\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 107, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/107\hfil Zeros of solutions to second order ODE] {Sums of zeros of solutions to second order ODE with non-polynomial coefficients} \author[M. I. Gil' \hfil EJDE-2012/107\hfilneg] {Michael I. Gil'} \address{Michael I. Gil' \newline Department of Mathematics \\ Ben Gurion University of the Negev \\ P.0. Box 653, Beer-Sheva 84105, Israel} \email{gilmi@bezeqint.net} \thanks{Submitted September 8, 2011. Published June 25, 2012.} \subjclass[2000]{34C10, 34A30} \keywords{Complex differential equation; zeros of solutions} \begin{abstract} We consider the equation $y''=F(z)y$ ($z\in\mathbb{C}$) with an entire function $F$ satisfying the condition $$ |F(z)|\le A \exp \big(\frac{|z|^\rho}{\rho}\big)\quad (\rho\ge 1,\; A=\text{const}>0). $$ Let $z_k(y)$, $k=1, 2, \dots $ be the zeros of a solution $y(z)$ to the above equation. Bounds for the sums $$ \sum_{k=1}^j \frac{1}{|z_k(y)|} \quad (j=1, 2, \dots) $$ are established. Some applications of these bounds are also considered. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction and statement of the main result} In the present article, we consider linear differential equations with non-polynomial coefficients in the complex domain. The literature devoted to the zeros of solutions of such equations is very rich. Here the main tool is the Nevanlinna theory. An excellent exposition of the Nevanlinna theory and its applications to differential equations is given in the book \cite{lai}. In that book, in particular, the well-known results of Bank, Br\H{u}ggemann, Hellerstein, Rossi, Huang and other mathematicians are featured. In connection with recent results see the very interesting papers \cite{bela}-\cite{chen}, \cite{far}, \cite{li}-\cite{xu}. In particular, in the paper \cite{tu}, the authors study the convergence of the zeros of a non-trivial (entire) solution to the linear differential equation $$ f''+\bigl\{Q_1(z)e^{P_1(z)}+ Q_2(z)e^{P_2(z)}+Q_3(z)e^{P_3(z)}\big \}f=0 $$ where $P_j$ are polynomials of degree $n\geq 1$ and $Q_j$ ($ Q_j\not\equiv 0)$ are entire functions of order less than $n$ $(j=1,2,3)$. The remarkable results on the zeros of a wide class of ordinary differential equations with polynomial coefficients whose solutions are classical orthogonal polynomials was established by Anghel \cite{ang}. Besides, he had derived the important results connected with the equations of mathematical physics. Certainly we could not survey the whole subject here and we refer the reader to the above listed publications and references given therein. In the above cited works mainly the asymptotic distributions of zeros and counting functions of zeros are investigated. At the same time, bounds for the zeros of solutions are very important in various applications. But to the best of our knowledge, they have been investigated considerably less than the asymptotic distributions. In the paper \cite{gi11}, bounds for the sums of the zeros of solutions are established for the second order equations with polynomial coefficients. In this paper, we obtain such bounds in the case of non-polynomial coefficients. Besides, below we estimate the zero free domains. That estimation supplements the well-known results of Eloe and Henderson \cite{eloe} on the positivity of solutions for higher order ordinary differential equations, since the positivity of solutions implies the absence of zeros. Note that, the proof of the main result of the present paper is considerably different from the proof of the paper \cite{gi11}. Consider the equation \begin{equation} \frac{d^2y(z)}{dz^2}=F(z)y(z) \label{e1.1} \end{equation} with an entire function $F$, satisfying the condition \begin{equation} |F(z)|\le A\exp \big(\frac{|z|^\rho}{\rho}\big)\quad (\rho\ge 1;\; A=\text{const}>0;\;z\in\mathbb{C}). \label{e1.2} \end{equation} In Section 3 below we check that to inequality \eqref{e1.2} can be reduced the formally more general inequality \begin{equation} |F(z)|\le A \exp [B|z|^\rho]\quad (B=\text{const}>0) \label{e1.3} \end{equation} by the substitution \begin{equation} z=\frac{w}{(\rho B)^{1/\rho}} \label{e1.4} \end{equation} into \eqref{e1.1}. Everywhere below, $y(z)$ is a solution of \eqref{e1.1} with $y(0)=1$. Enumerate the zeros $z_k(y)$ of $y(z)$, with multiplicities taken into account, in order of increasing modulus: $|z_{k}(y)|\leq |z_{k+1}(y)|$ $(k=1, 2, \dots )$. Put $$ v_n= n\; \frac{e^{1+2/\rho}}{\rho}. $$ \begin{theorem} \label{thm1.1} Let $y(z)$ be a solution of \eqref{e1.1} with $y(0)=1$ and let condition \eqref{e1.2} hold. Then $$ \sum_{k=1}^j \frac{1}{|z_k(y)|}< \theta_0 + \zeta_0\sum_{k=1}^j \frac{1}{\sqrt[\rho]{\ln v_k}}\quad (j=1, 2, \dots), $$ where $\theta_0$ and $\zeta_0$ are positive constants defined by $$ \theta_0=2\sqrt{\frac e3}(1+|y'(0)|)\exp [ A^2e^{2/\rho}] \quad \text{and}\quad \zeta_0=2e^{1/2}(3/\rho)^{1/\rho}. $$ \end{theorem} The proof of this theorem is presented in the next section. Let us point some corollaries of Theorem \ref{thm1.1}. Denote by $\nu(y, r)$ $(r>0)$ the counting function of the zeros of $y$ in $|z|\le r$. Theorem \ref{thm1.1} implies \begin{corollary} \label{cor1.2} With the notation $$ \eta_j(y):= \frac j {\theta_0 + \zeta_0\sum_{k=1}^j \frac{1}{\sqrt[\rho]{\ln v_k}}}\quad (j=1, 2, \dots), $$ the inequality $|z_j(y)|>\eta_j(y)$ holds and thus $\nu(u, r)\leq j-1$ for any $r \leq \eta_j(y)$ $(j\ge 2)$. \end{corollary} Furthermore, put $$ \vartheta_1=\theta_0+\frac{\zeta_0}{\ln ^{1/\rho} v_1},\quad \vartheta_k=\frac{\zeta_0}{\ln ^{1/\rho} v_k} \quad ( k=2, 3, \dots). $$ Theorem \ref{thm1.1} and \cite[Lemma 1.2.1]{gi09} yield the following result. \begin{corollary} \label{cor1.3} Under the hypothesis of Theorem \ref{thm1.1}, let $\phi(t)$ $(0\leq t<\infty)$ be a continuous convex scalar-valued function, such that $\phi(0)=0$. Then $$ \sum_{k=1}^j \phi (|z_k(y)|^{-1})\leq \sum_{k=1}^j \phi(\vartheta_k)\quad (j=1, 2, \dots). $$ \end{corollary} In particular, take $$ \phi(t)=t^{\rho+1}\exp [-\frac{\zeta_0^{\rho}}{t^{\rho}}]. $$ Then $$ \phi(\vartheta_k)=\frac{\zeta_0^{\rho+1}}{\ln ^{1+1/\rho} v_k}\exp [-\ln v_k]\le \frac{\text{const}}{(\ln k)^{1+1/\rho}\;k}\quad (k>1). $$ By the previous corollary we get the following result. \begin{corollary} \label{cor1.4} Under the hypothesis of Theorem \ref{thm1.1}, we have $$ \sum_{k=1}^\infty \frac 1{|z_k(y)|^{\rho+1}} e^{-(\zeta_0|z_k(y)|)^{\rho}}<\infty. $$ \end{corollary} In addition, in light of Theorem \ref{thm1.1} and \cite[Lemma 1.2.2]{gi09} we obtain our next result. \begin{corollary} \label{cor1.5} Let $\Phi(t_1, t_2, \dots, t_j)$ be a function with an integer $j$ defined on the domain $$ 0< t_j\leq t_{j-1}\dots \leq t_2\leq t_1<\infty $$ and satisfying the condition $$ \frac{\partial \Phi}{\partial t_1}>\frac{\partial \Phi}{\partial t_2}> \dots >\frac{\partial \Phi}{\partial t_j}>0\quad \text{for } t_1> t_2 > \dots > t_j>0. $$ Then $$ \Phi \Big(\frac{1}{|z_1(y)|}, \dots, \frac{1}{|z_j(y)|} \Big) \leq \Phi(\vartheta_1, \dots, \vartheta_j). $$ \end{corollary} In particular, let $\{d_k\}_{k=1}^\infty$ be a decreasing sequence of positive numbers. Then the previous corollary yields the inequality $$ \sum_{k=1}^j \frac{d_k}{|z_k(y)|}\leq \sum_{k=1}^j d_k\vartheta_k \quad (j= 1, 2, \dots ). $$ \section{Proof of Theorem \ref{thm1.1}} Consider the entire function \begin{equation} f(z)=\sum_{k-0}^\infty c_kz^k\quad (c_0=1) \label{e2.1} \end{equation} satisfying the condition \begin{equation} |f(z)|\leq (1+qr)\exp[ A \exp (r^\rho/\rho)]\quad (q=\text{const}>0; z\in\mathbb{C}, \;r=|z|). \label{e2.2} \end{equation} Put $$ C=(1+q) \exp[\frac 12 e^{2/\rho} A^2]. $$ \begin{lemma} \label{lem2.1} Let condition \eqref{e2.2} hold. Then the Taylor coefficients of $f$ are subjected to the inequality $$ |c_n|\leq C e^{n/2}\Big(\frac{3}{\rho\ln v_n }\Big)^{(n-1)/\rho}. $$ \end{lemma} \begin{proof} Let $$ M_f(r)=\max_{|z|=r}|f(z)|. $$ By the well-known inequality for the coefficients of a power series, $$ |c_n|\leq \frac{M_f(r)}{r^n}\quad (r>0). $$ Take into account that $$ ab\le \frac{a^2}{4c}+b^2c\quad (a,b,c \text{positive constants}). $$ Then for a constant $\mu>0$, $$ A \exp (r^\rho/\rho)\le \frac{A^2}{4\mu}+ \mu\exp (2r^\rho/\rho). $$ Due to \eqref{e2.2}, \begin{equation} |c_n|\leq (1+qr)\exp[\frac{A^2}{4\mu}]h(r)\text{ where }h(r) :=\frac{\exp[\mu e^{2r^\rho/\rho}]}{r^n}\quad (n=1, 2, \dots). \label{e2.3} \end{equation} Let us use the usual method for finding extrema. Clearly, $$ r^{2n}h'(r)=e^{\mu e^{2r^\rho/\rho}} [2\mu e^{2r^\rho/\rho}r^{n+\rho-1}- nr^{n-1}]. $$ Thus the zero $r_0=r_0(n)$ of $h'(r)$ is defined by \begin{equation} 2\mu r_0^{\rho} e^{2r_0^\rho/\rho}=n. \label{e2.4} \end{equation} Take $$ \mu =\frac 12e^{-2/\rho}. $$ Then \begin{equation} r_0^{\rho} e^{2(r_0^\rho-1)/\rho}=n. \label{e2.5} \end{equation} So for $n\ge 1$ we have $r_0\ge 1$. Hence by \eqref{e2.4}, \begin{equation} \mu e^{2r_0^\rho/\rho}\le n/2. \label{e2.6} \end{equation} Since $x\le e^{x-1}\;\;(x>0)$, by \eqref{e2.5} we have $e^{3r_0^\rho/\rho}\ge ne^{1+2/\rho}/\rho=v_n$, and therefore, \begin{equation} r_0\ge (\frac{\rho}3 \ln v_n)^{1/\rho}. \label{e2.7} \end{equation} Since $r_0\ge 1$, we obtain $\frac{1+qr_0}{r_0}\le 1+q$. Now \eqref{e2.3} and \eqref{e2.6} imply $$ |c_n|\leq \exp[\frac{A^2}{4\mu }](1+q) \frac{e^{n/2}}{r_0^{n-1}}. $$ Hence, \eqref{e2.7} proves the lemma. \end{proof} Put $D=\sqrt e C$, and $$ \tau_n=2e^{1/2}\left(\frac{3}{\rho\ln v_n }\right )^{1/\rho}. $$ Then according to Lemma \ref{lem2.1}, $$ |c_n|\leq D\frac{\tau_n^{n-1}}{2^{n-1}}. $$ Denote $\psi_1=1, \psi_n=\tau_n^{n-1}\;\;(n>1)$; $a_n=c_n/\psi_n$, and $m_{n+1}=\psi_{n+1}/\psi_{n}$. As it is proved in \cite[Theorem 5.1.1]{gi09}, the inequality $$ \sum_{k=1}^j \frac 1{|z_k(f)|}\le \theta(f)+ \sum_{k=1}^j m_{k+1} $$ is valid, where $z_k(f)$ are the zeros of $f(z)$, with multiplicities taken into account, enumerated in order of increasing modulus, and $$ \theta(f):=\Big[\sum_{k=1}^\infty |a_k|^2\Big]^{1/2}. $$ But $|a_1|=|c_1|\le D$; $|a_n|\le D/2^{n-1}, n\ge 2$. Moreover, since $\tau_{n+1}\le \tau_n$, we get $m_{n+1}\le \tau_n$ $(n=1, 2, \dots)$, and $\theta(f)\le \tilde\theta_0$, where $$ \tilde\theta^2_0=D^2\sum_{k=0}^\infty \frac 1{4^k}=4D^2/3. $$ We thus have proved the following result. \begin{lemma} \label{lem2.2} Let an entire function $f$ satisfy condition \eqref{e2.2}. Then $$ \sum_{k=1}^j \frac 1{|z_k(f)|}\le \tilde\theta_0+ \sum_{k=1}^j \tau_{n}= \tilde\theta_0 + \zeta_0\sum_{k=1}^j \frac{1}{\ln ^{1/\rho} v_k}\quad (j=1, 2, \dots). $$ \end{lemma} \begin{lemma} \label{lem2.3} A solution $y$ of \eqref{e1.1} with the conditions \eqref{e1.2} and $y(0)=1$ is an entire function satisfying the inequality $$ |y(z)|\le (1+|y'(0)|r) \exp[A e^{r^\rho/\rho}]\quad (z\in \mathbb{C}). $$ \end{lemma} \begin{proof} From \eqref{e1.1} for a $z=re^{it}$ with a fixed argument $t$ we have $e^{-2it} d^2y(z)/dr^2=F(z)y(z)$. Hence, putting $q=|y'(0)|$, $g(r)=|y(re^{it})|$, and taking into account \eqref{e1.2} we obtain $$ g(r)\le 1+qr+ \int_0^r (r-s)|F(se^{it})|g(s)ds \le 1+qr+A\int_0^r (r-s)\exp[s^\rho/\rho] g(s)ds. $$ By \cite[Lemma III.2.1]{dal} we have $g(r)\le m(r)$, where $m(r)$ is a solution of the equation $$ m(r)=1+qr+ A\int_0^r (r-s)\exp[s^\rho/\rho] m(s)ds. $$ However, $$ \int_0^r (r-s)f(s)ds=\int_0^r \int_0^s f(\tau)d\tau\; ds $$ for any integrable function $f$. Thus, $$ m(r)= 1+qr+ A\int_0^r \int_0^s \exp[\tau^\rho/\rho]m(\tau)d\tau\; ds . $$ Clearly the derivative of $m$ is positive. So $$ m(r)\le 1+ qr+ A\int_0^r m(\tau) \int_0^\tau \exp[s^\rho/\rho]ds \;d\tau. $$ But for $r\le 1$, $$ \int_0^r \exp[s^\rho/\rho]ds \le \exp[r^\rho/\rho], $$ and for an $r\ge 1$, $$ \int_0^r e^{s^\rho/\rho} ds\le \int_0^1 e^{s^\rho/\rho} ds + \int_1^r s^{\rho-1} e^{s^\rho/\rho} ds \le e^{1/\rho}+ (e^{r^\rho/\rho}-e^{1/\rho})= e^{r^\rho/\rho}. $$ Thus, \begin{equation} \int_0^r \exp[s^\rho/\rho]ds \le \exp[r^\rho/\rho]. \label{e2.8} \end{equation} Consequently, $m(r)\le 1+qr+A\int_0^r m(s)\exp[s^\rho/\rho]ds$. By the Gronwall inequality, $$ m(r)\le (1+qr)\exp\big[A \int_0^r e^{s^\rho/\rho}ds\big]. $$ Now \eqref{e2.8} implies the required result. \end{proof} Then the assertion of Theorem \ref{thm1.1} follows from Lemmas \ref{lem2.2} and \ref{lem2.3}. \section{Example} In this section we consider an example that illustrates Theorem \ref{thm1.1}. First substitute \eqref{e1.4} into \eqref{e1.1}. Then we arrive at the equation $$ \frac{d^2x(w)}{dw^2}=F_1(w),\quad \text{where }F_1(w)=\frac{1}{(\rho B)^{2/\rho}} F\big(\frac{w}{(\rho B)^{1/\rho}}\big) $$ and $x(w)=y(w/(\rho B)^{1/\rho})$. If condition \eqref{e1.3} holds, then $$ |F_1(w)|\le A_1\exp \big(\frac{|w|^\rho}{\rho}\big), $$ where $A_1=A/(\rho B)^{2/\rho}$. By Theorem \ref{thm1.1}, \begin{equation} \sum_{k=1}^j \frac{1}{|z_k(x)|}< \theta_1 + \zeta_0\sum_{k=1}^j \frac{1}{\ln ^{1/\rho} v_k}\quad (j=1, 2, \dots), \label{e3.1} \end{equation} where $$ \theta_1=2\sqrt{\frac e3}\Big(1+|\frac{dx(0)}{dw}|\Big) \exp[ A_1^2e^{2/\rho}] = 2\sqrt{\frac e3}\Big(1+\frac{1}{(B\rho)^{1/\rho}} |\frac{dy(0)}{dz}|\Big)\exp[ A_1^2e^{2/\rho}]. $$ But $z_k(y)=z_k(x)(\rho B)^{1/\rho}$. Now \eqref{e3.1} implies \begin{equation} \sum_{k=1}^j \frac{1}{|z_k(y)|}<(\rho B)^{1/\rho}\Big[ \theta_1 + \zeta_0\sum_{k=1}^j \frac{1}{\ln ^{1/\rho} v_k}\Big]\quad (j=1, 2, \dots). \label{e3.2} \end{equation} So the following result is holds. \begin{corollary} \label{cor3.1} Let $y(z)$ be a solution of \eqref{e1.1} with $y(0)=1$ and condition \eqref{e1.3} hold. Then inequality \eqref{e3.2} is valid. \end{corollary} Furthermore, it can be directly checked that the function \begin{equation} y(z)=c e^{-z/2}\sin(e^z) \label{e3.3} \end{equation} with $c=1/\sin(1)$ is a solution of the equation \begin{equation} y''(z)=(\frac 14-e^{2z})y(z) \label{e3.4} \end{equation} Besides, $y(0)=1$. Clearly, the zeros of $y$ are $\ln \pi k$ $(k=0, \pm 1, \pm 2,\dots)$. Hence, for a sufficiently large $j$ we have \begin{equation} \sum_{k=1}^{2j} \frac 1{|z_k(y)|}=\sum_{k=1}^j \big[\frac 1{|z_{2k-1}(y)|}+ \frac 1{|z_{2k}(y)|}\big] = \sum_{k=1}^j \big[\frac 1{\ln \pi k} + \frac 1{|\ln (-\pi k)|}\big]. \label{e3.5} \end{equation} On the other hand, due to \eqref{e3.4},$F(z)=\frac 14-e^{2z}$ and therefore, $|F(z)|\le (1+\frac 14)e^{2|z|}$. By \eqref{e3.2} with $B=2, A=1+1/4$, we have $$ \sum_{k=1}^j \frac{1}{|z_k(y)|}< 2 \theta_1 + 2\zeta_0\sum_{k=1}^j \frac{1}{\ln (k e^3 )}\quad(j=1, 2, \dots). $$ This result is rather close to \eqref{e3.5}. Note that, if $F(z)$ is of infinite order, then the problem considered in this paper is much more complicated. \begin{thebibliography}{00} \bibitem{ang} N. Anghel; Stieltjes-Calogero-Gil’ relations associated to entire functions of finite order, \emph{Journal of Mathematical Physics, 51}, no. 5 (2010) 251-262. \bibitem{bela} B. Belaii, A. E. Farissi; Differential polynomials generated by some complex linear differential equations with meromorphic coefficients, \emph{Glasnik Matematicki}, 43, no. 2 (2008) 363-373. \bibitem{cao1} T. B. Cao, L. M. Li; Oscillation results on meromorphic solutions of second order differential equations in the complex plane, \emph{E. J. Qualitative Theory of Diff. Eqs.}, no. 68 (2010), 1-13. \bibitem{cao2} T. B. Cao, J. F. Xu and Z. X. Chen; On the meromorphic solutions of linear differential equations on the complex plane, \emph{J. Math. Anal. Appl., 364}, no. 1, (2010), 130-142. \bibitem{chen} W. J. Chen, J. F. Xu; Growth of meromorphic solutions of higher-order linear differential equations, \emph{E. J. Qualitative Theory of Diff. Equ.} 2009 (2009), no. 1, 1-13. \bibitem{dal} Yu L. Daleckii, M.G. Krein; \emph{Stability of Solutions of Differential Equations in Banach Space}, Amer. Math. Soc., Providence, R. I. 1971. \bibitem{eloe} P. W. Eloe, J. Henderson; Positive solutions for higher order ordinary differential equations. \emph{Electron. J. Differ. Equ.}, 1995 (1995), no. 03, 1-8. \bibitem{far} A. E. Farissi, B. Belaii; On oscillation theorems for differential polynomials, \emph{E. J. Qualitative Theory of Diff. Equ.}, 2009 (2009), no. 22, 1-10. \bibitem{gi09} M. I. Gil'; \emph{Localization and Perturbation of Zeros of Entire Functions}, CRC Press, Taylor and Francis Group, New York, 2009. \bibitem{gi11} M. I. Gil', Bounds for zeros of solutions of second order differential equations with polynomial coefficients, \emph{Results Math., 59}, (2011), 115-124. \bibitem{lai} I. Laine; \emph{Nevanlinna Theory and Complex Differential Equations}, Walter de Gruyter Berlin, 1993 \bibitem{li} C. H. Lin, Y. Sibuya, T. Tabara; Zeros of solutions of a second order linear differential equation with polynomial coefficients. \emph{Funkcial. Ekvac.} 36 (1993), no. 2, 375-384. \bibitem{mu} G. M. Muminov; On the zeros of solutions of the differential equation $\omega^{(2m)}+p(z)\omega=0$. \emph{Demonstr. Math.}, 35 (2002), no. 1, 41-48. \bibitem{pe} F. Peng, Z. X. Chen; On the growth of solutions of some second-order differential equations, \emph{J. Ineq. Appl.}, 2011 (2011), 1-9. \bibitem{tu} J. Tu, Z. X. Chen; Zeros of solutions of certain second order linear differential equation, \emph{J. Math. Anal. Appl.} 332 (2007), no. 1, 279-291. \bibitem{wang} J. Wang, I. Laine; Growth of solutions of second order linear differential equations, \emph{J. Math. Anal. Appl.} 342 (2008), 39-51. \bibitem{xu} J. F. Xu, H. X. Yi; Solutions of higher order linear differential equations in an angle, \emph{Appl. Math. Letters}, 22 (2009), no. 4, 484-489. \end{thebibliography} \end{document}