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ON PACARD’S REGULARITY FOR THE EQUATION −∆u = up

DAVID R. ADAMS

Abstract. It is shown that the singular set for a positive solution of the PDE
−∆u = up has Hausdorff dimension less than or equal to n−2p′, as conjectured
by Pacard [12] in 1993.

1. Results

This note concerns the open question mentioned by Pacard in[12], especially its
regularity criterion for positive weak solutions to −∆u = up in a domain Ω ⊂ Rn,
p ≥ n/(n− 2), n ≥ 3. By this we shall mean: u ∈ Lp

loc(Ω) and

−
∫

∆φ · u dx =
∫

upφdx (1.1)

for all φ ∈ C∞
0 (Ω). The main question here is to describe the size of the set

Sing(u) ⊂ Ω where a solution u becomes +∞ and such that u ∈ C∞(Ω \ Sing(u)).
Examples where such a set exists includes the simple case u(x) = c0|x̄|−2/(p−1),
x = (x̄, x̂), x̄ ∈ Rn−d, x̂ ∈ Rd, a solution in the ball B(0, R), centered at zero
of radius R, and some constant c0. Here Sing(u) = Rd ∩ B(0, R) and necessarily
d < n − 2p′, p′ = p/(p − 1). Note that when p = n/(n − 2), it is well known that
(1.1) can have isolated singularities (here d = 0; see [8]). Furthermore, n− 2p′ = 0
when p = n/(n − 2), because then p′ = n/2. The case p = (n + 2)/(n − 2), the
“Yamabe case,” has been also well studied in the literature; see [14]. And several
authors have constructed solutions to (1.1) with a prescribed singular set Sing(u);
e.g. [13], [6], [10]. But in all cases, it appears that solutions u to (1.1) behave like

u(y) ∼ dist(y, Sing(u))−2/(p−1) (1.2)

as y → Sing(u) in Ω.
The Pacard conjecture is that the Hausdorff dimension of Sing(u) is always ≤

n−2p′, which certainly appears to be the case in all the examples considered. Pacard
proves this, in [12], under an additional hypothesis, his hypothesis “H”. However,
it soon becomes clear that hypothesis H is much too strong, for it precludes isolated
singularities when p = n/(n−2), and for that matter any singularities when n/(n−
2) ≤ p < (n/(n− 2)) + ε, for some ε > 0.

Thus the purpose of this note is to prove:
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Theorem 1.1. Let u be a positive weak solution of (1.1), then there exists an open
set Ω′ ⊂ Ω such that u ∈ C∞(Ω′) and C2,p′(Ω \ Ω′) = 0.

The presentation of this note follows closely that of [12], so it is recommended
that the reader have a copy of [12] at hand while reading the present note.

Here Cα,p(·) is the capacity set function associated with the Sobolev space
Wα,p(Ω), α = positive integer. Also, one recalls from [2] that any set of C2,p′ -
capacity zero has Hausdorff dimension ≤ n− 2p′. Furthermore, it is not surprising
that Sing(u) = Ω\Ω′ is of C2,p′ -capacity zero, given that this condition characterizes
removable sets for equation (1.1); see [4].

For p′ < n/2, we can use the standard definition of C2,p′ using Riesz potentials
on Rn especially when ∂Ω = boundary of Ω is smooth. For any compact K ⊂ Rn

C2,p′(K) = inf{‖f‖p′

Lp′ : f ≥ 0, I2f ≥ 1 on K}.
Here

I2f(x) =
∫

Rn

|x− y|2−nf(y) dy.

Notice this definition easily implies

C2,p′({x : I2f ≥ λ}) ≤ 1
λp

· ‖f‖p′

Lp′ . (1.3)

The proof of our Theorem constitutes the main body of this note, 1-6. In 7, 8
and 9, we include further speculations.

1. If u = u(x) is a positive weak solution to (1.1), then u belongs to the Morrey
space Lp,2p′

(Ω).

Proof. (This result is due to Pacard [11], and it has also been observed by Brezis.)
The Morrey space in question — here we extend functions outside Ω by zero — is
those f ∈ Lp

loc(Rn) such that(
sup

x∈Rn, r>0
rλ−n

∫
B(x,r)

|f(y)|p dy
)1/p

≡ ‖f‖Lp,λ < ∞,

for 1 ≤ p < ∞, 0 < λ ≤ n. Again, recall that we will only be dealing with the case
p′ < n/2. The case p′ = n/2 can be handled using the usual modifications; see [2].

So now set φ(x) = η
(

x−x0
r

)σ, η ∈ C∞
0 (B(0, 1)) for σ > 2p′. Then∫

upησ ≤ C

r2

( ∫
upησ

)1/p

· rn/p′
(1.4)

by Hölder’s inequality. The result follows. �

2. A modified Pacard Lemma [12]:

Lemma 1.2. Let u be a positive weak solution of (1.1), then there are constants
cp such that for x ∈ Ω and r small

−
∫

B(x,r)

up ≤ cp

{(
−
∫

B(x,2r)

up−1
)p′

+−
∫

B(x,2r)

u(y)p
( ∫

B(y,2r)

|y−z|2−nu(z)p−1 dz
)
dy

}
(1.5)

for p ≥ 2, and

−
∫

B(x,r)

up ≤ cp

{(
−
∫

B(x,2r)

u
)p

+−
∫

B(x,2r)

u(y)p
( ∫

B(y,2r)

|y − z|2−nu(z)p−1 dz
)
dy

}
(1.6)
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for 1 < p < 2.

Here, the integrals with a bar denote integral averages.

Proof. (Outline from [12].) Inequalities (1.5) and (1.6) follow from the following
inequality for positive weak solutions to (1.1); see [12] or [9]:

u(y) ≤ −
∫

B(y,r)

u +
rn

n(n− 2)
−
∫

B(y,r)

|y − z|2−nu(z)p dz. (1.7)

To get our result, simply multiply (1.7) through by up−1 and integrate over a ball
centered at x of radius r. �

This Lemma is important for at least two reasons:
(a) If the quantity ∫

B(y,R)

|y − z|2−nu(z)p−1 dz (1.8)

can be made uniformly small for R small and all y in some neighborhood of x ∈ Ω,
then (1.5) or (1.6) can be used to engage the theory of reverse Hölder inequalities;
see [7] or [5]. In each case, one can then deduce that u ∈ Lq in that neighborhood
of x, where q > p. This, it turns out, is the crucial step in proving C∞-regularity
in that neighborhood. We return to this below in section 6.

(b) It is less than intuitive that the potential I2u
p−1 (or some part of it) should

play a significant role here in describing the pointwise behavior of u near Sing(u)
in Ω. One expects u = I2u

p to be of some service here but not I2u
p−1. Notice

that the section 1 result plus the embeddings of Morrey spaces under the Riesz
potential operator I2 imply that I2u

p−1 ∈ BMO, the John-Nirenberg space of
functions of bounded mean oscillations; see [2] or [1]. This fact alone suggests that
exp(c · I2u

p−1) might be of interest here. We speculate further on this in section 8.
Notice that u(x) = cI2u

p(x) in Ω for some constant c, hence

I2u
p−1 = cI2(I2u

p)p−1.

This is precisely the classical non-linear potential from [2]; i.e., for (α, p):
Iα(Iαµ)p′−1, when α = 2, and p′ is replaced by p, and the measure dµ = up dx.

3. I2u
p−1(x) < ∞ implies

lim
r→0

r2p′−n

∫
B(x,r)

u(y)p dy = 0. (1.9)

Proof. This follows from a fundamental estimate from Nonlinear Potential Theory;
see [2] or [3]. The estimate is for the so-called “nonlinear potentials” associated
with the capacities C2,p′ :

I2(I2u
p)p−1(x) ≥ c ·Wup dy

2,p′ (x), (1.10)

where the W -potential here is the associated Wolff potential

Wµ
α,p(x) ≡

∫ ∞

0

[rαp−nµ(B(x, r))]p
′−1 dr

r
,

for 0 < α < n, 1 < p < n/α, and µ = non-negative Borel measure on Rn. In (1.10),
dµ = up dy. Our result follows since both r2p′−n and

∫
B(x,r)

up are monotone
functions of r. It should perhaps be added here that the reverse inequality to
(1.10) may fail for p > 2(n− 1)/(n− 2); see [3]. �



4 D. R. ADAMS EJDE-2012/125

4. ξu(x) = the jump discontinuity of I2u
p−1 at x when I2u

p−1(x) < ∞.

Proof. Here we compute

lim
y→x

I2u
p−1(y) = ξu(x) + I2u

p−1(x)

where

ξu(x) ≡ lim
y→x

(n− 2)
∫ |x−y|

0

r2−n
( ∫

B(y,r)

up−1
) dr

r
. (1.11)

Notice that ξu(x) = 0, when u is continuous at x. In fact, Fubini’s theorem gives

I2u
p−1(y) = (n− 2)

∫ ∞

0

r2−n
( ∫

B(y,r)

up−1
) dr

r
. (1.12)

And writing (1.12) as
( ∫ |x−y|

0
· · ·+

∫∞
|x−y|

)
(n−2), we easily see that the last integral

tends to I2u
p−1(x) as y → x since B(y, r) ⊂ B(x, 2r) and I2u

p−1(x) < ∞ allows us
to use dominated convergence. Hence the result follows. Note that we also have

ξu(x) = lim
y→x

∫
|y−z|<|x−y|

|y − z|2−nu(z)p−1 dz (1.13)

since
lim
r→0

r2−n

∫
B(x,r)

u(y)p−1 dy = 0

follows from I2u
p−1(x) < ∞. �

Thus the jump discontinuity ξu(x) is generally ≥ 0 for x ∈ Sing(u). But notice
that ξϕ(x) = 0 for any ϕ ∈ C∞

0 (Rn).
5. C2,p′(Sing(u)) = 0.

Proof. Here we set
Sing λ(u) = {x ∈ Ω: ξu(x) ≥ λ}. (1.14)

And for Sing(u) needed in our Theorem, we take λ in (1.14) to be 1/(4cp), cp

the constant in the Pacard Lemma (section 2). Now if x ∈ Sing(u), then for any
y ∈ N(x) ∩ Sing(u), N(x) = some neighborhood of x,

λ ≤ ξu(x) ≤ cI2(|up−1 − ϕ|)(y) + λ/2,

hence

C2,p′(N(x) ∩ [I2(|up−1 − ϕ|) > λ/2]) ≤
( 2
λ

)p′

‖up−1 − ϕ‖p′

Lp′ (Ω)
.

So taking ϕ to be an Lp′
smooth approximation to up−1 yields C2,p′(N(x) ∩

Sing(u)) = 0 and the final result follows due to the countable subadditivity of
C2,p′ ; see [2]. �

6. Deducing u ∈ C∞(Ω \ Sing(u)). (Here we follow the path forged by Pacard
[12].)

Proof. The reason for our choice of λ = 1/(4cp) above now becomes clear: for
x ∈ Ω − Singλ(u), (1.8) then does not exceed 1/(2cp) for some R > 0 and all y in
a neighborhood of x. This together with the modified Pacard Lemma yields that
u ∈ Lq in that neighborhood of x, for some q > p by the reverse Hölder inequality
theory mentioned earlier. We are now in position to use Lemmas 4 and 5 from [12].
Using (1.9), we have:
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there exists constant θ ∈ (0, 1) such that

1
(θR)n−2p′

∫
B(x,θR)

up ≤ 1
2

1
Rn−2p′

∫
B(x,R)

up. (1.15)

Iterating (1.15) yields: for such x as above

1
(θkR1)n−2p′

∫
B(x,θkR1)

up ≤ 2−k 1

Rn−2p′

1

∫
B(x,R1)

up (1.16)

for all k ∈ Z+. Now one can choose a µ < 2p′ such that θ2p′−µ > 1/2 and derive
that in fact in this neighborhood of x that u ∈ Lp,µ (note that the notation here
differs from that in [12], a fact we prefer). And now, as in [12], we can easily get
u ∈ C∞ in this neighborhood since µ < 2p′. �

7. We mention a simple regularity criterion that can be used, for example, to get
u ∈ C∞ in all of Ω: if u ∈ Ln(p−1)/2,λ(Ω) for some λ < n, then, in fact, u ∈ C∞(Ω).
This might be stated as a corollary to the main theorem, for one immediately sees
that this condition implies that ξu(x) = 0 for all x ∈ Ω; i.e., I2u

p−1 is continuous
on Ω and our theory implies then that u ∈ C∞(Ω). Notice that this condition
also implies that there are no bounded point discontinuities for u in Ω (a fact well
known), but this then confirms that indeed Sing(u) is made up of points where
u(y) → +∞ as y → Sing(u). And that agrees, of course, with (1.2).

8. A conjecture seems to now be in order: there is a function β(x) > 0 such that
for all x ∈ [I2u

p−1 = +∞]

u(y) ∼ exp
(
β(x)I2u

p−1(y)
)

(1.17)

as y → x ∈ Sing(u). Since I2u
p−1 = I2(I2u

p)p−1 and the equivalence of this
nonlinear potential with the Wolff potential, at least for p < 1

2 (n−1
n−2 ), we expect

β(x) to be something like
2

p− 1
1

D(x)p−1
(1.18)

where D(x) = limr→0r
2p′−n

∫
B(x,r)

up, x ∈ [I2u
p−1 = +∞], by comparing this with

the examples where (1.2) holds.
9. A further conjecture is that one can prove our Theorem for −∆ replaced by

the differential operator L = −
∑

i,j(aijuxi
)xj

+ cu studied in [4].
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[13] Y. Rébäı. Weak solutions of nonlinear elliptic equations with prescribed singular set. J. Dif-
ferential Equations, 127(2):439–453, 1996.

[14] R. Schoen and S.-T. Yau. Conformally flat manifolds, Kleinian groups and scalar curvature.
Invent. Math., 92(1):47–71, 1988.

David R. Adams
Department of Mathematics, University of kentucky, POT 714, Lexington, KY 40506,
USA

E-mail address: dave@ms.uky.edu


	1. Results
	References

