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MULTIPLICITY THEOREMS FOR SEMIPOSITONE
p-LAPLACIAN PROBLEMS

XUDONG SHANG

Abstract. In this article, we study the existence of solutions for the semiposi-
tone p-Laplacian problems. Under a subliner behavior at infinity, using degree
theoretic arguments based on the degree map for operators of type (S)+, we
prove the existence of at least two nontrivial solutions.

1. Introduction

In this article, we study the existence of multiple solutions for the following
nonlinear elliptic boundary-value problem

−∆pu = λf(u) x ∈ Ω,
u = 0 x ∈ ∂Ω,

(1.1)

where −∆pu = −div(|∇u|p−2∇u) is the p-Laplacian operator, p > 1, λ > 0,
Ω ⊆ Rn(n ≥ 1) is a bounded open set with smooth boundary, f : [0,+∞) → R is
a continuous function satisfying the condition f(0) < 0. Such problems are usually
referred in the literature as semipositone problems comparing with the positone
case of f(0) ≥ 0.

Such semipositone problems arise in buckling of mechanical systems, design of
suspension bridges, chemical reactions, astrophysics. As pointed out by Lions in
[9], semipositone problems are mathematically very challenging. The semilinear
semipositone problems have been studied for more than a decade. The usual ap-
proaches to such semipositone problems are through quadrature methods [5, 7], the
method of sub-super-solution [4], bifurcation theory [1, 12]. We refer the reader
to the survey paper [6] and references therein. See [3, 11] for related results for
multiparameter semipositone problems.

Costa, Tehrani and Yang [8] studied the semipositone problems

−∆u = λf(u) x ∈ Ω,
u = 0 x ∈ ∂Ω.

(1.2)

They applied variational methods for locally Lipschitz functional and obtained pos-
itive solutions for sublinear and superlinear cases.
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Let us consider the sublinear case. It is well know that the main difficulty in
proving the existence of a positive solution for (1.1) consists in finding a positive
sub-solution. As a matter of fact, it can be easily seen, no positive sub-solution can
exist if f(u) does not assume positive values.

Our main objective in this article is to using degree theoretic arguments based on
the degree map for operators of type (S)+, improve the problem (1.2) to quasilinear
case, we obtain two nontrivial solutions for problem (1.1) in the sublinear case.

The hypotheses on the nonlinearity f in problem (1.1) are as follows:
(F1) f(0) < 0,
(F2) lims→+∞

f(s)
sp−1 = 0,

(F3) F (β) > 0 for some β > 0, where F (s) =
∫ s

0
f(t)dt.

Under the above assumptions, we state our main result for problem (1.1).

Theorem 1.1. Suppose that (F1)–(F3) hold. Then, there exists Λ0 > 0 such that
(1.1) has at least two nontrivial solutions for all λ > Λ0.

The rest of this article is organized as follows. In section 2, we shall present
some mathematical background needed in the sequel. Section 3 contains the proof
of our main result.

2. Preliminaries

First, we recall some basic facts about the spectrum of (−∆p,W
1,p
0 (Ω)) with

weights. Let v ∈ L∞+ (Ω), v 6= 0, L∞+ (Ω) = {u ∈ L∞(Ω) : u ≥ 0, x ∈ Ω}. Consider
the nonlinear weighted eigenvalue problem

−∆pu = λv(x)|u|p−2u x ∈ Ω,
u = 0 x ∈ ∂Ω.

(2.1)

This problem has a smallest eigenvalue denoted by λ1(v) which is positive, isolated,
simple and admits the variational characterization

λ1(v) = inf
{ ∫

Ω
|∇u|pdx∫

Ω
v(x)|u|pdx

: u ∈W 1,p
0 (Ω), u 6= 0

}
. (2.2)

In (2.2) the infimum is attained at a corresponding eigenfunction φ1 taken to satisfy
‖φ1‖p = 1. If v1, v2 ∈ L∞+ (Ω) \ {0} are two weight functions such that v1 ≤ v2 a.e.
on Ω with strict inequality on a set of positive measure, then λ1(v2) < λ1(v1). As
usually we denote λ1 = λ1(1). If the u ∈W 1,p

0 (Ω) is an eigenfunction corresponding
to an eigenvalue λ 6= λ1(v), then u must change sign.

We extend f as f(s) = f(0) for all s < 0. It’s well know that u is a weak solution
to (1.1) if u ∈W 1,p

0 (Ω) and∫
Ω

|∇u|p−2∇u∇ϕdx− λ

∫
Ω

f(u)ϕdx = 0

for every ϕ ∈W 1,p
0 (Ω).

For each u ∈W 1,p
0 (Ω), we define I,K : W 1,p

0 (Ω) →W−1,p′

0 (Ω) by

〈I(u), ϕ〉 =
∫

Ω

|∇u|p−2∇u∇ϕdx, ∀ϕ ∈W 1,p
0 (Ω),

〈K(u), ϕ〉 =
∫

Ω

f(u)ϕdx, ∀ϕ ∈W 1,p
0 (Ω).
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Hence, the weak solution of (1.1) are exactly the solutions of the equation I−λF =
0.

Definition 2.1 ([14]). Let X be a reflexive Banach space and X∗ its topological
dual. We recall the mapping A : X → X∗ is of type (S)+, if any sequence un in X
satisfying un ⇀ u0 in X and

lim sup
n→+∞

〈A(un), un − u0〉 ≤ 0

contains a convergent subsequence.

Now consider triples (A,Ω, x0) such that Ω is a nonempty, bounded, open set in
X, A : Ω → X∗ is a demicontinuous mapping of type (S)+ and x0 6∈ A(∂Ω). On
such triples Browder [2] defined a degree denoted by deg(A,Ω, x0), which has the
following three basic properties:

(i) (Normality) If x0 ∈ A(Ω) then deg(A,Ω, x0) = 1;
(ii) (Domain additivity) If Ω1,Ω2 are disjoint open subsets of Ω and x0 6∈

A(Ω\(Ω1 ∪ Ω2)) then deg(A,Ω, x0) = deg(A,Ω1, x0) + deg(A,Ω2, x0);
(iii) (Homotopy invariance) If {At}t∈[0,1] is a homotopy of type (S)+ such that

At is bounded for every t ∈ [0, 1] and x0 : [0, 1] → X∗ is a continuous
map such that x0(t) 6∈ At(∂Ω) for all t ∈ [0, 1], then deg(At,Ω, x0(t)) is
independent of t ∈ [0, 1].

Remark 2.2. The operator A is of type (S)+ and B is compact implies that A+B
is of type (S)+.

Lemma 2.3 ([10]). If X is a reflexive Banach space, U ⊂ X is open, ψ ∈ C1(U),
ψ′ is of type (S)+, and there exist x0 ∈ X and numbers γ < µ and r > 0 such that

(i) V = {ψ < µ} is bounded and V ⊂ U ;
(ii) {ψ ≤ γ} ⊆ Br(x0) ⊂ V ;
(iii) ψ′(x) 6= 0 for all x ∈ {γ ≤ ψ ≤ µ},

then deg(ψ′, V, 0) = 1.

3. Proof of main results

In this section, first several technical results will be established.

Lemma 3.1. The mapping I : W 1,p
0 (Ω) →W−1,p′

0 (Ω) is of type (S)+.

Proof. Assume that un ⇀ u in W 1,p
0 (Ω) and

lim sup
n→+∞

〈I(un), un − u〉 ≤ 0.

Then we obtain
lim sup
n→+∞

〈I(un)− I(u), un − u〉 ≤ 0.

By the monotonicity property of I we have

lim
n→+∞

〈I(un)− I(u), un − u〉 = 0;

i.e.,

lim
n→+∞

∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u)dx = 0. (3.1)
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Observe that for all x, y ∈ Rn,

|x− y|p ≤

{
(|x|p−2x− |y|p−2y)(x− y) if p ≥ 2,
[(|x|p−2x− |y|p−2y)(x− y)]p/2(|x|+ |y|)(2−p)p/2 if 1 < p < 2.

Substituting x and y by ∇un and ∇u respectively and integrating over Ω, we obtain∫
Ω

|∇un −∇u|pdx ≤
∫

Ω

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u)dx, (3.2)

Using (3.1), passing to the limit in (3.2), we obtain

lim
n→+∞

∫
Ω

|∇un −∇u|pdx = 0.

Thus ∇un → ∇u in Lp(Ω). Also un ⇀ u in W 1,p
0 (Ω), which implies that un → u

in Lp(Ω). Hence,
un → u in W 1,p

0 (Ω).

The proof is complete. �

Lemma 3.2. The mapping K : W 1,p
0 (Ω) →W−1,p′

0 (Ω) is compact.

Proof. According to the hypotheses (F2) and the compactness of the embedding of
W 1,p

0 (Ω) into Lp(Ω), K is compactness as a map from W 1,p
0 (Ω) to W−1,p′

0 (Ω). �

Using Remark 2.2 we have the following result.

Lemma 3.3. The mapping J = I − λK is type of (S)+.

Defining BR = {u ∈ W 1,p
0 (Ω), ‖u‖ < R} with any R > 0, we now calculate the

deg(J,BR, 0).

Lemma 3.4. Under hypotheses (F2), there exists R0 > 0 such that

deg(J,BR, 0) = 0 for all R ≥ R0. (3.3)

Proof. Let

〈T (u), ϕ〉 =
∫

Ω

(u+)p−1ϕdx, ∀ϕ ∈W 1,p
0 (Ω). (3.4)

where the u+ = max{u, 0}, u− = max{−u, 0}. Since T is a completely continuous
operator, the homotopy H1(t, u) : [0, 1]×W 1,p

0 (Ω) →W−1,p′(Ω) defined by

〈H1(t, u), ϕ〉 =
∫

Ω

|∇u|p−2∇u∇ϕdx− (1− t)
∫

Ω

λf(u)ϕdx− t

∫
Ω

k(x)(u+)p−1ϕdx

(3.5)
for all u, ϕ ∈ W 1,p

0 (Ω), t ∈ [0, 1], k(x) ∈ L∞+ (Ω) \ {0} and k(x) < λ1. Clearly
H1(t, u) is of type (S)+. We claim that there exists R0 > 0 such that

H1(t, u) 6= 0 for all t ∈ [0, 1], u ∈ ∂BR, R ≥ R0. (3.6)

Suppose that is not true. Then we can find sequences {tn} ⊂ [0, 1] and {un} ⊂
W 1,p

0 (Ω) such that tn → t ∈ [0, 1], ‖un‖ → ∞ and∫
Ω

|∇un|p−2∇un∇ϕdx = (1− tn)
∫

Ω

λf(un)ϕdx+ tn

∫
Ω

k(u+
n )p−1ϕdx (3.7)
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for all ϕ ∈W 1,p
0 (Ω). Let hn = un

‖un‖ , we may assume that there exists h ∈W 1,p
0 (Ω)

satisfying

hn ⇀ h in W 1,p
0 (Ω), hn → h in Lp(Ω), hn(x) → h(x) a.e. on Ω.

Acting with the test function hn − h ∈W 1,p
0 (Ω) in (3.7) we find∫

Ω

|∇hn|p−2∇hn∇(hn − h)dx

= (1− tn)λ
∫

Ω

f(un)
‖un‖p−1

(hn − h)dx+ tn

∫
Ω

k(h+
n )p−1(hn − h)dx.

(3.8)

We are already show that

(1− tn)λ
∫

Ω

f(un)
‖un‖p−1

(hn − h)dx→ 0 n→∞,

tn

∫
Ω

k(h+
n )p−1(hn − h)dx→ 0 n→∞.

Using this and (3.8), we obtain

lim
n→+∞

∫
Ω

|∇hn|p−2∇hn∇(hn − h)dx = 0,

i.e., limn→+∞〈I(hn), hn − h〉 = 0. By Lemma 3.1 we obtain hn → h in W 1,p
0 (Ω)

as n → ∞ and ‖h‖ = 1. This shows that h 6= 0. Acting with the test function
h ∈W 1,p

0 (Ω) in (3.8), we have∫
Ω

|∇hn|p−2∇hn∇hdx = (1− tn)λ
∫

Ω

f(un)
‖un‖p−1

hdx+ tn

∫
Ω

k(h+
n )p−1hdx. (3.9)

Passing to the limit in (3.9) as n→∞, using hypothesis (F2) we find∫
Ω

|∇h|pdx =
∫

Ω

tk(h+)pdx. (3.10)

Acting with the test function h− ∈W 1,p
0 (Ω) we obtain h ≥ 0. Hence∫

Ω

|∇h|pdx =
∫

Ω

tkhpdx. (3.11)

If t = 0, then h = 0, a contradiction. So assume t ∈ (0, 1], exploiting the
monotonicity of the principal eigenvalue on the weight function, we obtain

1 = λ1(λ1) < λ1(k) ≤ λ1(tk). (3.12)

We infer that h = 0, which contradicts to the fact that h 6= 0. This contradiction
shows the claim stated in (3.6).

Due to (3.6) we are allowed to use the homotopy invariance of the degree map,
which through the homotopy H1(t, u) yields

deg(J,KR, 0) = deg(H1(1, u), BR, 0) for all R ≥ R0. (3.13)

Due to (3.13), the problem reduces to computing deg(H1(1, u), BR, 0). To this
end let the homotopy H2(t, u) : [0, 1]×W 1,p

0 (Ω) →W−1,p′(Ω) be defined by

〈H2(t, u), ϕ〉 =
∫

Ω

|∇u|p−2∇u∇ϕdx+ t

∫
Ω

m(x)(u+)p−1ϕdx−
∫

Ω

k(x)(u+)p−1ϕdx

for all u, ϕ ∈ W 1,p
0 (Ω), t ∈ [0, 1], m(x) ∈ L∞+ (Ω) and m(x) > λ1. Clearly, H2(t, u)

it is a homotopy of type (S)+. Let us check that H2(t, u) 6= 0 for all t ∈ [0, 1] and
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u ∈ ∂BR. Arguing by contradiction, assume that there exist u ∈ W 1,p
0 (Ω) with

‖u‖ = R and t ∈ [0, 1] such that∫
Ω

|∇u|p−2∇u∇ϕdx = −t
∫

Ω

m(x)(u+)p−1ϕdx+
∫

Ω

k(x)(u+)p−1ϕdx (3.14)

for all ϕ ∈W 1,p
0 (Ω). Acting with the test function u− ∈W 1,p

0 (Ω), we obtain u ≥ 0.
So ∫

Ω

|∇u|p−2∇u∇ϕdx = −t
∫

Ω

m(x)up−1ϕdx+
∫

Ω

k(x)up−1ϕdx (3.15)

Acting with the test function u in (3.15), we have∫
Ω

|∇u|pdx =
∫

Ω

(k(x)− tm(x))updx < (1− t)λ1

∫
Ω

updx. (3.16)

From this inequality, we conclude that

λ1 ≤
∫
Ω
|∇u|pdx∫

Ω
|u|pdx

< (1− t)λ1. (3.17)

The contradiction obtained justifies the desired conclusion. By the homotopy in-
variance of the degree map, we have

deg(H1(1, u), BR, 0) = deg(H2(1, u), BR, 0) for all R ≥ R0. (3.18)

We choose ‖m(x)‖L∞ sufficiently large such that∫
Ω

|∇u|p−2∇u∇ϕdx−
∫

Ω

k(x)up−1ϕdx 6= −
∫

Ω

m(x)up−1ϕdx (3.19)

for all u ∈ BR. Then we obtain

deg(H2(1, u), BR, 0) = 0 for all R ≥ R0.

Hence
deg(J,BR, 0) = 0 for all R ≥ R0.

The proof is complete. �

Now we can give the proof of our main result.

Proof of Theorem 1.1. From the assumption of f , we see that for all ε > 0, there
exists θ > 0 such that

|f(s)| ≤ ε|s|p−1 + θ, for all x ∈ Ω, s ∈ R (3.20)

Define φ : W 1,p
0 (Ω) → R as

φ(u) =
1
p

∫
Ω

|∇u|pdx− λ

∫
Ω

F (u)dx.

It is well know that under (3.20), φ is well defined on W 1,p
0 (Ω), weakly lower semi-

continuous and coercive. So, we can find u1 ∈W 1,p
0 (Ω) such that

φ(u1) = inf
W 1,p

0 (Ω)
φ(u). (3.21)

By the assumption (F3), we letting Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε},
u0(x) = β for all x ∈ Ωε,

0 ≤ u0(x) ≤ β for all x ∈ Ω \ Ωε.
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Then

φ(u0) =
1
p

∫
Ω

|∇u0|pdx− λ(
∫

Ωε

F (u0)dx+
∫

Ω\Ωε

F (u0)dx)

≤ 1
p
‖u0‖p − λ(F (β)|Ωε| − c(1 + βp)|Ω \ Ωε|),

when ε > 0 sufficiently small, there exists Λ0 > 0 such that φ(u0) < 0 for all λ > Λ0.
So, φ(u1) < φ(u0) < 0, which shows u1 6= 0. (3.21) implies∫

Ω

|∇u1|p−2∇u1∇ϕdx = λ

∫
Ω

f(u1)ϕdx (3.22)

for all ϕ ∈W 1,p
0 (Ω). So u1 is a nontrivial solution of (1.1).

Since u1 is a global minimizer of φ, without loss of generality, we can choose
r1 > 0 such that

φ(u1) < φ(u), φ′(u) 6= 0 for all u ∈ Br1(u1)\{u1}, (3.23)

and for all r ∈ (0, r1) there holds

µ = inf{φ(u) : u ∈ Br1(u1) \Br(u1)} − φ(u1) > 0.

Define the set

V = {u ∈ B r
2
(u1) : φ(u)− φ(u1) < µ}

which is an open and bounded neighborhood of u1. Furthermore, find a number
r0 ∈ (0, r

2 ) with Br0(u1) ⊂ V and γ such that

0 < γ < inf{φ(u) : u ∈ Br1(u1) \Br0(u1)} − φ(u1).

Let U = Br1(u1) and ψ = φ|Br1 (u1) − φ(u1). By the (3.23) we know that 0 6∈
φ′(V \Br(u1)), using Lemma 2.3, we conclude that

deg(J,Br(u1), 0) = deg(J, V, 0) = 1. (3.24)

From Lemma 3.4, we can find number R0 such that

deg(J,BR, 0) = 0 if R ≥ R0. (3.25)

Now fix R0 in (3.25) sufficiently large such that Br(u1) ⊂ BR. Since the domain
additivity of type (S)+

deg(J,BR, 0) = deg(J,Br(u1), 0) + deg(J,BR\Br(u1), 0).

we obtain

deg(J,BR\Br(u1), 0) = −1.

Hence, there exists u2 ∈ BR\Br(u1) solving the problem (1.1). According to the
(F1) we have that u2 6= 0.

Hence, semipositone problem(1.1) has two nontrivial weak solutions u1 and u2

for all λ > Λ0. �
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