\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 67, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/67\hfil $p$-capacity of the singular sets] {Vanishing $p$-capacity of singular sets for $p$-harmonic functions} \author[T. Sato, T. Suzuki, F. Takahashi\hfil EJDE-2011/67\hfilneg] {Tomohiko Sato, Takashi Suzuki, Futoshi Takahashi} % in alphabetical order \address{Tomohiko Sato \newline Department of Mathematics, Faculty of Science \\ Gakushuin University \\ 1-5-1 Mejiro, Toshima-ku \\ Tokyo, 171-8588, Japan} \email{tomohiko.sato@gakushuin.ac.jp} \address{Takashi Suzuki \newline Division of Mathematical Science \\ Department of System Innovation \\ Graduate School of Engineering Science \\ Osaka University \\ Machikaneyamacho 1-3 \\ Toyonakashi, 560-8531, Japan} \email{suzuki@sigmath.es.osaka-u.ac.jp} \address{Futoshi Takahashi \newline Department of Mathematics \\ Graduate School of Science \\ Osaka City University \\ Sugimoto 3-3-138, Sumiyoshiku \\ Osakashi, 535-8585, Japan} \email{futoshi@sci.osaka-cu.ac.jp} \thanks{Submitted April 4, 2011. Published May 18, 2011.} \subjclass[2000]{35B05, 35B45, 35J15, 35J70} \keywords{$p$-harmonic function; capacity; singular set; removable singularity; \hfill\break\indent weak Sobolev space} \begin{abstract} In this article, we study a counterpart of the removable singularity property of $p$-harmonic functions. It is shown that $p$-capacity of the singular set of any $p$-harmonic function vanishes, and such function is always weakly $N(p-1)/(N-p)$-integrable. Several related results are also shown. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} %\allowdisplaybreaks \section{Introduction} This article estimates the size of the singular sets and the local behavior of solutions to some (quasilinear) elliptic equations of second order. The equations to be treated here are general enough to include those studied by Serrin in his milestone paper \cite{Serrin1}. The size of singular sets is measured by the capacity, and the local behavior of the solution is described by the weak $L^q$ norm, for appropriate $q$. First, given $1 \le p < N$, we put \[ K^p=\{ f\in L^{p^\ast}(\mathbb{R}^N, \mathbb{R}) : \nabla f \in L^p(\mathbb{R}^N, \mathbb{R}^N)\}, \] where $\frac{1}{p^\ast}=\frac{1}{p}-\frac{1}{N}$. Also define \[ \operatorname{Cap}_p(A) = \inf \big\{ \int_{\mathbb{R}^N} | \nabla f|^p dx : f \ge 0, \; f \in K^p, \; A \subset \{f(x) \ge 1 \}^{\circ} \big\}, \] where $A \subset \mathbb{R}^N$ is a given subset, and $B^{\circ}$ indicates the interior of the set $B\subset \mathbb{R}^N$. The operator $\operatorname{Cap}_p(A)$ is called {\it $p$-capacity} of $A$ in short, and provides an outer measure to $\mathbb{R}^N$; see \cite{Evans-Gariepy} for more information. Next, given an open set $\Omega$ in $\mathbb{R}^N$ with $N \ge 3$ and $1 < q < \infty$, the weak $L^q$ space on $\Omega$, denoted by $L^q_w(\Omega)$, is defined by \[ L^q_w(\Omega) = \{ u \in L^1_{\rm loc}(\Omega) : \| u \|_{L^q_w(\Omega)} < +\infty \} \] and \[ \| u \|_{L^q_w(\Omega)} = \sup \{ | K|^{-1 + 1/q} \int_K | u| dx : K \subset \Omega \text{ compact}\}, \] where $| K|$ indicates the $N$-dimensional Lebesgue measure of $K$. Thus, we obtain $| x|^{-\alpha} \in L^{N/\alpha}_w(B)$ and $| x|^{-\alpha} \notin L^{N/\alpha}(B)$ for $0<\alpha0$ is a constant and $a_{ij}(x)=a_{ji}(x), c(x)$ are bounded measurable functions. The function $u = u(x)$ discussed in the following theorem is defined on $\Omega \setminus \Sigma$, and is locally H\"older continuous there by the result of DeGiorgi, Nash, and Moser \cite{Gilbarg-Trudinger}. The crucial assumption is as follows: \begin{itemize} \item[(A)] There is $s_0 > 0$ such that $\Omega_{s_0} \subset \subset \Omega$, $\Omega_{s_0}$ has a Lipschitz boundary, and $\Omega_s$ is open for any $s \ge s_0$, where $\Omega_s = \{ x \in \Omega \setminus \Sigma : | u(x)| > s \} \cup \Sigma$. \end{itemize} This means that $\Sigma$ is an actual singular set of $u=u(x)$, and henceforth $u=u(x)$ is identified with a function defined on $\Omega$, taking $| u|=+\infty$ on $\Sigma$ unless otherwise stated. \begin{theorem} \label{thm:1} Let $c(x) \ge 0$ a.e. $x \in \Omega \setminus \Sigma$, and $u=u(x) \in H^1_{\rm loc}(\Omega \setminus \Sigma)$ be a solution to \[ Lu = 0 \quad \text{in} \; \Omega \setminus \Sigma \] satisfying {\rm (A)}. Then, it holds that $\operatorname{Cap}_2(\Sigma) = 0$ and $u \in L^{N/(N-2)}_w(\Omega)$. \end{theorem} There is an analogous result for the parabolic equation \cite{Sakaguchi-Suzuki}, i.e., the blow-up set $D(t)=\{ x\in \Omega \mid u(x,t)=+\infty\}\subset \subset \Omega$ of the solution $u=u(x,t)$ to the differential inequality $u_t - \Delta u \ge 0$ is negligible with respect to the $N$-dimensional Lebesgue measure for a.e. $t$. See also \cite{Suzuki-Takahashi} for further developments on this subject. The next theorem is the simplest form of our result on the quasilinear case. Here, we obtain $u \in C^{1,\alpha}_{\rm loc}(\Omega \setminus \Sigma)$ by a theorem of Tolksdorf, DiBenedetto, and Lewis \cite{Tolksdorf, DiBenedetto, Lewis}, and therefore, $\partial \Omega_{s_0}$ is smooth if $s_0$ is a regular value of $u$. \begin{theorem} \label{thm:2} Let $10$. This implies $\operatorname{Cap}_m(\Sigma\cap B^{N}_R(0)) = 0$ from the general theory and hence $\operatorname{Cap}_m(\Sigma) = 0$. More precisely, we have \[ \operatorname{Cap}_p(A) \le C H^{N-p}(A) \] and $H^{N-p}(A) < +\infty$ implies $\operatorname{Cap}_p(A) = 0$ for any $1 q(p-1)/(q-p)$, then $\Sigma$ is removable; that is, there is continuous $\tilde{u}$ defined on all of $\Omega$ such that $\tilde{u} = u$ on $\Omega \setminus \Sigma$. In the other result of \cite{Serrin1}, if $u=u(x)$ is a solution to \eqref{QL} in $\Omega \setminus \{ 0 \}$ with $B \equiv 0$ and $10$, then either $\Sigma=\{ 0\}$ is removable or $u(x) \simeq | x|^{(p-N)/(p-1)}\to +\infty$ as $| x| \to 0$. We see that $u \in L^{N(p-1)/(N-p)}_w(\Omega)$ holds in the latter case. The singular set $\Sigma$ of our theorems are not removable. However, this set must be small measured by the capacity, just because it is an actual singular set of the solution. The solution, on the other hand, is neither locally bounded in $\Omega$ nor $\theta$-integrable in $\Omega \setminus \Sigma$ for some $\theta$ from the results quoted above, but still obeys a profile of weak integrability in $\Omega$. This weak integrability is slightly worse than the condition for which Serrin's removability theorem holds, and is just the same as the one of the fundamental solution to the $p$-harmonic equation. \end{remark} \begin{remark} \label{rmk3} \rm The solution in our theorems is assumed to be only in $W^{1,p}_{\rm loc}(\Omega \setminus \Sigma)$. In contrast with this, if there is $u=u(x) \in W^{1,p}(\Omega_0 \setminus \Sigma)$ satisfying (A), then it follows that $\operatorname{Cap}_p(\Sigma) = 0$, where $\Omega_0=\Omega_{s_0}$. In other words, under the cost of global $p$-integrability on $\Omega_0\setminus \Sigma$ with its first derivatives, this $u$ does not need to be a solution to any equation to infer $\operatorname{Cap}_p(\Sigma) = 0$. Here, $\Gamma_0=\partial\Omega_{0}$ may not be Lipschitz continuous. In fact, since $| u|=+\infty$ on $\Sigma$, we obtain $\min \{| u|,s \} = s$ on $\Sigma$ for $s > s_0$. Now, we define $f_s=f_s(x)\in K^p$ by \[ f_s(x) = \begin{cases} \frac{1}{s-s_0} \big( \min \{| u(x)|, s \}-s_0\big) & x\in \Omega_{0} \\ 0 & x\in \Omega_{0}^c. \end{cases} \] Then $\Sigma \subset \{ x \in \mathbb{R}^N : \ f_s(x) = 1 \}^{\circ}$ and \[ \nabla f_s = \begin{cases} \frac{1}{s-s_0} \nabla |u| & \text{on } \Omega_{0} \setminus \Omega_s \\ 0 & \text{on }\Omega_s\cup\Omega_{0}^c, \end{cases} \] which implies \begin{align*} \operatorname{Cap}_p(\Sigma) &\leq \int_{\mathbb{R}^N} | \nabla f_s|^p dx = \frac{1}{(s-s_0)^p} \int_{\Omega_{0} \setminus \Omega_s} | \nabla u|^p dx \\ &\leq \frac{1}{(s-s_0)^p} \int_{\Omega_0 \setminus \Sigma} | \nabla u |^p dx = o(1) \end{align*} as $s \to +\infty$ by $u \in W^{1,p}(\Omega_0 \setminus \Sigma)$. Here, we note two properties related to the above consideration. First, any function in $W^{1,p}(\Omega_0\setminus \Sigma)$ is identified with the one in $W^{1,p}(\Omega_0)$ if $\operatorname{Cap}_p(\Sigma)=0$, and therefore, each $u\in W^{1,p}(\Omega_0\setminus \Sigma)$ satisfying (A) (with $\Gamma_0=\partial\Omega_{0}$ not necessarily Lipschitz continuous) belongs to $W^{1,p}(\Omega_0)$. Next, $\operatorname{Cap}_p(\Sigma) = 0$ follows from \begin{equation} \int_{\Omega_{0} \setminus \Omega_s} | \nabla u|^p dx = o(s^p) \quad \text{as }s \to +\infty \label{energy_growth} \end{equation} if $u\in W^{1,p}_{\rm loc}(\Omega\setminus \Sigma)$ satisfies (A). This fact is often used in the rest of the present paper. If the solution $u=u(x)$ is sufficiently smooth on $\Omega \setminus \Sigma$, our theorems have a simple proof using classical co-area formula, Sard's lemma, and isoperimetric inequality. This argument is described in \S 2 for the reader's convenience. In the general case without regularity, we follow the argument of Talenti \cite{Talenti} to compensate the lack of smoothness of the solution. See \S 3. \end{remark} \section{Regular case} In the regular case, there is a transparent proof of Theorem \ref{thm:1}. This section is devoted to the description of the main idea of the proof, restricted to this case. Thus, we treat the solution $u=u(x)$ to $\Delta u = 0$ in $\Omega \setminus \Sigma$ satisfying (A). Since $u$ is smooth in $\Omega\setminus \Sigma$ in this case, we may assume that $s_0>0$ is a regular value of $| u|=| u|(x)$ by Sard's lemma. Let $\Omega_0 = \Omega_{s_0}$. Then $\Gamma_0=\partial\Omega_{0}$ is smooth and the disjoint union of the boundaries of $\Omega_0^\pm=\{ x\in \Omega_0 \setminus\Sigma \mid \pm u(x)>s_0 \}\cup \Sigma$. We obtain $u \in H^1_{\rm loc}(\overline{\Omega}_0 \setminus \Sigma)$ and \begin{equation} \Delta u = 0, \quad | u| > s_0 \quad \text{in } \Omega_0 \setminus \Sigma, \quad | u| = s_0 \quad \text{on }\Gamma_0. \label{eq:lap} \end{equation} Furthermore, for any $s > s_0$, \begin{equation} \varphi_s = (\operatorname{sgn}u) \cdot \max \{ s-| u|, 0\} \label{phi_s} \end{equation} satisfies $\varphi_s \in H^1(\overline{\Omega}_0 \setminus \Sigma)$, $\operatorname{supp}\varphi_s \subset \overline{\Omega_0}\setminus \Sigma$, \[ \varphi_s |_{\Gamma_0} = (\operatorname{sgn}u) \cdot (s-s_0), \quad \varphi_s = 0 \quad \text{on }\Omega_s \setminus \Sigma, \] and \[ \nabla \varphi_s = \begin{cases} - (\nabla u) \quad & \text{on } \Omega_0 \setminus \overline{\Omega}_s \\ 0 \quad & \text{on }\Omega_s \setminus \Sigma. \end{cases} \] Testing this on \eqref{eq:lap}, we obtain \begin{equation} \int_{\Omega_0 \setminus \Omega_s} | \nabla u|^2 dx = (s - s_0) K = o(s^2) \label{BP1} \end{equation} as $s \to +\infty$, where \[ K = -\int_{\Gamma_0} (\operatorname{sgn}u) \frac{\partial u}{\partial \nu} dH^{N-1} \] and $\nu$ is the outer unit normal to $\Gamma_0$. Since $\Gamma_0$ is smooth, the above $K>0$ is defined in the classical sense. This implies $\operatorname{Cap}_2(\Sigma) = 0$ by \eqref{BP1}. See \eqref{energy_growth} of Remark \ref{rmk3}. Next, differentiating both sides of \eqref{BP1}, we have \[ - \frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u|^2 dx = \frac{d}{ds} \int_{\Omega_0 \setminus \Omega_s} | \nabla u|^2 dx =K \] for $s \in (s_0, s')$, where $s' > s_0$ is arbitrary. Since $u=u(x)$ is smooth on $\Omega \setminus \Sigma$, Sard's lemma guarantees that the set of critical values of $u$ has the one-dimensional Lebesgue measure $0$. Then, from the co-area formula, we obtain \begin{equation} K = - \frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u|^2 dx = \int_{\{ |u| = s \}} | \nabla u| dH^{N-1} \quad \text{a.e. }s \in (s_0, s'). \label{co-area} \end{equation} We apply the co-area formula also to $\mu(s) = | \Omega_s| = \int_{\Omega_s} dx$. Again, Sard's lemma assures \begin{equation} -\mu'(s) = \int_{\{ |u| = s \}} | \nabla u|^{-1} dH^{N-1} \quad \text{a.e. }s > s_0. \label{d_ds_mu} \end{equation} By \eqref{co-area}, \eqref{d_ds_mu}, and the Schwarz inequality \[ \Big( \int_{\{ |u| = s \}} dH^{N-1} \Big)^2 \le \int_{\{ |u| = s \}} | \nabla u | dH^{N-1} \cdot \int_{\{ |u| = s \}} | \nabla u |^{-1} dH^{N-1}, \] now we obtain \begin{equation} H^{N-1}(\{ |u| = s \})^2 \le K \cdot (-\mu'(s)) \quad \text{a.e. } s \in (s_0, s'). \label{level} \end{equation} The classical isoperimetric inequality in $\mathbb{R}^N$, on the other hand, implies \[ N C_N^{1/N} H^N(\Omega_s)^{(N-1)/N} \le H^{N-1}(\{ |u| = s \}), \] where $C_N$ is the volume of $N$-dimensional unit ball. Combining this with \eqref{level}, it follows that \[ N^2 C_N^{2/N} \mu(s)^{2(N-1)/N} \le K \cdot (-\mu'(s)); \] that is, \begin{equation} C(N,K) \le \mu(s)^{-2(N-1)/N} \cdot (-\mu'(s)) \quad \text{a.e. } s \in (s_0, s') \label{diff_ineq} \end{equation} for $C(N,K) = N^2 C_N^{2/N} K^{-1}$. If we define \begin{equation} \phi(\mu) = \frac{N}{N-2} \mu^{-(N-2)/N}, \label{phi} \end{equation} then \[ \frac{d}{ds} \phi(\mu(s)) = \mu(s)^{-2(N-1)/N} \cdot (-\mu'(s)), \] and therefore, \eqref{diff_ineq} is written as \[ C(N,K) \le \frac{d}{ds} \phi(\mu(s)) \quad \text{a.e. } s\in (s_0 , s'). \] Integrating both sides from $s_0$ to $s'$ and rewriting $s'$ to $s$, we obtain \begin{equation} \begin{gathered} C(N,K)(s - s_0) + \phi(\mu(s_0)) \le \phi(\mu(s)), \\ \phi(\mu(s))^{-1} \le \{ C(N,K)(s - s_0) + \phi(\mu(s_0)) \}^{-1}. \end{gathered} \label{daha} \end{equation} Here, we used \[ \int_{s_0}^{s'} \frac{d}{ds} \phi(\mu(s)) ds \leq \phi(\mu(s')) - \phi(\mu(s_0)), \] assured by the fact that $s \mapsto \phi(\mu(s))$ is non-decreasing. We note that the distribution function $\mu=\mu(s)$ is not necessarily absolutely continuous in $s$ even if $u=u(x)$ is smooth in $x$. More precisely, it is only right-continuous and even discontinuous points can arise. Multiplying both sides by $s$ in \eqref{daha}, now we have \begin{gather*} \big( \frac{N-2}{N} \big) s \mu(s)^{(N-2)/N} \le \frac{s}{C(N,K)(s-s_0) + \phi(\mu(s_0))} \\ s^{N/(N-2)} \mu(s)\le \big( \frac{N}{N-2} \big) ^{N/(N-2)}s^{N/(N-2)}\{C(N,K)(s-s_0) + \phi(\mu(s_0)) \}^{-N/(N-2)} \end{gather*} for $s > s_0$, and therefore, \[ s^{N/(N-2)} \mu(s) = O(1) \quad \text{as }s \to +\infty. \] This implies $u \in L^{N/(N-2)}_w(\Omega)$. See \cite{folland}. \section{Irregular case} In the irregular case, we use the co-area formula and the isoperimetric inequality associated with the perimeter. Such tools were adopted by Talenti \cite{Talenti} in the proof of his comparison theorem to overcome the lack of smoothness of the solution. To begin with, we collect several facts concerning the perimeter used in later arguments. First, the co-area formula to functions of bounded variation Fleming and Rishel \cite{Fleming-Rishel} is applicable to $u \in W^{1,1}_{\rm loc}(\Omega \setminus \Sigma)$, and it holds that \begin{equation} -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u| dx = P( \Omega_s ) \quad \text{a.e. }s_0 < s < s'. \label{Fleming_Rishel} \end{equation} The right-hand side abbreviates $P(\Omega_s, \mathbb{R}^N)$, where for the measurable set $E \subset \mathbb{R}^N$ and an open set $U \subset \mathbb{R}^N$, $P(E,U)$ denotes DeGiorgi's perimeter of $E$ in $U$; i.e., \[ P(E,U) = \sup \big\{ \int_E \operatorname{div}\vec{g} dx : \vec{g} \in C_0^{\infty}(U, \mathbb{R}^N), \max_{x \in U} : \vec{g}(x)| \le 1 \big\}. \] A measurable set $E \subset \mathbb{R}^N$ satisfying $P(E) < +\infty$ is called a Caccioppoli set, or a set of finite perimeter in $\mathbb{R}^N$. It is a set whose indicator function has a bounded total variation on $\mathbb{R}^N$. See \cite{Giusti}. DeGiorgi's isoperimetric inequality is concerned with these Caccioppoli sets in $\mathbb{R}^N$. More precisely, if $E$ is such a set, then \begin{equation} N C_N^{1/N} | E|^{(N-1)/N} \le P(E). \label{DeGiorgi_isoperimetric} \end{equation} Finally, we use the general trace lemma. See \cite[Chapter I, Theorem 1.2]{Temam} or \cite[Lemma 1.2.2]{Sohr} for the proof. \begin{lemma} \label{lem:3} If $\Omega \subset \mathbb{R}^N$ ($N \ge 2$) is a bounded domain with Lipschitz boundary $\partial \Omega$, $1 s_0 \quad \text{in } \Omega_0 \setminus \Sigma, \quad | u| = s_0 \quad \text{on }\Gamma_0 \] for $\Omega_0 = \Omega_{s_0}$ and $\Gamma_0=\partial\Omega_0$. Since $s_0>0$, this $\Gamma_0$ is the disjoint union of the Lipschitz boundaries of $\Omega_0^\pm=\{ x\in \Omega_0\setminus \Sigma : \pm u(x)>s_0 \} \cup\Sigma$, and testing this by $\varphi_s = \varphi_s(x)$ defined in \eqref{phi_s} is permitted. We obtain \begin{equation} \sum_{i,j=1}^N\int_{\Omega_0 \setminus \Omega_s} a_{ij} D_j u D_i u dx = (s-s_0) K - \int_{\Omega_0 \setminus \Omega_s} c | u| (s-|u|) dx, \label{LBP1} \end{equation} where \[ K = - \langle \frac{\partial u}{\partial \nu_L}, \operatorname{sgn}u \rangle_{H^{-1/2}(\Gamma_0), H^{1/2}(\Gamma_0)} \] and \[ \frac{\partial u}{\partial \nu_L} = \sum_{i,j=1}^N \nu_i a_{ij} D_j u\in H^{-1/2}(\Gamma_0) \equiv W^{-1/2, 2}(\Gamma_0) \] is the general trace of \[ \vec{v}=\Big( \sum_{j=1}^Na_{ij}D_ju\Big)_{i=1, \dots, N} \in E_{2, \rm loc}(\overline{\Omega_0}\setminus\Sigma). \] We emphasize that $\operatorname{sgn}u=\pm 1$ exclusively on each component of $\Gamma_0$, because $u=u(x)$ is continuous in $\Omega\setminus\Sigma$. Using \eqref{se} and $c \ge 0$, we obtain \[ \delta \int_{\Omega_0 \setminus \Omega_s} | \nabla u|^2 dx \le (s-s_0) K = o(s^2) \] as $s \to +\infty$, and hence $\operatorname{Cap}_2 (\Sigma) = 0$. To show $u \in L^{N/(N-2)}_w(\Omega)$, we use the fact that \[ g_s(x)= c(x) | u(x)|(s-| u(x)|) \] is non-negative and non-decreasing in $s$ for each $x\in \Omega_0 \setminus \Omega_s$. The set $\Omega_0 \setminus \Omega_s$ is also non-decreasing in $s$, and therefore, the function \[ s \mapsto I(s)=\int_{\Omega_0 \setminus \Omega_s} c | u| (s-|u|) dx \] is non-decreasing. Thus, differentiating both sides of \eqref{LBP1}, we obtain \begin{equation} \begin{aligned} \frac{d}{ds} \int_{\Omega_0 \setminus \Omega_s} \sum_{i,j=1}^Na_{ij} D_j u D_i u dx & = -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} \sum_{i,j=1}^Na_{ij} D_j u D_i u dx \\ &\leq K \quad \text{a.e. }s \in (s_0, s'), \end{aligned}\label{LBP2} \end{equation} where $s' > s_0$ is arbitrary. The next lemma is a key ingredient of the proof, where $\mu(s) = |\Omega_s|$. \begin{lemma} It holds that \begin{equation} -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u| dx \leq (-\mu'(s))^{1/2} \Big( -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} \delta^{-1} \sum_{i,j=1}^Na_{ij} D_j u D_i u dx \Big)^{1/2} \label{Prop3.2} \end{equation} a.e. $s \in (s_0, s')$. \label{prop:3.2} \end{lemma} \begin{proof} First, the mapping \[ s\in (s_0,s') \mapsto \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u| dx \] is non-increasing. Given $0 s_0 \quad \text{in }\Omega_0 \setminus \Sigma, \quad | u | = s_0 \quad \text{on }\Gamma_0 \] by $\varphi_s=\varphi_s(x)$ of \eqref{phi_s} is permitted similarly, and then we obtain \begin{equation} \int_{\Omega_0 \setminus \Omega_s} | \nabla u|^p dx = (s-s_0) K = o(s^p) \quad \text{as }s \to +\infty, \label{TestPB} \end{equation} where \[ K = - \langle |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}, \operatorname{sgn}u \rangle_{W^{-1/p',p'}(\Gamma_0), W^{1-1/p,p}(\Gamma_0)} \] for $\frac{1}{p'} + \frac{1}{p} = 1$. Thus, it holds that $\operatorname{Cap}_p(\Sigma)=0$. Differentiating \eqref{TestPB} with respect to $s$, on the other hand, we obtain also \begin{equation} -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u|^p dx = \frac{d}{ds} \int_{\Omega_0 \setminus \Omega_s} | \nabla u|^p dx = K \quad \text{a.e. }s \in (s_0, s'), \label{PBP1} \end{equation} for $s' > s_0$ arbitrarily fixed. Then, the following lemma takes place of Lemma \ref{prop:3.2}, which is proven by H\"older's inequality instead of the Schwarz inequality. \begin{lemma} It holds that \[ -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u| dx \le (-\mu'(s))^{1/p'} \Big( -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u|^p dx \Big)^{1/p} \] for a.e. $s \in (s_0, s')$. \label{prop:3.3} \end{lemma} Inequality \eqref{DG-FR}, on the other hand, is derived from DeGiorgi's isoperimetric inequality and Fleming-Rishel's co-area formula. This inequality, therefore, is applicable even to this case, and we obtain \[ N C_N^{1/N} \mu(s)^{(N-1)/N} \le (-\mu'(s))^{1/p'} \Big( -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u|^p dx \Big)^{1/p}, \] and hence \[ N^{p'}C_N^{p'/N} \le \mu(s)^{-p'(N-1)/N} (-\mu'(s)) \Big( -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} | \nabla u|^p dx \Big)^{p'/p} \] for a.e. $s \in (s_0, s')$. Combining this with \eqref{PBP1}, we have \[ N^{p'}C_N^{p'/N} \le \mu(s)^{-\frac{p'(N-1)}{N}} K^{p'/p} \cdot (-\mu'(s)); \] i.e., \begin{equation} C(N,K) \le \frac{d}{ds} \phi(\mu(s)) \quad \text{a.e. } s \in (s_0,s') \label{this}, \end{equation} for \begin{equation} \phi(\mu) = \frac{N(p-1)}{N-p} \mu^{-\frac{N-p}{N(p-1)}} \quad \text{and} \quad C(N,K) = N^{p'}C_N^{p'/N} K^{-p'/p}. \label{phi-2} \end{equation} Integrating \eqref{this} from $s_0$ to $s'$, rewriting $s'$ to $s$, and noting the monotonicity of $s \mapsto \phi(\mu(s))$, we obtain \begin{gather*} C(N,K)(s-s_0) + \phi(\mu(0)) \le \phi(\mu(s)), \\ \phi(\mu(s))^{-1} \le \big( C(N,K)(s-s_0) + \phi(\mu(0)) \big)^{-1}. \end{gather*} Multiplying both sides by $s$, now we have \begin{gather*} \frac{N-p}{N(p-1)} \cdot s\mu(s)^{(N-p)/N(p-1)} \leq \frac{s}{C(N,K)(s-s_0) + \phi(\mu(0))} \\ \Big(\frac{N-p}{N(p-1)} \Big)^{\frac{N(p-1)}{N-p}} \cdot s^{\frac{N(p-1)}{N-p}} \mu(s) \leq s^{\frac{N(p-1)}{N-p}}\{C(N,K)(s-s_0) + \phi(\mu(0))\}^{-\frac{N(p-1)}{N-p}}. \end{gather*} This implies \begin{equation} s^{\frac{N(p-1)}{N-p}} \mu(s) = O(1) \quad \text{as } s \to \infty, \label{conclude} \end{equation} and hence $u \in L^{N(p-1)/(N-p)}_w(\Omega)$. \section{Generalizations} This section is devoted to several generalizations. First, we show the following result. \begin{theorem} \label{thm:6} Regardless of the sign of $c=c(x)$, it holds that $\operatorname{Cap}_2(\Sigma)=0$ and $\log( 1 + |u|) \in L_w^{N/(N-2)}(\Omega)$ in Theorem \ref{thm:1}. \end{theorem} \begin{proof} The second term of the right-hand side of \eqref{LBP1}, \[ -\int_{\Omega_0\setminus \Omega_s}c| u|( s-|u|)dx = -I(s) \] is estimated from above by \[ -I(s) \le \| c_-\|_\infty\int_{\Omega_0\setminus\Omega_s}| u| (s-|u|)dx \leq s^2\| c_-\|_\infty\int_{\Omega_0\setminus \Omega_s}\frac{| u|}{s}dx \] where $c(x) = c_+(x) - c_-(x)$, $c_{\pm} \ge 0$. Recall that by assumption (A), $\Omega_0$ is a compact subset of $\Omega$. Since \[ \int_{\Omega_0\setminus \Omega_s}\frac{| u|}{s}dx = \int_{\Omega_0}I_{\Omega_s^{c}} (x) \frac{| u|}{s}dx \] and \[ \big| I_{\Omega_s^{c}} (x) \frac{| u|}{s} \big| \le 1 \in L^1(\Omega_0), \quad I_{\Omega_s^{c}} (x) \frac{| u(x) |}{s} \to 0 \quad \text{a.e. } x \in \Omega_0 \] as $s \to \infty$, where $I_A$ is the indicator function of a set $A$, we obtain \[ \int_{\Omega_0\setminus \Omega_s}\frac{| u|}{s}dx = o(1) \] from the dominated convergence theorem. Going back to \eqref{LBP1}, we have \[ \int_{\Omega_0\setminus \Omega_s}| \nabla u|^2dx=o(s^2). \] Hence $\operatorname{Cap}_2(\Sigma)=0$. Also we have \[ \int_{\Omega_0\setminus \Omega_s}c| u|(s-| u|)dx=o(s^2). \] Since $c=c(x)\in L^\infty(\Omega\setminus \Sigma)$, the above $I=I(s)$ is a function of bounded variation in $s$. Given $00$, $10$ are constants, and $a,b \in L^{\infty}_{\rm loc}(\Omega \setminus \Sigma)$. As Serrin \cite{Serrin1} proved among other things, in this case the solution $u=u(x)\in W^{1,p}_{\rm loc}(\Omega \setminus \Sigma)$ to \begin{equation} \operatorname{div}A(x, u, \nabla u) = B(x, u, \nabla u) \quad \text{in $\Omega \setminus \Sigma$} \label{eq:AB} \end{equation} is locally H\"older continuous. Then, we obtain the following result. \begin{theorem} \label{thm:7} If $u \in W^{1,p}_{\rm loc}(\Omega \setminus \Sigma)$ is a solution to \eqref{eq:AB} satisfying {\rm (A)}, then $\operatorname{Cap}_p(\Sigma) = 0$ and $u \in L^{N(p-1)/(N-p)}_w(\Omega)$, provided that \begin{equation} (\operatorname{sgn}z) \cdot B(x, z, \xi) \le 0 \label{sign} \end{equation} for any $(\xi, z)\in \mathbb{R}^N\times \mathbb{R}$ and a.e. $x\in \Omega \setminus \Sigma$. In the other case without \eqref{sign}, we obtain $\operatorname{Cap}_p(\Sigma)=0$ if the second relation of \eqref{gr} is slightly strengthened; i.e., any $\varepsilon>0$ admits $C_\varepsilon>0$ such that \begin{equation} | B(x,z,\xi)| \leq \varepsilon| \xi|^{p-1}+C_\varepsilon| z|^{p-1} \label{gr2} \end{equation} for $(z, \xi) \in \mathbb{R} \times \mathbb{R}^N$ and a.e. $x \in \Omega \setminus \Sigma$. If $\varepsilon=0$ is attained in {\rm \eqref{gr2}}, then $\log(1 + |u|) \in L_w^{\frac{N(p-1)}{N-p}}(\Omega)$ follows furthermore. \end{theorem} Now we check several key points. \noindent (1) Testing \begin{gather*} \operatorname{div}A(x, u, \nabla u) = B(x, u, \nabla u), \quad | u| > s_0 \quad \text{in }\Omega_0 \setminus \Sigma \\ | u| = s_0 \quad \text{on }\Gamma_0 \end{gather*} with $\varphi_s = \varphi_s(x)$ of \eqref{phi_s}, we obtain \begin{equation} \int_{\Omega_0 \setminus \Omega_s} A(x, u, \nabla u) \cdot \nabla u dx = (s-s_0) K + \int_{\Omega_0 \setminus \Omega_s} B(x, u, \nabla u) (\operatorname{sgn}u)(s - | u|) dx, \label{TestAB} \end{equation} where $K = - \langle \Gamma_{\nu} A(x,u,\nabla u), \operatorname{sgn}u \rangle_{W^{-1/p',p'}(\Gamma_0), W^{1-1/p,p}(\Gamma_0)}$. If \eqref{sign} holds, then the second term of the right-hand side of \eqref{TestAB} is non-positive, and this implies \[ \delta \int_{\Omega_0 \setminus \Omega_s} |\nabla u|^p dx \le (s-s_0) K = o(s^p) \quad \text{as } s \to +\infty. \] In the other case of \eqref{gr2}, we obtain \begin{align*} & \delta\int_{\Omega_0\setminus \Omega_s}| \nabla u|^pdx \\ & \leq (s-s_0)K+ \varepsilon\cdot s\int_{\Omega_0\setminus \Omega_s} | \nabla u|^{p-1}dx +C_\varepsilon\int_{\Omega_0\setminus \Omega_s} | u|^{p-1}( s-| u|)dx \\ & \leq o(s^p)+\varepsilon s| \Omega_0|^{1/p} \Big(\int_{\Omega_0\setminus \Omega_s}| \nabla u|^pdx\Big)^{(p-1)/p} \\ & \leq o(s^p)+ \frac{\delta}{2}\int_{\Omega_0\setminus \Omega_s}| \nabla u|^pdx+C\varepsilon^ps^p. \end{align*} Here, as before, we estimate \[ \int_{\Omega_0\setminus \Omega_s}| u|^{p-1}(s-|u|)dx \le s^p \int_{\Omega_0\setminus \Omega_s} \big( \frac{\vert u \vert}{s} \big)^{p-1} dx = o(s^p) \] by the dominated convergence theorem. Then $\operatorname{Cap}_p(\Sigma)=0$ follows. \medskip \noindent (2) When \eqref{sign} holds, we differentiate \eqref{TestAB} in $s$, using the monotonicity of \[ s \mapsto I(s)=\int_{\Omega_0 \setminus \Omega_s} B(x, u, \nabla u) (\operatorname{sgn}u)(s - | u|) dx. \] Then \begin{equation} \begin{aligned} &\frac{d}{ds} \int_{\Omega_0 \setminus \Omega_s} A(x, u, \nabla u) \cdot \nabla u dx \\ & = -\frac{d}{ds} \int_{\Omega_s \setminus \overline{\Omega}_{s'}} A(x, u, \nabla u) \cdot \nabla u dx \\ & = K + \frac{d}{ds} \int_{\Omega_0 \setminus \Omega_s} B(x, u, \nabla u) (\operatorname{sgn}u) (s - | u|) dx \\ & \le K \quad \text{a.e. $s \in (s_0, s')$}. \end{aligned} \label{ABP1} \end{equation} Even in the other case without \eqref{sign}, $s\mapsto I(s)$ is a function of bounded variation, and it holds that \[ \frac{I(s+h)-I(s)}{h}\leq \int_{\Omega_0\setminus \Omega_{s+h}}| B(x,u, \nabla u)| dx \] for $s0$, and we end up with \eqref{conclude}. In the other case of \eqref{ABP1'}, we obtain \[ \frac{d}{ds}\varphi(\mu(s))\geq \frac{c}{1+s} \quad \text{a.e. } s\in (s_0, s'). \] Then \[ ( 1+\log s)^{\frac{N(p-1)}{N-p}}\mu(s)=O(1) \quad \text{as }s\to+\infty. \] This implies $\log(1 + |u|) \in L_w^{\frac{N(p-1)}{N-p}}(\Omega)$. \begin{thebibliography}{00} \bibitem{Carleson} L. Carleson: \emph{Selected problems on exceptional sets,} \newblock Van Nostrand Math. Studies no.13. Van Nostrand, Princeton, NJ. (1967) \bibitem{DiBenedetto} E. DiBenedetto: \emph{$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations,} \newblock Nonlinear Anal. T. M. A. {\bf 7} (1983) 827-850. \bibitem{Evans-Gariepy} L. C. Evans, and R. F. Gariepy: \emph{Measure theory and fine properties of functions,} \newblock Studies in Advanced Mathematics. CRC press, Boca Raton, FL. (1992) \bibitem{Fleming-Rishel} W. Fleming, and R. I. Rishel: \emph{An integral formula for total gradient variations,} \newblock Arch. Math. {\bf 11} (1960) 218-222. \bibitem{folland} G.B. Folland: \emph{Real Analysis, Modern Techniques and Their Applications,} \newblock Wiley Interscience Publication, New York, (1984). \bibitem{Gilbarg-Trudinger} D. Gilbarg, and N. S. Trudinger: \emph{Elliptic partial differential equations of second order,} second edition. \newblock Springer-Verlag, Berlin-New York, (1983). \bibitem{Giusti} E. Giusti: \emph{Minimal surfaces and functions of bounded variation,} \newblock Birkh\"auser, Boston, (1984). \bibitem{HKM} J. Heinonen, T. Kilpel\"ainen, and O. Martio: \emph{Nonlinear potential theory of degenerate elliptic equations,} \newblock Oxford Mathematical Monographs. Clarendon press. (1992) \bibitem{Lewis} J. Lewis: \emph{Regularity of the derivatives of solutions to certain degenerate elliptic equations,} \newblock Indiana Univ. Math. J. {\bf 32} (1983) 849-858. \bibitem{Sakaguchi-Suzuki} S. Sakaguchi, and T. Suzuki: \emph{Interior imperfect ignition cannot occur on a set of positive measure,} \newblock Arc. Rational Mech. Anal. {\bf 142} (1998) 143-153. \bibitem{Serrin1} J. Serrin: \emph{Local behavior of solutions of quasilinear equations,} \newblock Acta Math. {\bf 111} (1964) 247-302. \bibitem{Serrin2} J. Serrin: \emph{Removable singularities of solutions of elliptic equations,} \newblock Arc. Rational Mech. Anal. {\bf 17} (1964) 67-78. \bibitem{Sohr} H. Sohr: \emph{The Navier-Stokes equations: an elementary functional analytic approach,} \newblock Birkh\"auser, Boston, Basel, Berlin, (2001). \bibitem{Suzuki-Takahashi} T. Suzuki, and F. Takahashi: \emph{Capacity estimates for the blow-up set of parabolic equations,} \newblock Math. Zeit. {\bf 259}, no.4, (2008) 867-878. \bibitem{Talenti} G. Talenti: \emph{Elliptic equations and rearrangements,} \newblock Ann. Scuola Norm. Sup. Pisa Cl. Sci. {\bf 3} (1976) 697-718. \bibitem{Temam} R. Temam: \emph{Navier-Stokes equations,} \newblock North-Holland, Amsterdam, (1977). \bibitem{Tolksdorf} P. Tolksdorf: \emph{Regularity for a more general class of quasilinear elliptic equations,} \newblock J. Diff. Eq. {\bf 51} (1984) 126-150. \bibitem{Veron} L. V\'eron: \emph{Singularities of solutions of second order quasilinear equations,} \newblock Pitman Research Notes in Math. Ser. 353. Addison-Wesley-Longman, (1996). \bibitem{Ziemer} W. P. Ziemer: \emph{Weakly differentiable functions; Sobolev spaces and functions of bounded variation,} \newblock Graduate Texts in Math. 120. Springer-Verlag, (1989). \end{thebibliography} \end{document}