\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 79, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/79\hfil Existence and asymptotic behaviour] {Existence and asymptotic behaviour of positive solutions for semilinear elliptic systems in the Euclidean plane} \author[A. Ghanmi, F. Toumi\hfil EJDE-2011/79\hfilneg] {Abdeljabbar Ghanmi, Faten Toumi} % in alphabetical order \address{Abdeljabbar Ghanmi\newline D\'{e}partement de Math\'{e}matiques, Facult\'{e} des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia} \email{ghanmisl@yahoo.fr} \address{Faten Toumi\newline D\'{e}partement de Math\'{e}matiques, Facult\'{e} des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia} \email{faten.toumi@fsb.rnu.tn} \thanks{Submitted March 31, 2011. Published June 20, 2011.} \subjclass[2000]{34B27, 35J45, 45M20} \keywords{Green function; semilinear elliptic systems; positive solution} \begin{abstract} We study the semilinear elliptic system $$ \Delta u=\lambda p(x)f(v),\Delta v=\lambda q(x)g(u), $$ in an unbounded domain $D$ in $ \mathbb{R}^2$ with compact boundary subject to some Dirichlet conditions. We give existence results according to the monotonicity of the nonnegative continuous functions $f$ and $g$. The potentials $p$ and $q$ are nonnegative and required to satisfy some hypotheses related on a Kato class. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{example}[theorem]{Example} \newtheorem{definition}[theorem]{Definition} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} Semilinear elliptic systems of the form \begin{equation} \label{e1} \begin{gathered} \Delta u=F(u,v), \\ \Delta v=G(u,v), \end{gathered} \end{equation} in $\mathbb{R}^{n}$ have been extensively treated recently. Lair and Wood \cite{l1} studied the semiliniar elliptic system \begin{equation} \label{e2} \begin{gathered} \Delta u=p(|x|)v^{\alpha }, \\ \Delta v=q(|x|)u^{\beta }, \end{gathered} \end{equation} in $\mathbb{R}^{n}$ ($n\geq 3$). They showed the existence of entire positive radial solutions. More precisely, for the sublinear case where $\alpha ,\beta \in (0,1)$, they proved the existence of bounded solutions of \eqref{e2} if $p$ and $q$ satisfy the decay conditions \begin{equation} \label{e3} \int_0^{\infty }tp(t)dt<\infty ,\quad \int_0^{\infty }tq(t)dt<\infty , \end{equation} and the existence of large solutions if \begin{equation} \label{e4} \int_0^{\infty }tp(t)dt=\infty ,\quad \int_0^{\infty }tq(t)dt=\infty . \end{equation} For the superlinear case, where $\alpha ,\beta \in ( 1,+\infty ) $. The authors proved the existence of an entire large positive solution of problem \eqref{e2}, provided that the functions $p$ and $q$ satisfy \eqref{e3}. Peng and Song \cite{p1} considered the semilinear elliptic system \begin{equation} \label{e5} \begin{gathered} \Delta u=p(|x|)f(v), \\ \Delta v=q(|x|)g(u), \end{gathered} \end{equation} in $\mathbb{R}^{n}$ ($n\geq 3$), under the assumptions: \begin{itemize} \item[(A1)] The functions $p$ and $q$ satisfy condition \eqref{e3}. \item[(A2)] The functions $f$ and $g$ are positive nondecreasing, satisfying the Keller-Osserman condition \cite{k1,o1} \begin{equation} \label{e} \int_1^{\infty}\frac{1}{\sqrt{\int_0^{s}f(t)dt}}ds<\infty, \quad \int_1^{\infty}\frac{1}{\sqrt{\int_0^{s}g(t)dt}}ds<\infty . \end{equation} \item[(A3)] The functions $f$ and $g$ are convex on $[0,+\infty )$. \end{itemize} The authors proved the existence of an entire large positive solution of problem \eqref{e5}. We remark that Peng and Song extended their results to the superlinear case in \cite{l1}. Cirstea and Radulescu \cite{c2} gave existence results for system \eqref{e5}. They adopted the assumptions (A1)-(A2) and the assumption \begin{itemize} \item[(A3')] $f,g\in C^{1}[0,+\infty )$, $f(0)=g(0)=0$, $\lim_{t\to +\infty }\inf \frac{f(t)}{g(t)}>0$, \end{itemize} to prove the existence of entire large positive solutions. Recently, Ghanmi et al \cite{g1} considered the semilinear elliptic system \begin{gather*} \Delta u=\lambda p(x)f(v), \\ \Delta v=\mu q(x)g(u), \end{gather*} in a domain $D$ of $\mathbb{R}^{n}$ ($n\geq 3$) with compact boundary subject to some Dirichlet conditions. They assumed that the functions $f$, $g$ are nonnegative continuous monotone on $(0,\infty )$, the nonnegative potentials $p$ and $q$ are required to satisfy some hypotheses related to a Kato class \cite{b1,m1}. In particular, in the case where $f$ and $g$ are nondecreasing and for given positive constants $\lambda _0$, $\mu _0$, they showed that for each $\lambda \in [ 0,\lambda _0)$ and $\mu \in [ 0,\mu _0)$, there exists a positive bounded solution $( u,v) $ satisfying the boundary conditions \[ u\big|_{\partial ^{\infty }D} =\varphi \mathbf{1}_{\partial D}+a \mathbf{1}_{\{\infty \}},\quad v\big|_{\partial ^{\infty }D}=\psi \mathbf{1}_{\partial D} +b \mathbf{1}_{\{\infty\}} \] where $\varphi $ and $\psi $ are nontrivial nonnegative continuous functions on $\partial D$. In this article, we consider an unbounded domain $D$ in $\mathbb{R}^2$ with compact non\-empty boundary $\partial D$ consisting of finitely many Jordan curves. We are concerned with the semilinear elliptic system \begin{equation} \label{Pab} \begin{gathered} \Delta u=\lambda p(x)f(v),\quad\text{in }D \\ \Delta v=\mu q(x)g(u),\quad\text{in }D \\ u\big|_{\partial D}=a\varphi ,\quad v\big|_{\partial D}=b\psi ,\\ \lim_{|x|\to +\infty }\frac{u(x)}{\ln |x| }=\alpha ,\quad \lim_{|x|\to +\infty }\frac{v(x)}{\ln | x| }=\beta , \end{gathered} \end{equation} where $a,b,\alpha $ and $\beta $ are nonnegative constants such that $ a+\alpha >0$, $b+\beta >0$. The functions $\varphi $ and $\psi $ are nontrivial nonnegative and continuous on $\partial D$. We will give two existence results according to the monotoniciy of the functions $f$ and $g$. Throughout this paper, we denote by $H_D\varphi $ the bounded continuous solution of the Dirichlet problem \begin{equation} \label{e7} \begin{gathered} \Delta w=0\quad \text{in }D, \\ w\big|_{\partial D}=\varphi ,\quad \lim_{| x| \to +\infty }\frac{w( x) }{\ln | x| }=0, \end{gathered} \end{equation} where $\varphi $ is a nonnegative continuous function on $\partial D$. We remark that the solution $H_D\varphi$ of \eqref{e7} belongs to $\mathcal{C}(\overline{D}\cup \{ \infty\} )$ and satisfies $\lim_{| x| \to +\infty }H_D\varphi ( x) =C>0$ (See \cite[p. 427]{d1}). For the sake of simplicity we denote \begin{equation} \label{e8} \widetilde{\varphi }:=aH_D\varphi +\alpha h,\quad \widetilde{\psi } :=bH_D\psi +\beta h, \end{equation} where $h$ is the harmonic function defined by \eqref{e10}, below. The outline of this paper is as follows. In section 2, we will give some notions related to the Green function $G_D$ of the domain $D$ associated to the Laplace operator $\Delta $ and properties of the functions belonging to a some Kato class $K(D)$ (See \cite{m1,t1}). In section 3, we will first give an example and then we give the proof of the existence result for the problem \eqref{Pab}. More precisely, we adopt in section 3 the following hypotheses \begin{itemize} \item[(H1)] The functions $f$, $g:[0,\infty )\to[ 0,\infty )$ are nondecreasing and continuous. \item[(H2)] The functions $\widetilde{p}:=pf(\widetilde{\psi})$ and $\widetilde{q}:=qg(\widetilde{\varphi })$ belong to the Kato class $K(D)$. \item[(H3)] $\lambda _0:=\inf_{x\in D} \frac{\widetilde{\varphi }(x)}{V(\widetilde{p})(x)}>0$ and $\mu_0:=\inf_{x\in D}\frac{\widetilde{\psi }(x)}{V(\widetilde{q})(x)} >0 $, where $V$ is the Green kernel defined by \eqref{e9} below. \end{itemize} We prove the following result. \begin{theorem} \label{thm1} Assume {\rm (H1)--(H3)}, then for each $\lambda \in [ 0,\lambda _0)$ and $\mu \in [ 0,\mu _0)$, problem \eqref{Pab} has a positive continuous solution $(u,v)$ satisfying, on $D$, \begin{gather*} (1-\frac{\lambda }{\lambda _0})[aH_D\varphi +\alpha h]\leq u\leq aH_D\varphi +\alpha h, \\ (1-\frac{\mu }{\mu _0})[bH_D\psi +\beta h]\leq v\leq bH_D\psi +\beta h. \end{gather*} \end{theorem} In the last section, we fix $\lambda =\mu =1$ and a nontrivial nonnegative continuous function $\Phi $ on $\partial D$ and we note $h_0=H_D\Phi $. Then we give an existence result for problem \eqref{Pab} with $a=1$ and $b=1$, under the following hypotheses: \begin{itemize} \item[(H4)] The functions $f, g:[0,\infty )\to [ 0,\infty )$ are nonincreasing and continuous. \item[(H5)] The functions $p_0:=p\frac{f(h_0)}{h_0}$ and $q_0:=q\frac{g(h_0)}{h_0}$ belong to the Kato class $K(D)$. \end{itemize} More precisely, we obtain the following result. \begin{theorem} \label{thm2} Assume {\rm (H4)--(H5)}, then there exists a constant $c>1$ such that if $\varphi \geq c\Phi$ and $\psi \geq c\Phi$ on $\partial D$, then problem \eqref{Pab} with $a=1$ and $b=1$ has a positive continuous solution $(u,v) $ satisfying, on $D$, \begin{gather*} h_0 +\alpha h \leq u \leq H_D\varphi +\alpha h, \\ h_0 +\beta h \leq v \leq H_D\psi +\beta h. \end{gather*} \end{theorem} Note that this result generalizes those by Athreya \cite{a2} and Toumi and Zeddini \cite{t1}, stated for semilinear elliptic equations. \section{Preliminaries} In the reminder of this paper, we will adopt the following notation. $\mathcal{C}(\overline{D}\cup \{ \infty\} ) =\{f\in \mathcal{C}(\overline{D}):\lim_{|x| \to +\infty }f(x) \text{ exists}\}$. We note that $\mathcal{C}(\overline{D}\cup \{ \infty \} )$ is a Banach space endowed with the uniform norm $\Vert f\Vert _{\infty }=\sup_{x\in D}|f(x)|$. For $x\in D$, we denote by $\delta _D(x)$ the distance from $x$ to $\partial D$, by $\rho _D(x):=min(1,\delta _D(x))$ and by $\lambda _D( x) :=\delta _D( x) (1+\delta _D( x) )$. Let $f$ and $g$ be two positive functions on a set $S$. We denote $f\sim g$ if there exists a constant $c>0$ such that \[ \frac{1}{c}g(x)\leq f(x)\leq cg(x)\quad \text{for all }x\in S. \] For a Borel measurable and nonnegative function $f $ on $D$, we denote by $Vf$ the Green kernel of $f$ defined on $D$ by \begin{equation} \label{e9} Vf(x)=\int_DG_D(x,y)f(y)dy. \end{equation} We recall that if $f\in L_{\rm loc}^{1}(D)$ and $Vf\in L_{\rm loc}^{1}(D)$, then we have $\Delta (Vf)=-f$ in $D$, in the distributional sense (See \cite[p 52]{c1}). We note that the Green function satisfies \[ G_D( x,y) \sim \ln (1+\frac{\lambda _D( x) \lambda _D( y) }{| x-y|^2}) \] on $D^2$ (See \cite{m2}). \begin{definition} \label{def1} \rm A Borel measurable function $q$ in $D$ belongs to the Kato class $K(D) $ if $q$ satisfies \[ \lim_{\alpha \to 0}\Big( \sup_{x\in D}\int_{D\cap B(x,\alpha )}\frac{\rho _D( y) }{\rho _D( x) } G_D(x,y)|q(y)|dy\Big) =0, \] and \[ \lim_{M\to +\infty }\Big( \sup_{x\in D}\int_{D\cap (| y| \geq M)}\frac{\rho _D( y) }{\rho _D( x) }G_D(x,y)|q(y)|dy\Big) =0. \] \end{definition} \begin{example} \label{exmp1} \rm Let $p>1$ and $\gamma ,\theta \in \mathbb{R}$ such that $\gamma <2-\frac{2}{p}<\theta $. Then using the H\"{o}lder inequality and the same arguments as in \cite[Proposition 3.4]{t1} it follows that for each $f\in L^{p}( D) $, the function defined in $D$ by $\frac{f(x) }{(1+\vert x| )^{\theta -\gamma }( \delta _D( x) ) ^{\gamma }}$ belongs to $K(D) $. \end{example} Throughout this article, $h$ will be the function defined on $D$ by \begin{equation} \label{e10} h( x) =2\pi \lim_{| y| \to +\infty }G_D( x,y) \end{equation} \begin{proposition}[\cite{u1}] \label{prop3} The function $h$ defined by \eqref{e10} is harmonic positive in $D$ and satisfies \[ \lim_{x\to z\in \partial D}h( x) =0, \quad \lim_{| x| \to +\infty }\frac{h(x) }{\ln | x| }=1. \] \end{proposition} In the sequel, we use the notation \begin{gather} \label{e11} \| q\| _D=\sup_{x\in D}\int_D\frac{ \rho _D( y) }{\rho _D( x) }G_D(x,y)|q(y)|dy,\\ \label{e12} \alpha _{q}=\sup_{x,y\in D}\int_D\frac{ G_D(x,z)G_D(z,y)}{G_D(x,y)}|q(z)|dz. \end{gather} It is shown in \cite{t1}, that if $q\in K(D)$, then $\|q\| _D<\infty$, and $\alpha _{q}\sim \| q\| _D$. %(13) For stating our results we need the following result. \begin{proposition}[\cite{t1}] \label{prop4} Let $q$ in $K( D) $, then the following assertions hold \begin{itemize} \item[(i)] For any nonnegative superharmonic function $w$ in $D$, we have \begin{equation} \label{e14} V(wq)(x)=\int_DG_D(x,y)w( y) |q(y)|dy\leq \alpha _{q}w(x),\forall x\in D. \end{equation} \item[(ii)] The potential $Vq \in \mathcal{C}(\overline{D}\cup{{\infty}})$ and $\lim_{x \to z\in \partial D}Vq(x)=0$. \item[(iii)] Let $\Lambda _{q}=\{ p\in K( D) :|p| \leq q\}$. Then the family of functions \[ \mathfrak{F}_{q}=\{ \int_DG_D( .,y) h_0( y) p( y) dy:p\in \Lambda _{q}\} \] is uniformly bounded and equicontinuous in $\overline{D}\cup \{ \infty \} $. Consequently, it is relatively compact in $\mathcal{C}( \overline{D}\cup \{ \infty \}) $. \end{itemize} \end{proposition} \section{Proof of Theorem \ref{thm1}} Before stating the proof, we give an example where (H2) and (H3) are satisfied. \begin{example} \label{exmp2} \rm Let $D=\overline{B(0,1)}^{c}$ be the exterior of the unit closed disk. Let $ \alpha =b=1$ and $\beta =a=0$. Assume that $\psi \geq c_1>0$ on $\partial D$. Let $p_1,\widetilde{q}$ be nonnegative functions in $K(D)$ such that the function $p:=p_1h$ is in $K(D)$. Then using the fact that the function $f$ is continuous and $H_D\psi $ is bounded on $D$ we obtain that $\widetilde{p}:=pf(H_D\psi )\in K(D)$ and so the hypothesis (H2) is satisfied. Now, since $\widetilde{p_1}:=p_1f(H_D\psi )\in K(D)$ then by Proposition \ref{prop4} (i) we obtain \[ V(\widetilde{p})\leq \alpha_{\widetilde{p_1}}h. \] Therefore, for each $x\in D$ \[ \frac{h(x)}{V(\widetilde{p})( x) }\geq \frac{1}{\alpha _{p_1}} >0; \] that is, $\lambda _0>0$. On the other hand we have \[ \frac{H_D\psi (x)}{V(\widetilde{q})( x) }\geq \frac{c_1}{ \alpha _{\widetilde{q}}}>0, \] which yields $\mu _0>0$. Thus the hypothesis (H3) is satisfied. \end{example} \begin{proof}[Proof of Theorem \ref{thm1}] Let $\lambda \in [0,\lambda _0) $ and $\mu \in [0,\mu _0) $. We intend to prove that the problem \eqref{Pab} has a positive continuous solution. To this aim we define the sequences $( u_{k}) _{k\in\mathbb{N}}$ and $( v_{k}) _{k\in\mathbb{N}}$ as follows: \begin{gather*} v_0=\widetilde{\psi }, \\ u_{k}=\widetilde{\varphi }-\lambda V( pf(v_{k})) , \\ v_{k+1}=\widetilde{\psi }-\mu V( qg(u_{k})) , \end{gather*} where $\widetilde{\varphi }$ and $\widetilde{\psi }$ are defined by \eqref{e8}. We shall prove by induction that for each $k\in \mathbb{N}$, \begin{gather*} 0<\big( 1-\frac{\lambda }{\lambda _0}\big) \widetilde{\varphi }\leq u_{k}\leq u_{k+1}\leq \widetilde{\varphi }, \\ 0<\big( 1-\frac{\mu }{\mu _0}\big) \widetilde{\psi }\leq v_{k+1}\leq v_{k}\leq \widetilde{\psi }. \end{gather*} First, using hypothesis (H3) we obtain, on $D$, \[ \lambda _0V( pf(\widetilde{\psi })) \leq \widetilde{\varphi }. \] Then by the monotonicity of $f$, it follows that \[ \widetilde{\varphi }\geq u_0=\widetilde{\varphi }-\lambda V( pf( \widetilde{\psi })) \geq \big(1-\frac{\lambda }{\lambda _0}\big) \widetilde{\varphi }>0. \] So \[ v_1-v_0=-\mu V( qg(u_0) )\leq 0 \] and consequently \[ u_1-u_0=\lambda V( p[f(v_0) -f(v_1)])\geq 0. \] Moreover, the hypothesis (H3) yields \[ \mu _0V( qg(\widetilde{\varphi })) \leq \widetilde{\psi }. \] Then using the fact that the function $g$ is nondecreasing we have \[ v_1\geq \widetilde{\psi }-\mu V( qg(\widetilde{\varphi })) \geq \big( 1-\frac{\mu }{\mu _0}\big) \widetilde{\psi }>0. \] In addition, we have $u_1\leq \widetilde{\varphi }$, then it follows that \[ u_0\leq u_1\leq \widetilde{\varphi }\quad\text{and}\quad v_1\leq v_0\leq \widetilde{\psi }. \] Suppose that \[ u_{k}\leq u_{k+1}\leq \widetilde{\varphi }\quad\text{and}\quad ( 1-\frac{\mu }{\mu _0}) \widetilde{\psi }\leq v_{k+1}\leq v_{k}. \] Therefore, \begin{gather*} v_{k+2}-v_{k+1}=\mu V( q[g(u_{k}) -g(u_{k+1})])\leq 0,\\ u_{k+2}-u_{k+1}=\lambda V( p[f(v_{k+1}) -f(v_{k+2})])\geq 0. \end{gather*} Furthermore, since $u_{k+1}\leq \widetilde{\varphi }$ the monotonicity of the function $g$ yields \[ v_{k+2}\geq \widetilde{\psi }-\lambda V( qg(\widetilde{\varphi } )) \geq ( 1-\frac{\mu }{\mu _0}) \widetilde{\psi }>0. \] Thus, we obtain \[ u_{k+1}\leq u_{k+2}\leq \widetilde{\varphi }\quad\text{and}\quad \big( 1-\frac{\mu }{\mu _0}\big) \widetilde{\psi } \leq v_{k+2}\leq v_{k+1}. \] Hence, the sequences $( u_{k})$ and $( v_{k})$ converge respectively to two functions $u$ and $v$ satisfying \[ 0<\big(1-\frac{\lambda }{\lambda _0}\big) \widetilde{\varphi }\leq u\leq \widetilde{\varphi }, \quad 0<\big( 1-\frac{\mu }{\mu _0}\big) \widetilde{\psi }\leq v\leq \widetilde{\psi }. \] Furthermore, for each $k\in \mathbb{N}$, we have \begin{equation} \label{e15} f( v_{k}) \leq f( \widetilde{\psi }), \quad g( u_{k}) \leq g( \widetilde{\varphi }) . \end{equation} Therefore, using hypothesis (H2) and Proposition \ref{prop4} (ii) we deduce by Lebesgue's theorem that $V(pf( v_{k}) )$ and $V(qg( u_{k}) )$ converge respectively to $V(pf( v) )$ and $V(qg( u) )$ as $k$ tends to infinity. Then, on $D$, $(u,v)$ satisfies \begin{equation} \label{e16} \begin{gathered} u=\widetilde{\varphi }-\lambda V(pf( v) ) \\ v=\widetilde{\psi }-\mu V(qg( u) ). \end{gathered} \end{equation} Moreover, by \eqref{e16} and the monotonicity of the functions $f$ and $g$ we obtain $pf( v) \leq \widetilde{p}$ and $qg( u) \leq \widetilde{q}$. So $pf( v) ,qg( u) \in K(D)$ and consequently by Proposition \ref{prop4} (ii) we have $V( pf( v) ) ,V( qg( u) ) \in \mathcal{C}(\overline{D}\cup \{ \infty \} ) $. Now using the fact that the functions $\widetilde{\varphi }$ and $\widetilde{\psi }$ are continuous we conclude that $u$ and $v$ are continuous and satisfy in the distributional sense $\Delta u=\lambda pf( v) $ and $\Delta v=\mu qg( u) $ in $D$. Now, since $H_D\varphi =\varphi $ on $\partial D,\lim_{x\to z\in \partial D}h(x)=0$, and $\lim_{x\to z\in \partial D}V( \widetilde{p}) (x)=0$, we conclude that $\lim_{x\to z\in \partial D}u(x)=a\varphi ( z) $. By similar arguments we have $\lim_{x\to z\in \partial D}v(x)=b\psi ( z) $. Furthermore, by Proposition \ref{prop4} (ii) and Proposition \ref{prop3}, we have $\lim_{|x| \to +\infty }\frac{1}{h( x) }V(pf(v) )=0$ and $\lim_{| x| \to +\infty } \frac{1}{h( x) }V(qg( u) )=0$. Hence $(u,v) $ is a continuous positive solution of the problem \eqref{Pab}, which completes the proof. \end{proof} \section{Proof of Theorem \ref{thm2}} In the sequel, we recall that $h_0=H_D\Phi$ is a fixed positive harmonic function in $D$ and $h$ is the function defined by \eqref{e10}. \begin{proof} Let $\alpha _{p_0}$ and $\alpha _{q_0}$ be the constants defined by \eqref{e12} associated respectively to the functions $p_0$ and $q_0$ given in the hypothesis (H5). Put $c=1+\alpha _{p_0}+\alpha _{q_0}$ . Suppose that \[ \varphi ( x) \geq c\Phi ( x) \quad\text{and}\quad \psi (x) \geq c\Phi ( x),\quad \forall x\in \partial D. \] Then by the maximum principle it follows that for each $x\in D$ \begin{gather} \label{e17} H_D\varphi ( x) \geq ch_0( x),\\ \label{e18} H_D\psi ( x) \geq ch_0( x) . \end{gather} Consider the nonempty convex set $\Omega $ given by \[ \Omega :=\{ w\in \mathcal{C}( \overline{D}\cup \{ \infty \} ) :h_0\leq w\leq H_D\varphi \} . \] Let $T$ be the operator defined on $\Omega $ by \[ Tw:=H_D\varphi -V(pf[\beta h+H_D\psi -V(qg(w+\alpha h))] ). \] We shall prove that the operator $T$ has a fixed point. First, let us prove that the operator $T$ maps $\Omega $ to its self. Let $w\in \Omega $. Since $w+\alpha h\geq h_0$, then from hypothesis (H4) we deduce that \begin{equation} \label{e19} V(qg(w+\alpha h))\leq V(qg(h_0)). \end{equation} Therefore, using \eqref{e18} and \eqref{e19} we obtain \begin{align*} v&:=\beta h+H_D\psi -V(qg(w+\alpha h)\geq \beta h+H_D\psi -V(q_0h_0)\\ &\geq \beta h+H_D\psi -\alpha _{q_0}h_0\geq \beta h+( c-\alpha _{q_0}) h_0. \end{align*} This yields \begin{equation} \label{e20} v\geq h_0>0. \end{equation} So, $Tw\leq H_D\varphi$. On the other hand, by \eqref{e20}, the monotonicity of $f$ and Proposition \ref{prop4} (i), we obtain \begin{equation} \label{e21} V(pf(v))\leq V(pf(h_0))=V(p_0h_0)\leq \alpha _{p_0}h_0. \end{equation} Then, by \eqref{e17} and \eqref{e21}, we have \[ Tw\geq H_D\varphi -\alpha _{p_0}h_0\geq ( 1+\alpha _{q_0}) h_0\geq h_0. \] Hence $T\Omega \subseteq \Omega $. Next, let us prove that the set $T\Omega $ is relatively compact in $\mathcal{C}( \overline{D}\cup \{ \infty\} ) $. Let $w\in \Omega $, then by (H4), (H5) and using Proposition \ref{prop4} (iii) it follows that the family of functions \[ \big\{ \int_DG( .,y) p(y)f[\beta h+H_D\psi -V(qg(w+\alpha h))] ( y) dy:w\in \Omega \big\} \] is relatively compact in $\mathcal{C}( \overline{D}\cup \{ \infty\} ) $. Since $H_D\varphi \in \mathcal{C}( \overline{D} \cup \{ \infty\} ) $ we deduce that $T\Omega $ is relatively compact in $\mathcal{C}( \overline{D}\cup \{ \infty\} ) $. Now we prove the continuity of the operator $T$ in $ \Omega $ in the supremum norm. Let $( w_{k})$ be a sequence in $\Omega $ which converges uniformly to a function $w$ in $\Omega $. Then using \eqref{e20} and the monotonocity of $f$ we have, for each $x$ in $D$, \begin{align*} &p( x) | f( \beta h+H_D\psi -V(qg(w_{k}+\alpha h))) ( x) -f( \beta h+H_D\psi -V(qg(w+\alpha h))) ( x) |\\ & \leq 2f( h_0) p( x) \leq 2\|h_0\| _{\infty }p_0( x) \end{align*} Using the fact that $Vp_0$ is bounded, we conclude by the continuity of $f$ and the dominated convergence theorem that for all $x\in D$, $Tw_{k}( x) \to Tw(x)$ as $k\to +\infty$. Consequently, as $T\Omega $ is relatively compact in $\mathcal{C}(\overline{D}\cup \{ \infty \} ) $, we deduce that the pointwise convergence implies the uniform convergence; that is, \[ \| Tw_{k}-Tw\| _{\infty }\quad\text{as } k\to +\infty \] Therefore, $T$ is a continuous mapping of $\Omega $ to itself. So, since $ T\Omega $ is relatively compact in $\mathcal{C}( \overline{D}\cup \{ \infty\} ) $, it follows that $T$ is compact mapping on $\Omega $. Thus, the Schauder fixed-point theorem yields the existence of $ w\in \Omega $ such that \[ w=H_D\varphi -V(pf[\beta h+H_D\psi -V(qg(w+\alpha h))] . \] Put $u(x)=w( x) +\alpha h( x) $ and $v(x)=\beta h( x) +H_D\psi ( x) -V(qg(u))( x) $ for $x\in D$. Then $( u,v) $ is a positive continuous solution of \eqref{Pab} with $a=1, b=1$, for the same arguments as in the proof of Theorem \ref{thm1}. \end{proof} \begin{example} \label{exmp3} \rm Let $D=\overline{B( 0,1) }^{c}$ be the exterior of the unit closed disk, $0<\theta <1$ and $0<\gamma <1$. Let $p,q$ be two nonnegative functions such that the functions $( \frac{| x| }{| x| -1}) ^{1+\theta }p(x)$ and $( \frac{| x| }{| x|-1}) ^{1+\gamma }q(x)$ are in $K(D)$. Suppose that the functions $\varphi$ and $\psi $ are nonnegative continuous on $\partial D$. Then for a fixed nontrivial nonnegative continuous function $\Phi$ in $\partial D$, there exists a constant $c>1$ such that if $\varphi \geq c\Phi $ and $\psi \geq c\Phi $ on $\partial D$, the problem \begin{gather*} \Delta u=p(x)v^{-\gamma },\quad\text{in }D \\ \Delta v=q(x)u^{-\theta },\quad\text{in }D \\ u\big|_{\partial D}=\varphi ,\quad v\big|_{\partial D}=\psi, \quad \lim_{|x|\to +\infty }\frac{u(x)}{\ln \vert x \vert}=\alpha \geq 0,\quad \lim_{|x|\to +\infty }\frac{v(x)}{\ln \vert x \vert}=\beta \geq 0, \end{gather*} has a positive continuous solution $(u,v)$ satisfying \begin{gather*} H_D\Phi ( x) +\alpha h( x) \leq u( x) \leq H_D\varphi ( x) +\alpha h( x) , \\ H_D\Phi ( x) +\beta h( x) \leq v( x) \leq H_D\psi ( x) +\beta h( x) , \end{gather*} for each $ x\in D$. Indeed, from \cite{a1} there exists $c_0>0$ such that for each $x\in D$, \[ c_0\frac{| x| -1}{| x| }\leq H_D\Phi ( x). \] It follows that $p_0:=p\frac{( H_D\Phi ( x) ) ^{-\theta }}{H_D\Phi ( x) }\in K(D)$. In a similar way we have $q_0\in K(D)$. Thus the hypothesis (H5) is satisfied. \end{example} \begin{thebibliography}{99} \bibitem{a1} D. Armitage and S. Gardiner; \emph{Classical Potential Theory}, Springer- Verlag 2001. \bibitem{a2} S. Atherya; \emph{On a singular Semilinear Elliptic Boundary Value Problem and the Boundary Harnack Principle}, Potential Ana. 17, 293-301 $ ( 2002) $. \bibitem{b1} I. Bachar, H. M\^{a}agli and N. Zeddini; \emph{Estimates on the Green Function and Existence of Positive Solutions of Nonlinear Singular Elliptic Equations}, Comm. Contemporary. Math, $Vol.5$, No.3 (2003) 401-434. \bibitem{c1} K. L. Chung; Z. Zhao; \emph{From Brownian Motion to Schr\"{o}dinger's Equation}, Springer $(1995)$. \bibitem{c2} F. C. Cirstea, V. D. Radulescu; \emph{Entire solutions blowing up at infinity for semilinear elliptic systems}, J. Math. Pures. Appl. 81 (2002) 827-846. \bibitem{d1} R. Dautray, J. L. Lions et al.; \emph{Analyse math\'{e}matique et calcul num\'{e}rique pour les sciences et les Thechniques, L'op\'{e}rateur de Laplace}, Masson, 1987. \bibitem{g1} A. Ghanmi, H. M\^{a}agli, S. Turki, N. Zeddini; \emph{Existence of positive bounded solutions for some Nonlinear elliptic systems}, J. Math. Annal . Appl. 352(2009), pp. 440-448. \bibitem{k1} J. Keller; \emph{On solutions to $\Delta u=f(u)$}, Comm. Pure and Applied Math. 10, (1957), 503-510. \bibitem{l1} A. V. Lair ; A. W. Wood; \emph{Existence of entire large positive solutions of semilinear elliptic systems}, J. Differential Equations. 164. No.2 (2000) 380-394. \bibitem{m1} H. M\^{a}agli, M. Zribi; \emph{On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of $\mathbb{R}^{n}$}. Positivity (2005)9:667--686. \bibitem{m2} S. Masmoudi; \emph{On the existence of positive solutions for some nonlinear elliptic problems in unbounded domains in $\mathbb{R}^2$}, Nonlinear Anal. 62 (3) (2005) 397-415. \bibitem{o1} R. Osserman; \emph{On the inequality $\Delta u\geq f(u)$}, Pacific J. Math. 7, (1957), 1641-1647. \bibitem{p1} Y. Peng, Y. Song; \emph{Existence of entire large positive solutions of a semilinear elliptic systems}, Appl. Math. Comput. 155 (2004), pp. 687-698. \bibitem{t1} F. Toumi, N. Zeddini; \emph{Existence of Positive Solutions for Nonlinear Boundary Value Problems in Unbounded Domains}, Electron. J. Differential Equations. Vol. 2005, No. 43, 1-14. \bibitem{u1} U. Ufuktepe, Z. Zhao; \emph{Positive Solutions of Non-linear Elliptic Equations in the Euclidean Space}, Proc. Amer. Math. Soc. Vol.126, p. 3681-3692 (1998) \end{thebibliography} \end{document}