\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 131, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/131\hfil Existence of solutions] {Existence of solutions for elliptic systems in $\mathbb{R}^N$ involving the $p(x)$-Laplacian} \author[A. Djellit, Z. Youbi, S. Tas \hfil EJDE-2012/131\hfilneg] {Ali Djellit, Zahra Youbi, Saadia Tas} % in alphabetical order \address{Ali Djellit \newline Mathematics, Dynamics and Modelization Laboratory\\ Badji-Mokhtar Annaba University\\ Annaba 23000, Algeria} \email{a\_djellit@hotmail.com} \address{Zahra Youbi \newline Mathematics, Dynamics and Modelization Laboratory \\ Badji-Mokhtar Annaba University \\ Annaba 23000, Algeria} \email{zahra.youbi@yahoo.fr} \address{Saadia Tas \newline Applied Mathematics Laboratory \\ Abderrahmane Mira Bejaia University, Bejaia, Algeria} \email{tas\_saadia@yahoo.fr} \thanks{Submitted May 21, 2012. Published August 15, 2012.} \subjclass[2000]{35J50, 35J92} \keywords{$p(x)$-Laplacian operator; critical point, variational system} \begin{abstract} This article presents sufficient conditions for the existence of non-trivial solutions for a nonlinear elliptic system. To establish this result, we use a classical existence theorem in reflexive Banach spaces, under some growth conditions on the non-linearities. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} In this article we establish the existence of nontrivial weak solution for nonlinear elliptic system \begin{equation} \begin{gathered} -\Delta _{p(x)}u=\frac{\partial F}{\partial u}(x,u,v)\quad\text{in }\mathbb{R}^N \\ -\Delta _{q(x)}v=\frac{\partial F}{\partial v}(x,u,v)\quad \text{in }\mathbb{R}^N \end{gathered} \label{e1} \end{equation} Here $p(x)$ and $q(x)$ are continuous real-valued functions such that $11\}. $$ So, for all $h\in C_{+}(\mathbb{R}^N)$, we set \begin{equation*} h^{-}:=\inf_{x\in \mathbb{R}^N} h(x),\quad h^{+}:=\sup_{x\in \mathbb{R}^N} h(x). \end{equation*} Let $M(\mathbb{R}^N)$ be the set of all measurable real-valued functions defined on $\mathbb{R}^N$. For $p\in C_{+}(\mathbb{R}^N)$, we designates the variable exponent Lebesgue space by \begin{equation*} L^{p(x)}(\mathbb{R}^N)=\{ u\in M(\mathbb{R} ^N):\int_{\mathbb{R}^N}| u(x)| ^{p(x)}dx<\infty \} , \end{equation*} equipped with the so called Luxemburg norm \begin{equation*} | u| _{p(x)}:=| u| _{L^{p(x)}(\mathbb{R}^N)} =\inf \{ \lambda >0:\int_{\mathbb{R}^N}| \frac{u(x)}{\lambda }| ^{p(x)}dx\leq 1\} . \end{equation*} This is a Banach space. Define the Lebesgue-Sobolev space $W^{1,p(x)}(\mathbb{R}^N)$ by \[ W^{1,p(x)}(\mathbb{R}^N)=\{ u\in L^{p(x)}(\mathbb{R}^N):| \nabla u| \in L^{p(x)}(\mathbb{R}^N)\}, \] equipped with the norm \[ \| u\| _{1,p(x)}=\| u\|_{W^{1,p(x)}(\mathbb{R}^N)} =|u| _{p(x)}+| \nabla u| _{p(x)}. \] The space $W_0^{1,p(x)}(\Omega )$ is defined as the closure of $C_0^{\infty }(\Omega )$ in $W^{1,p(x)}(\Omega )$ with respect to the norm $\| u\| _{1,p(x)}$. For $u\in W_0^{1,p(x)}(\Omega )$, we can define an equivalent norm $\| u\| =| \nabla u|_{p(x)}$ ; since the well known Poincar\'e inequality holds. Next, we recall some previous results. This way, we want to make the proofs of the main results as transparent as possible. \begin{proposition}[\cite{e1,f3}] \label{prop1} If $p\in C_{+}(\mathbb{R}^N)$, then the spaces $L^{p(x)}(\mathbb{R}^N)$, $W^{1,p(x)}(\mathbb{R}^N)$ and $W_0^{1,p(x)}(\mathbb{R}^N)$ are separable and reflexive Banach spaces. \end{proposition} \begin{proposition}[\cite{e1,f3}] \label{prop2} The topological dual space of $L^{p(x)}(\mathbb{R} ^N)$ is $L^{p'(x)}(\mathbb{R}^N)$, where \[ \frac{1}{p(x)}+\frac{1}{p'(x)}=1. \] Moreover for any $(u,v)\in L^{p(x)}(\mathbb{R}^N)\times L^{p'(x)}(\mathbb{R}^N)$, we have \[ | \int_{\mathbb{R}^N}uvdx| \leq (\frac{1}{p^{-}}+ \frac{1}{(p')^{-}})| u|_{p(x)}| v| _{p'(x)} \leq 2| u| _{p(x)}| v|_{p'(x)}. \] \end{proposition} Set $\rho (u)=\int_{\mathbb{R}^N}| u| ^{p(x)}dx$. \begin{proposition}[\cite{e1,f3}] \label{prop3} For all $u\in L^{p(x)}(\mathbb{R}^N)$, we have \[ \min \{ | u| _{p(x)}^{p^{-}},| u| _{p(x)}^{p^{+}}\} \leq \rho (u)\leq \max \{ | u| _{p(x)}^{p^{-}},| u| _{p(x) }^{p^{+}}\}. \] In addition, we have \begin{itemize} \item[(i)] $| u| _{p(x)}<1$ (resp. $=1, >1$) $\Leftrightarrow \rho (u)<1$ (resp. $=1,>1$); \item[(ii)] $| u| _{p(x)}>1 \Rightarrow | u| _{p(x)}^{p^{-}}\leq \rho (u) \leq | u| _{p(x)}^{p^{+}}$; \item[(iii)] $| u| _{p(x) }>1\Rightarrow | u| _{p(x)}^{p^{+}}\leq \rho (u) \leq | u| _{p(x)}^{p^{-}}$; \item[(iv)] $\rho (\frac{u}{| u|_{p(x)}})=1$. \end{itemize} \end{proposition} \begin{proposition}[\cite{e1}] \label{prop4} Let $p(x)$ and $q(x)$ be measurable functions such that $p(x)\in L^{\infty }(\mathbb{R}^N)$ and $1\leq p(x)q(x)\leq \infty $ almost every where in $\mathbb{R}^N$. If $u\in L^{q(x)}(\mathbb{R}^N)$, $u\neq 0$. Then \begin{gather*} | u| _{p(x)q(x)}\leq 1\Rightarrow |u| _{p(x)q(x)}^{p^{-}} \leq \big|| u| ^{p(x)}\big| _{q(x)}\leq | u| _{p(x)q(x)}^{p^{+}}, \\ | u| _{p(x)q(x)}\geq 1\Rightarrow |u| _{p(x)q(x)}^{p^{+}} \leq \big| | u| ^{p(x)}\big| _{q(x)}\leq | u| _{p(x)q(x)}^{p^{-}}. \end{gather*} In particular, if $p(x)=p$ is a constant, then $| | u| ^{p}| _{q(x)}=|u| _{pq(x)}^{p}$. \end{proposition} \begin{proposition}[\cite{f3}] \label{prop5} If $u,u_{n}\in L^{p(x)}(\mathbb{R}^N)$, $n=1,2,\dots$, then the following statements are mutually equivalent: \begin{itemize} \item[(1)] $\lim_{n\to \infty } | u_{n}-u|_{p(x)}=0$, \item[(2)] $\lim_{n\to \infty } \rho (u_{n}-u)=0$, \item[(3)] $u_{n}\to u$ in measure in $\mathbb{R}^N$ and $\lim_{n\to \infty } \rho (u_{n})=\rho (u)$. \end{itemize} \end{proposition} Let $p^{\ast }(x)$ be the critical Sobolev exponent of $p(x)$ defined by \[ p^{\ast }(x)=\begin{cases} \frac{Np(x)}{N-p(x)} &\text{for } p(x)\frac{N}{2}$, for all $x\in \mathbb{R}^N$. The weight-functions $a_i$ and $b_i$, $i=1,2$, belong respectively to the generalized Lebesgue spaces $L^{\alpha _i}(\mathbb{R}^N)$ and $L^{\beta }(\mathbb{R}^N)$, where \[ \alpha _1(x)=\frac{p(x)}{p(x)-1},\beta (x) =\frac{p^{\ast }(x)q^{\ast }(x)}{p^{\ast }(x)q^{\ast }(x)-p^{\ast }(x)-q^{\ast }(x)},\quad \alpha _2(x)=\frac{q(x)}{q(x)-1}. \] \item[(H3)] There exist constants $R>0,\theta >0$, and a positive function $H:\mathbb{R}^N\times \mathbb{R}^2\to \mathbb{R}$ such that for $x\in \mathbb{R}^N$, $| u| ,| v| \leq R$ and $t>0$ sufficiently small, we have \[ F(x,t^{1/p(x)}u,t^{1/q(x)}v)\geq t^{\theta }H(x,u,v). \] \end{itemize} Assumption (H3) implies that the potential function $F$ is sufficiently positive in a neighborhood of zero. \begin{lemma} \label{lem1} Under assumptions {\rm (H1)--(H2)}, the functional $F$ is well defined and Frechet differentiable. Its derivative is \[ F '(u,v)(\omega ,z)=\int_{\mathbb{R}^N}\frac{\partial F}{\partial u}(x,u,v)\omega +\frac{\partial F }{\partial v}(x,u,v)zdx,\forall (u,v),(\omega ,z)\in W_{p(x),q(x)}. \] \end{lemma} \begin{proof} The functional $F $ is well defined on $W_{p(x),q(x)}$. Indeed, for all pair of real-valued functions $(u,v)\in W_{p(x),q(x)}$, we have in virtue of (H1) and (H2), \begin{align*} F(x,u,v) &=\int_0^u\frac{\partial F}{\partial s}(x,s,v)ds+F(x,0,v)\\ &=\int_0^u \frac{\partial F}{\partial s}(x,s,v)ds+\int_0^{v}\frac{ \partial F}{\partial s}(x,0,s)ds+F(x,0,0). \end{align*} Then \begin{equation} F(x,u,v)\leq c_1[a_1(x)|u| ^{p_1^{-}} +a_2(x)| v|^{p_1^{+}-1}| u| +b_2(x)|v| ^{q_1^{+}}] \label{e2} \end{equation} Since $W^{1,p(x)}(\mathbb{R}^N)\hookrightarrow L^{s(x)p(x)}(\mathbb{R}^N)$ for $s(x)>1$, we have \[ \big| | u| ^{p_1^{-}}\big|_{p(x)}=| u| _{p_1^{-}p(x)}^{p_1^{-}} \leq c\| u\| _{p(x)}^{p_1^{-}}. \] So, taking into account H\"older inequality, Propositions \ref{prop2}, \ref{prop4}, \ref{prop6}, \ref{prop7} and (H2), we obtain \begin{align*} F (u,v) &=\int_{\mathbb{R}^N} F(x,u,v)\,dx\\ &\leq c_2\Big(| a_1| _{\alpha _1(x)}| u| _{p_1^{-}p(x)}^{p_1^{-}} +| a_2| _{\beta (x)}| v| _{(p_1^{+}-1) q^{\ast }(x)}^{p_1^{+}-1}| u| _{p^{\ast }(x)} +| b_2| _{\alpha _2(x) }| v| _{q_1^{+}q(x)}^{q_1^{+}}\Big)\\ &\leq c_{3}(| a_1| _{\alpha _1(x)}\|u\| _{p(x)}^{p_1^{-}} +| a_2| _{\beta (x)}\| v\| _{q(x)}^{p_1^{+}-1}\| u\| _{p(x)} +|b_2| _{\alpha _2(x)}\| v\|_{q(x)}^{q_1^{+}}) <\infty \end{align*} The proof is complete. \end{proof} Similarly, we show that $F'$ is also well defined. Indeed, for all $(u,v),(\omega ,z)\in W_{p(x),q(x)}$, we can write \begin{align*} F '(u,v)(\omega ,z) &=\int_{\mathbb{R}^N}\frac{\partial F}{\partial u}(x,u,v)\omega dx+\int_{\mathbb{R}^N}\frac{\partial F}{\partial v}(x,u,v) z\,dx \\ &\leq \int_{\mathbb{R}^N}( a_1(x)| u| ^{p_1^{-}-1} +a_2( x)| v| ^{p_1^{+}-1})\omega\, dx\\ &\quad + \int_{\mathbb{R}^N}(b_1(x)| u| ^{q_1^{-}-1} +b_2(x)| v| ^{q_1^{+}-1})z\,dx \end{align*} Following H\"{o}lder inequality, we obtain \begin{align*} F '(u,v)(\omega ,z) &\leq c_4(| a_1| _{\alpha _1(x)}| |u| ^{p_1^{-}-1}| _{p^{\ast }(x)}| \omega | _{p(x)}+|a_2| _{\beta (x)}| | v|^{p_1^{+}-1}| _{q^{\ast }(x)}| \omega | _{p^{\ast }(x)}\\ &\quad + | b_1|_{\beta (x)}| | u| ^{q_1^{-}-1}| _{p^{\ast }(x)}|z| _{q^{\ast }(x)} +| b_2|_{\alpha _2(x)}| | v|^{q_1^{+}-1}| _{q^{\ast }(x)}|z| _{q(x)}) \end{align*} The above propositions yield \begin{align*} F '(u,v)(\omega ,z) &\leq c_{5}(| a_1| _{\alpha _1(x)}\| u\| _{p(x)}^{p_1^{-}-1}\| \omega \|_{p(x)} +| a_2| _{\beta (x) }\| v\| _{q(x)}^{p_1^{+}-1}\| \omega\| _{p(x)}\\ &\quad + | b_1|_{\beta (x)}\| u\| _{p(x)}^{q_1^{-}-1}\| z\| _{q(x)} +|b_2| _{\alpha _2(x)}\| v\|_{q(x)}^{q_1^{+}-1}\| z\| _{q(x)})<\infty . \end{align*} Moreover $F $ is Frechet differentiable; namely, for any fixed point $(u,v)\in W_{p(x),q(x)}$, and for any $\varepsilon >0$, there exist $\delta =\delta _{\varepsilon ,u,v}>0$ such that for all $(\omega ,z)\in W_{p(x),q(x)}$, satisfying $\| (\omega ,z)\| _{p(x),q(x)}<\delta $ we have \[ | F (u+\omega ,v+z)-F (u,v)-F '(u,v)(\omega ,z)| \leq \varepsilon \| (\omega ,z)\|_{p(x),q(x)}. \] First, let $B_R$ be the ball in $\mathbb{R}^N$ centered at the origin and of radius $R$. Set $B_R'=\mathbb{R}^N-B_R$. It is well-known that the functional $F _R$ defined on $W_0^{1,p(x)}(B_R)\times W_0^{1,q(x)}(B_R)$ by \[ F _R(u,v)=\int_{B_R}F(x,u,v)dx \] belongs to $C^{1}(W_0^{1,p(x)}(B_R)\times W_0^{1,q(x)}(B_R))$, by in virtue of (H1) and (H2). In addition, the operator $F _R'$ defined from $W_0^{1,p(x)}(B_R)\times W_0^{1,q(x)}(B_R)$ to $(W_0^{1,p(x)}(B_R)\times W_0^{1,p(x)}(B_R))'$ by \[ F _R'(u,v)(\omega ,z) =\int_{B_R}\frac{\partial F}{\partial u}(x,u,v)\omega +\frac{\partial F}{ \partial v}(x,u,v)zdx, \] is compact (see \cite{f3}). Clearly, for all $(u,v),(\omega ,z)\in W_{p(x),q(x)}$, we can write \begin{align*} &| F (u+\omega ,v+z)-F (u,v)-F '(u,v)(\omega ,z)| \\ &\leq | F _R(u+\omega ,v+z)-F _R(u,v)-F_R'(u,v)(\omega ,z)| \\ &\quad + | \int_{B_R'}(F(x,u+\omega ,v+z)-F(x,u,v))- \frac{\partial F}{\partial u}(x,u,v)\omega -\frac{\partial F}{ \partial v}(x,u,v)zdx| \end{align*} According to a classical theorem, there exist $\zeta _1,\zeta _2\in ] 0,1[ $, such that \begin{align*} &\big| \int_{B_R'}(F(x,u+\omega ,v+z)-F(x,u,v)) -\frac{\partial F}{\partial u}(x,u,v)\omega -\frac{\partial F}{\partial v}(x,u,v)zdx\big|\\ & =\big| \int_{B_R'}\frac{\partial F}{\partial u}( x,u+\zeta _1\omega ,v)\omega +\frac{\partial F}{\partial v}( x,u,v+\zeta _2z)z\\ &\quad -\frac{\partial F}{\partial u}(x,u,v) \omega -\frac{\partial F}{\partial v}(x,u,v)z\,dx\big|. \end{align*} Consequently, by growth conditions (H2), we obtain \begin{align*} &| \int_{B_R'}(F(x,u+\omega ,v+z) -F(x,u,v))-\frac{\partial F}{\partial u}( x,u,v)\omega -\frac{\partial F}{\partial v}(x,u,v)z\,dx| \\ &\leq \int_{B_R'}a_1(x)(| u+\zeta _1\omega | ^{p_1^{-}-1}+| u| ^{p_1^{-}-1})\omega dx\\ &\quad +\int_{B_R'}a_2(x)(| v+\zeta _2z|^{p_1^{+}-1}+| v| ^{p_1^{+}-1})\omega \,dx\\ &\quad + \int_{B_R'}b_1(x)(| u+\zeta _1\omega | ^{q_1^{-}-1}+| u| ^{q_1^{-}-1})zdx\\ &\quad +\int_{B_R'}b_2(x) (| v+\zeta _2z| ^{q_1^{+}-1}+|v| ^{q_1^{+}-1})z\,dx. \end{align*} By an elementary inequality, Propositions \ref{prop4}, \ref{prop6} and the fact that \begin{equation} \begin{gathered} | a_i| _{L^{p'(x)}(B_R')}\to 0,\quad | a_i|_{L^{\beta (x)}(B_R')}\to 0 \\ | b_i| _{L^{q'(x)}(B_R')}\to 0,\quad | b_i|_{L^{\beta (x)}(B_R')}\to 0, \end{gathered} \label{e3} \end{equation} for $R$ sufficiently large and $i=1,2$, we obtain the estimate \begin{align*} &\big| \int_{B_R'}(F(x,u+\omega ,v+z) -F(x,u,v)-\frac{\partial F}{\partial u}(x,u,v) \omega -\frac{\partial F}{\partial v}(x,u,v)z)\,dx\big|\\ & \leq \varepsilon (\| \omega \| _{p(x)}+\|z\| _{q(x)}). \end{align*} We prove now that $F '$ is continuous on $W_{p(x),q(x)}$. To this end, we let $(u_{n},v_{n})\to (u,v)$ in $W_{p(x),q(x)}$ as $n\to \infty $. Then for any $(\omega ,z)\in W_{p(x),q(x)}$, we have \begin{align*} &| F '(u_{n},v_{n})(\omega,z)-F '(u,v)(\omega ,z)| \\ &\leq | F _R'(u_{n},v_{n})(\omega ,z)-F _R'(u,v)(\omega ,z)| + | \int_{B_R'}\big(\frac{\partial F}{\partial u}(x,u_{n},v_{n}) -\frac{\partial F}{\partial u}(x,u,v)\big)\omega dx|\\ &\quad + | \int_{B_R'}\big(\frac{\partial F}{\partial v}( x,u_{n},v_{n})-\frac{\partial F}{\partial v}(x,u,v) \big)z\,dx| \end{align*} Note that \[ | F _R'(u_{n},v_{n})(\omega ,z)-F _R'(u,v)(\omega ,z)| \to 0\quad \text{as }n\to \infty , \] since $F _R'$ is continuous on $W_0^{1,p(x)}(B_R)\times W_0^{1,q(x)}(B_R)$ (see \cite{f3}). Using (H2) once again and \eqref{e2}, the other terms on the wrigth-hand side of the above inequality tend to zero. \begin{lemma} \label{lem2} Under assumptions {\rm (H1)--(H2)}, $F$ is lower weakly semicontinuous in $W_{p(x),q(x)}$. \end{lemma} \begin{proof} Let $(u_{n},v_{n})$ be a weakly convergent sequence to $(u,v)$ in $W_{p(x),q(x)}$. In the same way, we write \[ | F (u_{n},v_{n})-F (u,v)| \leq | F _R(u_{n},v_{n})-F _R(u,v)|+| \int_{B_R'}(F(x,u_{n},v_{n}) -F(x,u,v))dx| \] Since the restriction operator is continuous, the sequence $(u_{n},v_{n})$ is weakly convergent to $(u,v)$ in $W_0^{1,p(x)}(B_R)\times W_0^{1,q(x)}(B_R)$. However $F _R$ is weakly lower semi-continuous. This result comes from growth conditions (H1) and (H2), and Sobolev compact inclusion \[ W_0^{1,p(x)}(B_R)\times W_0^{1,q(x)}(B_R)\hookrightarrow L^{s(x)}(B_R) \times L^{t(x)}(B_R), \] for all $(s,t)\in [p(x),p^{\ast }(x)[\times [q(x),q^{\ast }(x)[$. Using \eqref{e2} and \eqref{e3}, both the terms on the right-hand side of the last inequality tend to zero. \end{proof} We remark that the $C^{1}-$functional $J$ is weakly lower semi-continuous, and its derivative is given by \[ J'(u,v)(\omega ,z)=\int_{\mathbb{R}^N}| \nabla u| ^{p(x)-2}\nabla u\nabla \omega \,dx +\int_{\mathbb{R}^N}| \nabla v| ^{q(x)-2}\nabla v\nabla z\,dx \] The Euler-Lagrange functional associated to the system \eqref{e1} takes the form \[ I(u,v)=\int_{\mathbb{R}^N}\frac{1}{p(x)}| \nabla u| ^{p(x)} +\frac{1}{q(x)}| \nabla v| ^{q(x)}dx-\int_{\mathbb{R}^N}F(x,u,v)\,dx. \] In other words $\ I(u,v)=J(u,v)-F (u,v)$. Observe that the weak solutions of the system \eqref{e1} are precisely the critical points of the functional $I$. \begin{lemma} \label{lem3} Under assumptions {\rm (H1)--(H2)}, the functional $I$ is coercive. \end{lemma} \begin{proof} We have \begin{align*} I(u,v)&=\int_{\mathbb{R}^N}\frac{1}{p(x)}| \nabla u| ^{p(x)} +\frac{1}{q(x)}| \nabla v| ^{q(x)}-F(x,u,v)\,dx\\ &\geq \int_{\mathbb{R}^N}\frac{1}{p^{+}}| \nabla u| ^{p(x)}+\frac{1}{q^{+}}| \nabla v| ^{q(x)}\,dx\\ &\quad - \int_{\mathbb{R}^N}(a_1(x) | u| ^{p_1^{-}}+a_2(x)| v| ^{p_1^{+}-1}| u| +b_2(x) | v| ^{q_1^{+}})dx\\ &\geq \frac{1}{p^{+}}\rho (\nabla u)+ \frac{1}{q^{+}}\rho (\nabla v)\\ &\quad -(| a_1| _{\alpha_1(x)}| | u|^{p_1^{-}}| _{p(x)} +| a_2| _{\beta (x)}| | v| ^{p_1^{+}-1}| _{q^{\ast }(x)}| u| _{p^{\ast }( x)}+| b_2| _{\alpha _2(x)}| | v| ^{q_1^{+}}| _{q(x)}). \end{align*} By Propositions \ref{prop3}, \ref{prop4}, \ref{prop6} and the Young inequality, we obtain \begin{align*} I(u,v) & \geq \frac{1}{p^{+}}\| u\| _{p(x)}^{p^{-}} +\frac{1}{q^{+}}\| v\| _{q(x)}^{q^{-}} -\Big(| a_1| _{\alpha_1(x)}\| u\| _{p(x)}^{p_1^{-}}\\ &\quad +| a_2| _{\beta (x)}(\frac{p_1^{+}-1}{p_1^{+}}\| v\| _{q(x) }^{p_1^{+}}+\frac{1}{p_1^{+}}\| u\| _{p(x) }^{p_1^{+}})+| b_2| _{\alpha _2(x)}\| v\| _{q(x)}^{q_1^{+}}\Big) \\ &\geq \frac{1}{p^{+}}\| u\| _{p(x)}^{p^{-}} +\frac{1}{q^{+}}\| v\| _{q(x)}^{q^{-}} - c_{6}\Big(| a_1| _{\alpha_1(x)}\| u\| _{p(x)}^{p_1^{-}}\\ &\quad +| a_2| _{\beta (x)}\| v\| _{q(x)}^{p_1^{+}-1} +|a_2| _{\beta (x)}\| u\| _{p(x)}+| b_2| _{\alpha _2(x) }\| v\| _{q(x)}^{q_1^{+}}\Big) \end{align*} Clearly, $I(u,v)$ tends to infinity as $\| (u,v)\| _{p(x),q(x)}\to\infty $, since $10$, $\theta <1$ and $(0,0)\neq (\varphi ,\psi )\in C_0^{\infty }(\mathbb{R}^N)\times C_0^{\infty }( \mathbb{R}^N)$ with $| \varphi | ,|\psi | \leq R$. According to (H3), one has \begin{align*} &I(t^{1/p(x)}\varphi ,t^{1/q(x)}\psi )\\ &=J(t^{1/p(x)}\varphi ,t^{1/q(x)}\psi )-F (t^{1/p(x)}\varphi ,t^{1/q(x)}\psi ) \\ &\leq t\int_{\mathbb{R}^N}[\frac{1}{p^{-}}| \nabla \varphi | ^{p(x)} +\frac{1}{q^{-}} | \nabla \psi | ^{q(x)}] dx -\int_{\mathbb{R}^N}F(x,t^{1/p(x)}\varphi ,t^{1/q(x)}\psi )dx \\ &\leq t[\frac{1}{p^{-}}\rho (\nabla \varphi ) +\frac{1}{q^{-}}\rho (\nabla \psi )] -t^{\theta }\int_{\mathbb{R}^N}H(x,\varphi ,\psi )dx \\ &\leq t[\frac{1}{p^{-}}\max \{ |\nabla \varphi | _{p(x)}^{p^{-}},| \nabla \varphi | _{p(x)}^{p^{+}}\} +\frac{1}{q^{-}} \max \{ | \nabla \psi | _{q(x)}^{q^{-}},| \nabla \psi | _{q(x) }^{q^{+}}\} ] \\ &\quad - t^{\theta }\int_{\mathbb{R}^N}H(x,\varphi ,\psi )dx \\ &\leq t[\frac{1}{p^{-}}\max \{ \| \nabla \varphi \| _{p(x)}^{p^{-}},\| \nabla \varphi \| _{p(x)}^{p^{+}}\} +\frac{1}{q^{-}} \max \{ \| \nabla \psi \| _{q(x)}^{q^{-}},\| \nabla \psi \| _{q(x) }^{q^{+}}\} ]\\ &\quad - t^{\theta }\int_{\mathbb{R}^N}H(x,\varphi ,\psi )\,dx<0, \end{align*} for $t>0$ sufficiently small. \end{proof} \subsection*{Acknowledgements} This work was partially supported by PNR (ANDRU) contracts. \begin{thebibliography}{00} \bibitem{a1}K. Adriouch, A. El Hamidi; \emph{The Nehari manifold for systems of nonlinear elliptic equations}, Nonlinear Anal. 64 (2006) 2149-2167. \bibitem{d1}L. Diening; \emph{Theorical and numerical results for electrorheological fluids}, Ph. D. Thesis, University of Freiburg, Germany (2002). \bibitem{d2} L. Diening; \emph{Riesz potentiel and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(x)}$ and $W^{k,p(x)}$}, Mathematische Nachrichten 268 (2004) 31-43. \bibitem{d3} A. Djellit, S. Tas; \emph{Existence of solutions for a class of elliptic systems in $\mathbb{R}^N$ involving the $p$-Laplacien}, Electron. J. Differential Equations 56 (2003) 1-8. \bibitem{e1} D. E. Edmunds, J. Rakosnik; \emph{Sobolev embeddings with variable exponent}, Studia Math. 143 (2000) 267-293. \bibitem{e2} A. El Hamidi; \emph{Existence results to elliptic systems with nonstandard growth conditions}, J. Math. Anal. Appl. 300 (2004) 30-42. \bibitem{f1} X. L. Fan, Q. H. Zhang; \emph{Existence of solutions for $p(x)$-Laplacian Dirichlet problem}, Nonlinear Anal. 52 (2003) 1843-1852. \bibitem{f2} X. L. Fan, Q. Zhang, D. Zhao; \emph{Eigenvalues of $p(x)$-Laplacian Dirichlet problem}, J. Math. Anal. Appl. 302 (2005) 306-317. \bibitem{f3}X. L. Fan, D. Zhao; \emph{On the spaces $L^{p(x)}$ and $W^{1,p(x)}$}, J. Math. Anal. Appl. 263 (2001) 424-446. \bibitem{f4} D. G. de Figueiredo; \emph{Semilinear elliptic systems: a survey of superlinear problems}, Resenhas 2 (1996) 373-391. \bibitem{h1} T. C. Halsey; \emph{Electrorheological fluids}, Science 258 (1992) 761-766. \bibitem{o1} S. Ogras, R. A. Mashiyev, M. Avci, Z. Yucedag; \emph{Existence of solution for a class of elliptic systems in $\mathbb{R}^N$ involving the $(p(x),q(x))$-Laplacian}, J. Inequal. Appl. Art. Id 612938 (2008) 16. \bibitem{s1} M. Struwe; \emph{Variational methods: Application to nonlinear Partial Differential Equations and Hamiltonian Systems}, Springer verlag, Berlin (2000). \bibitem{t1} S. Tas; \emph{Etude de syst\`emes elliptiques non lin\'eaires}, Ph. D. Thesis, University of Annaba, Algeria (2002). \bibitem{t2} F. de Th\'elin, J. V\'elin; \emph{Existence and nonexistence of nontrival solutions for some nonlinear elliptic systems}, Revista Mathematica de la Universidad Complutense de Madrid 6 (2007) 1712-1722. \bibitem{x1} X. Xu, Y. An; \emph{Existence and multiplicity of solutions for elliptic systems with nonstandard growth conditions in $\mathbb{R}^N$} Nonlinear Anal. 68 (2008) 956-968. \end{thebibliography} \end{document}