) > 1nAI+J, j=12,...,m. (2.11)
According to , we analogously have
wi(n;) <ImA; or wi(n)>WmAN, i=1,2,...,m (2.12)
Uptj(Mnts) <AL O Upyj(Mngj) > lnAn_H, i=12,...,m.  (2.13)
From - and Lemma 2.3, we have that for any ¢t € R,

Inl; <wu(t)<InA; or InAf <w(t)<Inlf, i=12,...,n; (2.14)
Il ; <upij(t) <InA . or 1nAj;+j<un+]()<lnln+], j:1,2,..&,m.)
2.15

For convenience, we denote
G; = (lnli_,lnAi_), H; = (lnAj',lnlj'), 1=1,2,...,n+m.

Clearly, lli, 1=1,2,...,n+m are independent of \. Foreachi=1,2,...,n4+m,
we choose one of interval among the two intervals G; and H; and denote it as A,
then define the set

{u:(ul,uQ,...,un+m)T € X :u(t) GAi,tER,izl,Z...,n—l—m}.

Obviously, the number of the above sets is 2*"t™. We denote these sets as ,
k=1,2,...,2""™ Q. k=1,2,...,2"" are bounded open subsets of X, ;NQ; =
¢,i # j. Thus Q (k=1,2,...,2""™) satisfies the requirement (a) in Lemma 2.1.

Now we show that (b) of Lemma 2.1 holds; i.e., we prove when u € 9 N
ker L = Q. NR™™ QN (u,0) # (0,0,...,0)T k=1,2,...,27t™ Ifit is not true,
then when v € 0Q, Nker L = 09, N R, ¢ = 1,2,...,2"T"™ constant vector
= (U, U, Unm) T With u € 0, k = 1,2,...,2"™ satisfies

w w w
/ ai(t)dt—/ b;(t)e" dt—/ hi(t)e " dt=0, i=1,2,...,n
0 0 0

/Cu a;(t) dt — i Bj(t)e  +i dt — /w ej(t)e i dt=0, j=12,...,m.
0 0 0
In view of the mean value theorem of calculous, there exist n + m points ¢; (i =
1,2,...,n+ m) such that
ai(t;) — bi(t;)e" —hi(t))e™™ =0, i=1,2,...,m; (2.16)
0 (tntg) = By (b€ — €5t )0 =0, j = 1,2, m.  (2.17)
By and , we have
L oailty) £/ (a; t~) )2 — 4bi(t;)hi(ts)
e 20i(1:) |
+ 0 (tnrg) £ /(0 (tn44))? — 485 (tnrj)e;(tnsy)

o , 7=12....m.
" 20 (tn+5)

1=1,2,...,m;
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According to Lemma 2.3, we obtain
Inl; <lnu; <lnA; <InAf <lnuf <Inl, i=12,...,n+m.

Then u belongs to one of Qp N R™™™ k =1,2,...,2""™, This contradicts the fact
that u € 9Q, N R"T™ k =1,2,...,2""™  This proves (b) in Lemma 2.1 holds.

Finally, we show that (c¢) in Lemma 2.1 holds. Since (H) holds, the system of
algebraic equations

a;(t;) — bi(t;)e” — hi(t;))e ™™ =0, i=1,2,...,n,
() — Bi(tng;)e" ™ —ej(tng )e " =0, j=1,2,...,m
has 2™ distinct solutions:
(7,25, ..., 25 ) = (N2, Indg, ... Indyy ),
where £; = x; or &; = xiﬁ

o aiti) £ /(ai(t:))? — 4bi(ti)hi(t:)

: i =1,2,...
JTZ 2bz(tz) 1) 7 )<y ,
and Zy4; = T, Or Tntj = :r:+j,
ot ) £ V(05 (tneg))® — 465 (Bng)e (buy) i=1,2,....m
o 20, (tn ) B

By Lemma 2.2, it is easy to verify that
i

Inl; <lnz; <lnA; <lnAf <lnz} <Inlf, i=1,2,...,n+m.

Therefore, (z7,23,...,%),,,,) belongs to the corresponding €. Since ker L =
Im @, we can take J = I. A direct computation gives, for k = 1,2,...,2"T™,

deg { JQN (u,0),Q; Nker L, (0,0,...,0)"}

— sign [ﬁ ﬁ (= bitto)er + hx(t)> (= Byltrs)oy + M)}

X

i=1j=1 ¢ ntj
Since
hi(t;
az(tz)fbl(tz)x;ki Z(*Z) :07 1= 1723"'7715
T
€j(tn+;) :
aj(tn%*j)*ﬁj(thrj)x;—o—jijx(*# =0, j=12,...,m,
n+j

it follows that
deg {JQN(U,O), Qr Nker L, (0,0, ..., O)T}

= sign | [T TT (as(t:) = 26i(t)27) (@ (tnss) = 265 (s ) |

i=1j=1
=41, k=12,..., 2"

So far, we have proved that Q (k =1,2,...,2""™) satisfies all the assumptions
in Lemma 2.1. Hence, system has at least 2™ different w-periodic solutions.
Thus by system has at least 2"T™ different positive w-periodic solutions.
This completes the proof of Theorem 2.1. ([
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For system (L.1)), assume that c;(t) > 0 (i = 1,2,...,n;7 # i), vp;(t)
G=12,...omsr #j),dix(t) >0 (i =1,2,...,n;k =1,2,...,m) and 0x;(?)
(G =12,....omk =1,2,...,n) and a;(t) > 0, bi(t) > 0, hy(t) > 0, a;(t) > 0,
Bj(t) > 0, e;(t) > 0 are continuous periodic functions, similar to the proof of
Theorem 2.1, one can prove the following result.

Theorem 2.5. Assume that (H) hold. Then (L.1)) has at least 2™ positive w-
periodic solutions.

>0
>0

3. EXAMPLE

Now, let us consider the following network-like predator-prey system with har-
vesting terms which have one prey species (n = 1) and two predator species (m = 2):

. . 4+ sint 9+ cost
i1(t) = 21(8) (3 + sint — = (1) — daa(Daa(t) — dis(D)as(t)) —
10 20
. 5+ cost 2+ cost
Bo(t) = w2(t) (3 +cost — Tﬂh(t) + 011 ()21 (t) — 721(t)$3(t)) -5
. . 8 + sin 2t 8 4 cos 2t
.’173(t) = .’133(t) (3 + sin 2t — Tl’g(t) + (512(t)$1<t) — ’712(t)$2(t)) — T
' (3.1)
In this case, ai(t) = 3 + sint, by(t) = 2L py(t) = 2E5L 0y (¢) = 3 4 cost,

ﬂl( ) — 5+c05t7 ( ) 2+(§0:>t, O[Q(t) — 3 + sin 2t, 52@) — 8+sm 2t7 ( ) 8+COb2t.
Since

aft £ /(a)?)2 — 4bt b} 1
l:t _ 1 1 1771 + 24/
! 20t b+ VI,

taking 511(t) = (511(t+27T) > O, 512(t) = 512(t+2ﬂ') > (0 such that 5%[ 5 lf— = 1
then we have

s (03" +o30) + \/ (a3 +01207)? —4B3es 25+ /576

3 20L 7
Take dlg(t) = dlg(t + 271') > O,dlg(t) = dlg(t + 27T) > O,’}/Ql( ) = ’}/Ql(t + 27‘(’)
0,712(t) = m2(t + 2m) > 0 such that d\,1f = di,l =215 =¥Mi3 = L, then

1.8 = all —diyly —dild > 2R =1, 1.9 = o) — 1T > 2¢/BMeM =
1.9 = 712l+ > 2\/ Mt 18 Therefore all conditions of Theorem 2.1

are satlsﬁed By Theorem 2.1, system ) has at least eight positive 27-periodic
solutions.
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